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Abstract. This paper presents a new intensity–to–time processing paradigm suitable for VLSI computa-

tional sensor implementation of global operations over sensed images. Global image quantities usually

describe images with fewer data. When computed at the point of sensing, global quantities result in a low–

latency performance due to the reduced data transfer requirements between an image sensor and a processor.

The global quantities also help global top–down adaptation: the quantities are continuously computed on–

chip, and are readily available to sensing for adaptation. As an example, we have developed a sorting image

computational sensor — a VLSI chip which senses an image and sorts all pixels by their intensities. The first

sorting sensor prototype is a 21 by 26 array of cells. It receives an image optically, senses it, and computes

the image’s cumulative histogram — a global quantity which can be quickly routed off chip via one pin. In

addition, the global cumulative histogram is used internally on–chip in a top–down fashion to adapt the val-

ues in individual pixels so as to reflect the index of the incoming light, thus computing an “image of indi-

ces.” The image of indices never saturates and has a uniform histogram. 
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1.   Introduction

Many time–critical robotics applications, such as autonomous vehicles and human–machine interfaces, need

a low–latency and adaptable vision system. Conventional vision systems comprised of a camera and proces-

sor provide neither low–latency performance nor sufficient adaptation. 

Latency is the time that a system takes to react to an event. In the conventional systems, the latency is

incurred in both the data transfer bottleneck created by the separation of the camera and the processor and in

the computational load bottleneck created by the necessity to process a huge amount of image data. For

example, a standard video camera takes 1/30 of a second to transfer an image. In many critical applications,

the image capture alone presents excessive latency for the stable control of a robotic system. Another exam-

ple is the pipelined dedicated vision hardware which delivers the processing power to update its output 30

times per second; however, the latency through the pipeline is typically several frame times, again rendering

the conventional system unsuitable for many time–critical applications.

The second important feature of a vision system is adaptation. It has been repeatedly observed in machine

vision research that using the most appropriate sensing modality or setup, allows algorithms to be far more

simple and reliable. For example, the concept of active vision proposes to control the geometric parameters

of the camera (e.g., pan, tilt, zoom, etc.) to improve the reliability of the perception. It has been shown that

initially ill–posed problems can be solved after the top–down adaptation of the camera’s pose has acquired

new, more appropriate image data [1]. Adjusting geometric parameters is only one level where adaptation

can take place. A system which can adjust its operations at all levels, even down to the point of sensing,

would be far more adaptive than the one that tries to cope with the variations at the “algorithmic” or

“motoric” level alone.

The computational sensor paradigm [11] [3] has potential to greatly reduce latency and provide adaptation.

By integrating sensing and processing on a VLSI chip, both transfer and computational bottlenecks can be

alleviated: on–chip routