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Abstract

This paper presents an analysis of the stability and convergence properties of the Full Signal

Range CNN model. These properties are demonstrated to be similar to those of the Chua-Yang’s

model, and the I/O mapping of known applications is shown to be unaffected by the modification

introduced in this new model. In this modified CNN model, the dynamic range of the cell state-vari-

ables equals the dynamic range of the cell output variables, and is invariant with the application. This

feature results in simpler circuit implementations, thus allowing higher cell densities and improving

the robustness of CNN integrated circuits. In particular the Full Signal Range CNN model is specially

well-suited for programmable CNN integrated circuits with binary outputs.
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A VLSI-Oriented Continuous-Time CNN Model

S. Espejo, A. Rodríguez-Vázquez, R. Domínguez-Castro, and R. Carmona

I. INTRODUCTION

Analog microelectronic circuits are inherently parallel, have larger area and power efficiency

than digital counterparts, and enable direct interface to sensory devices [1]. These features render

them very well suited for hardware implementation of Cellular Neural Networks (CNN), and have

motivated several authors to explore them [2], [3], [4], [5], [6]. Some used the cell model proposed by

Chua and Yang [7], [8], which contains a linear loss term per cell and whose non-linearity is only at

the output function, while others have considered a generalization with non-linearities in the local

losses as well [9],

(1)

where,

(2)

and the notation used for the interactions among cells follows the convention in [10] -- not included-

here.

This model was first proposed by the authors in [9], where they considered the limiting case of

 and consequently, cell state variables are restricted to the same variation interval as input and

output variables, [−1, 1]. This differs significantly from Chua-Yang’s model, where the interval for

state variables is larger and its amplitude varies with the values of the templates. In the new model the

state and the output variables of each cell merge for all practical purposes, the block that realizes the

output non-linearity is discarded, and the complexity of the associated circuitry decreases3. Conse-

quently, it yields larger cell density and smaller power consumption than the original model -- prereq-

uisites to increase complexity in the production of CNN chips. In addition, it is insensitive to uniform

variations of CNN coefficients, an important feature in a VLSI context, where process parameters are

always subject to variations. Finally, for a given time constant, the processing speed is approximately

doubled in common applications.

This paper aims to provide an analysis of stability and convergence properties of this new model,

3. These considerations are somewhat dependent on technology and circuit design style. [9] demonstrates their
validity for current-mode circuits, where the non-linear loss term exploits intrinsic device non-linearities while
rendering these losses linear requires extra linearization circuitry. Similar considerations apply for gmC and
MOSFETC styles as well [12].
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denominated hereinafter as the Full Signal Range (FSR) model. This analysis will carried out for con-

venience and completeness on them-parameter family of (1)-(2), referred to as the Improved Signal

Range (ISR). Section II first provides an intuitive derivation of the FSR model based on the circuit

simplification objective, and then introduces the ISR as the result of a gradual transition from the

Chua-Yang’s to the FSR. Section III demonstrates the basic stability and convergence results for the

models in this family, including those initially reported for the original model in [7] and [8]. Section

IV discusses the mathematical formulation of the modified model obtained as a limit case of the pre-

vious family of models, and compares it with that predicted by the circuit derivation in Section II.

Finally, Section V contains a summary and the conclusions.

II. THE IMPROVED SIGNAL RANGE FAMILY OF CNN MODELS

A. Transition from the Chua-Yang Model to the FSR Model.

Fig. 1 shows a block diagram of a CNN cell based on Chua-Yang’s model, which corresponds

to usingm = 1 in the left-hand side equation in (2). Each cell receives/generates a weighted contribu-

tion from/for each cell in its neighborhood. Incoming contributions are added directly at the input of

the cell and integrated. The output of the integrator represents the state variable , which is fed-

back to the input with a scaling factor−1 that represents a normalization factor for the rest of the

weights. A nonlinear block is then used to generate the output , which is replicated and scaled to

generate the out-coming contributions for the cells in the neighborhood. The implementation of the

control and the offset terms is not shown since this part of the cell performs a static function, and is

irrelevant in the discussion of the modified model.

Variables  and  in Fig. 1 are identical while the cell is within its linear region. Other-

wise,  saturates at  (after normalization), while  goes beyond these limits. Any correct cir-

cuit implementation must provide room for these larger variations of the state variable, which means

that the output signal range of the integrator must be wide enough. The required signal range, normal-

ized to that of the output variable is given by [8],

(3)

where it is assumed that the cells’ initial condition and input are restricted to the unitary interval, that

is,  and . The value of  is between 4 and 20 for most reported applications [11].

This enlargement of the state variable range represents increased complexity in the circuitry used to

implement the cell. Particularly, for programmable CNNs, the dependence of  on the CNN coeffi-

cients forces either the use of a fixed high value for  valid for arbitrary templates, or the possibility

to change the normalization parameter through the inclusion of a programmable-saturation nonlinear

block in Fig. 1. Either approach results in increased circuit complexity and/or accuracy requirements.

In addition, the scaling block used to realize the loss term (the negative feedback block with weight−
1 in Fig. 1) must be designed with an input signal-range larger than that of the scaling blocks used to

generate the feedback-template contributions. The use of different circuitry to realize both types of
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scaling blocks represents an additional difficulty in accurate matching of the CNN coefficients with

respect to the loss term.

These considerations motivate searching for alternative models. To this end, note the output

variable  contains all the static information interchanged between cells. In addition, for applica-

tions where the output is binary4 [8], [10], [11] this variable contains all the relevant output informa-

tion from the network. From a dynamic point of view, the actual value of the state variable beyond the

limits of the linear region can be considered as a measure of the inertia of the output variable to remain

saturated. Although one may think a priori of this feature as significant for the input/output mapping

of a CNN, it is heuristically observed that this is not actually the case for most applications. Hence,

from a functional point of view, it appears that  may be restricted to the unitary interval as well

and that the state and output variables may be merged into a single one with no influence on the func-

tionality. This is actually the idea behind the FSR model, whose block diagram is depicted in Fig. 2.

The main modification centers on the integrator, which in Fig. 1 is designed with sufficient output-

signal range to avoid its saturation during the dynamic evolution of the cell, while in Fig. 2 it is

designed to have saturation limits equal to those of the output variable. Thus, this block responds to

the usual integral law while its output  (modified state variable) is within its saturation limits (

after normalization). Whenever the state variable reaches +1 (alternatively −1), it remains clamped to

this value as long as the input of the integrator is non-negative (alternatively non-positive), without

modifying its value and hence without accumulating inertia: as soon as the integrator input becomes

negative (alternatively positive), the modified state variable will enter the linear region again. Fig. 3

shows a conceptual block diagram to realize this behavior through electronic circuits. Analysis of

Fig. 2 using the integrator of Fig. 3 obtains,

(4)

where sgn(•) is the sign function and,

(5)

which corresponds to the limiting case of  in (1)-(2) with . Thus, there is

now only one signal-node and its signal range is [−1, 1] independent of the template coefficients.

Besides, all the scaling blocks in Fig. 2 are realized with the same type of circuitry, facilitating their

design and matching. In summary, the FSR circuitry is simpler and more robust than Chua-Yang’s5.

4. Binary Output was assumed in the model proposed originally by Chua and Yang. Also, the majority of appli-
cations of CNNs have binary output.
5. In the above formulation, we assume that  at every time instant. This is in fact direct consequence of
the definition of the time derivative of  in the unitary interval, which ensures that it will never go beyond

 if it is initially inside. In a real implementation, however, it must be ensured that the value of the derivative
when  tends to restore the state variable towards the unitary interval.
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B. A Gradual Transition from the Chua-Yang to the FSR: The Improved Signal Range Model.

To establish a connection among the mathematical formulations of the original and the FSR

models, we consider it convenient to use them-parameter ISR family of models given in (1)-(2),

instead of directly the FSR model. Fig. 4 shows the block diagram of this family, where the feedback

template elements are not redefined and the cell output is still related to the state variable by the usual

relationship in (2). Hence, the only difference between this and the original model is the modification

of the loss term. Note that if , then  resulting in the original CNN model. On the

other hand, when  the infinite losses in the saturation regions limit the state variable to the uni-

tary interval, resulting in the FSR model. This is further discussed in Section IV.

The similarity between the Chua-Yang and ISR models allows using procedures as in [8] and

[10] to demonstrate some stability and convergence properties of the ISR model family. All the results

will be applicable to both the original and the FSR models, since they are particular cases of the ISR

family.

III. STABILITY AND CONVERGENCE PROPERTIES OF ISR CNN MODELS

This section is written in the form of statements and proofs. Except where explicitly stated, the

statements are valid independent of the feedback and control templates, offset terms, and boundary

conditions (including non-uniform networks). They are also valid for any set of initial states and cell

inputs (with no restriction on the unitary interval). The only assumption made is that the network coef-

ficients, initial states, and cell input are finite.

Boundary conditions are not considered in the following demonstrations. However, the net-

works considered are finite (limited number of cells), and the effects of boundary conditions on border

cells can be included redefining their offset terms, and considering zero feedback and control tem-

plates for boundary cells6. If reciprocity is considered a condition, the corresponding feedback and

control template elements of border cells can also be set to zero without affecting the network.

For convenience, we include the following definitions:

(6)

which contains all the time-invariant contributions to each individual cell, and

(7)

which is a measure of the maximum absolute value of the contributions to a particular cell (excluding

its loss term). For simplicity, we will assume that , which is the most common case (for

instance, whenever ). This assumption is not necessary for any of the following statements [12].

6. Border cells are CNN cells located on the border of the array, which respond to the same dynamic equation as
the remaining inner cells. Boundary cells are located in the surroundings of the array, and have time-invariant
state variables. Their purpose is to establish spatial boundary conditions, and they can not be considered as real
CNN cells.
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A. Statement 1

“The absolute value of the state variables of every cell in an ISR CNN is bounded.”

Proof: Using the definition of given in (2), one can separate the cell dynamic law for the linear

and the two saturation regions,

(8)

These differential equations can be solved using conventional methods to yield,

(9)

(10)

(11)

For these equations to be valid the time variable must be shifted so that  every time the state

variable enters a different region, and the initial condition  must be defined accordingly.

In general, the cell may go in and out of the linear and saturation regions several times during

the CNN processing. We define intervals [tLi,t’ Li), i=1,...,N and [tSj,t’Sj), j=1,...,M within which the

state variable is in the linear region or in some saturation region, respectively. The union of these inter-

vals contains the complete transient evolution of the cell. Hence, we must consider different initial

conditionsxc
Li(0) = xc(t=tLi), i=1,...,N, andxc

Sj(0) = xc(t=tSj), j=1,...,M, and the corresponding time-

shifts to use equations (9) through (11). Note that generally |xc
Li(0)| = |xc

Sj(0)| = 1, with the possible

exception of the real (unshifted time) initial conditionxc
0(0), which affects eitherxc

L1(0) orxc
S1(0).

If |xc
0(0)| < 1, then |xc

L1(0)| = |xc
0(0)| < 1, and if |xc

0(0)| > 1 then |xc
S1(0)| = |xc

0(0)| > 1. In any case,

the initial conditions are all finite, and |xc
Li(0)| ≤ 1, ∀ i=1, 2,...,N, while |xc

Sj(0)| ≥ 1, ∀ j=1, 2,...,M.

Since the state variable must always be in one of the three regions, we only need to demonstrate

that equations (9) through (11) are bounded. Using Schwartz’s inequality several times on (9), taking

into account that the output variables are  and that , obtains the following bounded

result,
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(12)

The same result is obtained from (11). Finally, a similar result can be obtained for the linear region

using equation (10), or we can simply consider that by definition  in this region. Therefore,

state variables are globally bounded. ❏

B. Statement 2

“For any cellc, the minimum bound of the absolute value of equilibrium points is a bound for

the state variable at any time instant, assuming that it is true at .”

Proof: Let us first obtain a value for the bound of the state variables. From (12), which is valid for

either saturated region, we can obtain a bound for the state variable in each interval [tSj,t’Sj). We define

function  as the right-hand side of (12), which is a time dependent bound for the state variable

within interval [tSj,t’Sj). Function  can take only two different forms, illustrated in Fig. 6, which

allow obtaining the following results,

(13)

(14)

From which we can conclude that

(15)

Taking into account the possible values of |xc
Sj(0)|, obtains the following result,

(16)

The same procedure can be used for the linear region, or we may simply take into account that

since ,  for any , (16) can be extended to

(17)

Let us now determine the maximum possible absolute value of an equilibrium point. For this

purpose, we look at the dynamic route of ISR cells considered as isolated, first-order dynamic systems
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the reduced neighborhood  of the cell. Then, using this definition in (8), the

dynamic route can be formulated as

(19)

as depicted in Fig. 7. The value of the equilibrium points in each of the three regions above can be

obtained making the derivative equal to zero in (19) and using the definition of  given in (2),

which yields,

(20)

where we have included the condition required for the equilibrium points to be “real”, rather than “vir-

tual”. Using  in (18) we obtain the maximum possible absolute value ofic,

(21)

which, used in (20) or (20), obtains the maximum possible absolute value of a cell equilibrium point,

(22)

The right-hand side of this equation coincides with that of (17) under the assumption made in this

statement. ❏
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ing region.”

Proof: This hyper-rectangular region is defined by a set of intervals, one for each cell,

(23)
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either be in  or arbitrarily close to its borders after a sufficient amount of time. ❏

Fig. 8 illustrates this for the simple case of a two-cell network: if the state vector

of the network is outside the attracting region , it evolves towards it; and if it is inside, it never

escapes.

D. Statement 4

“ISR CNNs with central-feedback coefficients larger than unity  have no stable equi-

librium points within the open hypercube .”

Proof: The slope of dynamic routes in the linear region is given as , which is positive in

the cases considered. Hence, any equilibrium point in the linear region is unstable. ❏

Only stable equilibrium points can be reached in a real network due to noise and perturbations.

Hence, if a real network with  converges, its output is binary.

E. Statement 5

“ISR CNNs with reciprocal feedback templates are convergent.”

Proof: The demonstration is identical to that employed by Chua and Yang in [7] for the original

model. A CNN is said to be reciprocal if

(25)

We will use the same “energy-function” proposed in [7]:

(26)

Since the output variables are restricted to the [−1,1] interval, this function is bounded for any set of
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strate that it is a continuously decreasing function of time. For this purpose taking the time derivative
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and using (25), we obtain7

(27)

Then, taking into account the following three equations,
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will not be treated here. In circuit implementations, the discontinuity will not exist.
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(29)

Since only the cells whose state variables are in the linear region are included in the sum,

; and (1) can be used in the above equation to obtain

(30)

which demonstrates thatE(t) is a monotonically decreasing function of time. Now (30) can be

changed using the last two equations in (28) as follows,

(31)

SinceE(t) is a bounded and monotonic decreasing function of time, its limit fort → ∞ exists and

therefore, the limit of its derivative must be cero,

(32)

where (31) has been used and the fact that if a sum of positive summands is zero, every summand is

zero. The final result in (32) demonstrates that all output variables converge. ❏

Once the output variables are stable, every individual cell can be considered as an isolated, first-

order nonlinear system. The resulting dynamic-routes shown in Fig. 7 can be used to demonstrate that

the state variables also converge. However, it is interesting to obtain a formal demonstration to provide

expressions for the value of the equilibrium points of the state variables as a function of the output

variables. For this purpose, we define

(33)

and

(34)

which exists since the limits of all output variables exist. Note that once the output variables have con-

verged, the state variables of the cells are confined to one of the three regions. If the state variable of

a particular cell is in the upper saturated region we can use (9), rewritten using the previous defini-

tions, as follows
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(35)

where we have used the rule of L’Hôpital. If the state variable is in the lower saturated region we can

use the same procedure starting from (11), which yields,

(36)

Finally, if the state variable is in the linear region, we can use (10) in the same manner,

(37)

The above expressions can be used to determine the set of possible equilibrium points by con-

sidering all the possible combinations of binary output for the cells in a neighborhood (for convergent

CNNs with ), as done in [10]. For this purpose, it must be taken into account that equations (35)

through (37) are only valid when the results are consistent with the region for which they were

obtained. The stability of the equilibrium points can then be observed from the derivative of the state

variables at the equilibrium points, given by (1).

F. Statement 6

“For any two models in the ISR family, there is a one-to-one correspondence between their sets

of network equilibrium points which preserves the local stability and the value of the output vector”

Proof: We will use matrix notation in the following. For this purpose, we assume a network with

inner cells, and define vectors , , , and  as  matrices with their individual components

, , , and  in some arbitrary order. We also define two  matrices  and  with elements

given respectively by  and  for , and two  vectorial

functions  and  with individual components given by  and  as defined in

(2). Equation (1) can then be written for the whole network as
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and equation (2) as

(39)

As previously stated, boundary conditions can be included in (38) by redefining the elements of the

offset term vector  associated to border cells.

We now focus attention on function , defined in (2) and plotted in Fig. 5 for an arbitrary

. Let us consider a map . Since  is a monotonically increasing func-

tion, it is invertible. Note also that both the image and the domain of this function equal the complete

real axis . Hence, both  and  are one-to-one and defined anywhere in . From Fig. 5

and equation (2), we can obtain the following expression for

(40)

which is also monotonically increasing. From Fig. 5, we also have that

(41)

which means that both  and  preserve the region (upper-saturated, linear, or lower-sat-

urated) of their variable.

These results can be extended to the vectorial form considering a pair of inverse maps,

 and , which are both one-to-one, defined on the entire space  and pre-

serve the output vector,

(42)

Note that preservation of the output vector is independent of the value of parameter .

Consider now a CNN designed for a specific application, with a particular value of parameter

. For any input vector  the set of equilibrium points of the network can be obtained from (40) by

requesting that the derivative of the state vector  be null,

(43)

The solution of this equation gives the set of equilibrium points of the network . We then define

the corresponding set . From the equilibrium point condition in (43), it is clear

that

(44)

where . Let us now consider another CNN, identical to the previous one, with the

exception of the value of parameter , denoted now , and with the same input vector . For each
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equilibrium point  in the previous network, we define a point  in the state space of the new net-

work given by,

(45)

Given the preservation of the output vector in both  and  we have,

(46)

Using this in (44), we obtain

(47)

This can finally be used in (45) to obtain,

(48)

or in a different form,

(49)

which means that points  are equilibrium points of the new network.

The correspondence between the two sets  and  is one-to-one and hence, the new

network has the same or a larger number of equilibrium points than the previous one. However, since

this process can be repeated by swapping the roles of the two networks, the only possible result is that

the two networks have the same number of equilibrium points. Hence,  and  represent the

sets of equilibrium points of the two networks, and equation (45) defines a one-to-one correspondence

between them which, as seen from (46), preserves the output vector. We will now demonstrate that

this correspondence preserves the local stability properties as well.

Consider again a generic value of parameter . For each input vector  (assumed

time-invariant), equation (38) defines an autonomous system which can be formulated as

(50)

with

(51)

The set of equilibrium points of (50) has been denoted previously as . Their local-stability prop-

erties can be determined from the real-part sign of the eigenvalues of the  matrix  result-

ing from the linearization of (50) around each equilibrium point  [13], [14],

(52)

where  is defined by

Xi X'i

X'i Gm'
1– Gm Xi( )( ) Gm'

1– Wi( )= =

Gm Xi( ) Gm'
1– Wi( )

Y'i F X'i( ) F Wi( ) F Xi( ) Yi= = = =

Wi AY'i BU D+ +=

X'i Gm'
1– AY'i BU D+ +( )=

Gm' X'i( ) AY'i BU D+ +=

X'i
X'i{ } Xi{ }

X'i{ } Xi{ }

m 1 ∞, )[∈ U

1
τ
---

td
dX

V X( )=

V X( ) Gm X( )– AY BU D+ + +=

Xi{ }
N N× J V( )

Xi

Xi

1
τ
---

td
dX

J V( )
Xi

X Xi–( )⋅=

J V( )
Xi



15

(53)

Clearly, since  is independent of ,

(54)

Matrices  and  are both diagonal since the individual elements of  and

 depend only on the corresponding individual element of , that is,  and

. The diagonal elements of both matrices can be obtained from (2),

(55)

Now consider two CNN systems, identical except for their values of parameter . As shown

previously, the two corresponding sets of equilibrium points are related one-to-one, and the output

vector is preserved. Hence, for any pair of related equilibrium points of these two systems the second

summand  in (54) is invariant. Therefore, differences between their corresponding

 matrices can only be originated by the first summand  in (54), which is a diag-

onal matrix. Also, from (55), differences appear only in diagonal elements corresponding to saturated

cells. On the other hand, from (55), columns of  corresponding to saturated cells have

all zero element, and therefore, in the  matrices all elements in columns corresponding to sat-

urated cells are zero, except that in the diagonal which is given by . These diagonal elements are

hence eigenvalues, all equal to . The remaining eigenvalues can be obtained from the submatrix

resulting from the elimination of the rows and columns corresponding to saturated cells. Since the

 matrices of the two systems are identical except in the diagonal elements corresponding to sat-

urated cells, this process leaves identical submatrices for the two systems, therefore with identical

eigenvalues. In summary, eigenvalues corresponding to cells in the linear region are identical in the

two systems, while those corresponding to saturated cells are always negative. Therefore, the stability

of the equilibrium points is preserved. ❏

IV. THE FSR LIMIT

The statements in the previous section are valid for any value ofm in the range

which includes the Chua-Yang  and the FSR  models. In this last case, we can also

make the following statement,

A. Statement 7

“In the FSR limit , the state vector is limited to the  hypercube independently

of the particular CNN coefficients, assuming that the initial-state vector is within this hypercube.”

j c d,( )
Xi x

d∂
∂v

c

Xi

=

BU D+ X

J V( )
Xi

J– Gm X( )( )
Xi

A J⋅ Y X( )( )
Xi

+=

J Gm X( )( )
Xi

J Y X( )( )
Xi

Gm X( )

Y X( ) X gm
c

X( ) gm
c

x
c( )=

y
c

X( ) y
c

x
c( )=

x
c∂

∂gm
c

Xi

m if x
c

; 1>

1 if x
c

; 1≤





= ;
x

c∂
∂y

c

Xi

0 if x
c

; 1>

1 if x
c

; 1≤





=

m

A J⋅ Y X( )( )
Xi

J V( )
Xi

J– Gm X( )( )
Xi

A J⋅ Y X( )( )
Xi

J V( )
Xi

m–

m–

J V( )
Xi

m 1 ∞ ),[∈
m 1=( ) m ∞→( )

m ∞→( ) 1– 1[ , ] n



16

Proof: Simply note that

(56)

and therefore, using (23),

(57)

which demonstrates that the  hypercube is a global attracting region. ❏

Also note that the state vector is attracted to this hypercube, if it is initially outside.

B. FSR model formulation

Let us assume that the state vector of an FSR CNN is . Since in this model

the cell equation for , can be modified as follows,

(58)

On the other hand, the state variable must be forced to remain in the unitary interval  using a

hard limiter, as illustrated in Fig. 3. The high slope (ideally infinite) of the external segments of

ensures that the derivative of the state variable is null at , positive (ideally∞) for  and

negative (ideally−∞) for . In summary, the FSR cell model can be practically described by the

following equation,

(59)

Hence, the stability of the equilibrium points at  depends on the sign of the lateral derivatives.

Deviations towards the outside of  are rapidly restored to the interval by the extreme values of

the derivative at . On the other hand, deviations towards the inside of the interval will be

increased or restored depending on the sign of the upper expression in (59), which coincides with the

definition of  in (5) after performing the substitution .Taking into account that in a real sys-

tem the state variables will always fluctuate around any equilibrium point due to the presence of elec-

trical noise and other perturbations (allowing it to escape from unstable equilibrium points), equation

(59) can be considered identical to (4).

It is important to mention that, in real implementations  will always be finite. Nevertheless,

for sufficiently high values of , the properties of the CNN will be arbitrarily similar to that of the

FSR model.

C. Functionality of FSR CNNs

Previous sections describe and analyze a modification of the continuous-time CNN model,
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resulting in simpler circuit implementations, which allows the integration of a higher number of cells

in a single IC. Stability and convergence properties of the modified model have been shown to be sim-

ilar to those of the original model. However, to take advantage of the many applications reported in

literature for the original model, the I/O mapping of the CNN should be preserved after performing

the modification of the model.

Statement 6 ensures preservation of the local stability properties of the system, since the Chua-

Yang and FSR models are particular cases of the ISR model family. However, the basins of attraction

of the different stable equilibrium points will be modified by the different dynamics of the two sys-

tems. Nevertheless, numerical experiments show that for most reported applications, the CNN model

can be changed from the original to the FSR (in fact an ISR algorithm with ) without appreciable

effects on the I/O mapping. This is particularly true in the case of early CNN applications, designed

mainly by inspection of the stability properties of equilibrium points as a function of template coeffi-

cients [8], [15], [16]. Tab. 1 illustrates some numerical examples of image-processing with the origi-

nal and the FSR CNN models. It can be observed that the resulting output image is the same. Note

that the time required to converge to the final output (normalized to the time constantτ of the network)

is about half for the FSR algorithm. This is a positive consequence of eliminating the inertia of satu-

rated state-variables to remain in the saturation region.

It can also be shown that uniform (proportional) variations of the templates and offset coeffi-

cients in (59) only affect the time constant of the network. For the original model, the same result is

obtained if the loss term is influenced by the same proportional variation. However, the different signal

ranges required for the state and output variables usually force the use of different circuit blocks to

implement the loss term and the weighted output, resulting in non-uniform variations. Hence, another

positive feature of the FSR model is its increased robustness against uniform variations of the CNN

coefficients. This is important in aVLSI context, where process parameters are always subject to vari-

ations.

V. SUMMARY

This paper describes and analyzes a modified continuous-time CNN model which results in

more efficient circuit implementations and preserves most of the functionality of the original model.

Stability results include those reported for the original CNN model in [7] and [8], and can be summa-

rized as follows:

• State variables are bounded.

• The bound of the state variable coincides with the maximum value of an equilibrium point.

• There is a global attracting region.

• Convergence of reciprocal-feedback CNNs.

• Binary output of convergent CNNs with .

Except for the restrictions explicitly stated in the last two points, these results generally apply to any

m 1»

ac
c

1>( )
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feedback and control templates, offset terms, and boundary conditions (including non-uniform net-

works). They are also general for any set of initial states and cell input (not restricted to the unitary

interval).

Other results in this paper were obtained to show the similarity between the modified and the

original model. This includes the one-to-one correspondence of equilibrium points which preserves

the output vector of the network and the local stability. Numerical examples are also used to show the

invariance of I/O mapping between the two models.

From an electronic implementation point of view, the modified model presents the following

advantages:

• The state and output signals are merged into a single signal.

• The realization of the nonlinear functiony(x) is not required.

• The normalized dynamic-range of all signals is±1, and invariant with the application.

• The linear dissipative term is merged with the self feedback coefficient.

• Proportional variations of all coefficients have no effect on the I/O mapping of the network.

• Processing time is approximately halved in common applications.
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Fig. 1. Block diagram of a CT CNN cell circuitry according to the original cell model. Control template and off-
set-term implementation are not shown.

Fig. 2. Block diagram of CT CNN cell circuitry using the FSR model.
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Fig. 3. Realization of an integrator with saturation.
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Fig. 4. Block diagram of ISR CNN cell circuitry.
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Fig. 5. Piece-wise linear loss term used in the ISR models.
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Table 1: Some processing examples with the original and the FSR CNN models.

APPLICATION
INPUT

IMAGE

CHUA-YANG FSR (m=100)

OUTPUT Time (τ) OUTPUT Time (τ)

CONNECTED

COMPONENT

DETECTOR [16]

17.672 9.099

EDGES

DETECTOR [8]
13.483 5.171

HOLE FILER [15] 7.326 3.100

DETECT SPEC.

PATTERN [11] 6.531 2.101
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FIGURE AND TABLE CAPTIONS

Fig. 1. Block diagram of a CT CNN cell circuitry according to the original cell model. Con-

trol template and offset-term implementation are not shown.

Fig. 2. Block diagram of CT CNN cell circuitry using the FSR model.

Fig. 3. Realization of an integrator with saturation.

Fig. 4. Block diagram of ISR CNN cell circuitry.

Fig. 5. Piece-wise linear loss term used in the ISR models.

Fig. 6. Two possible forms of : a) case considered in (13), b) case considered in (14).

Fig. 7. Dynamic route of an ISR CNN cell.

Fig. 8. State-space trajectories of an ISR CNN network and global attracting region.

Table 1: Some processing examples with the original and the FSR CNN models.
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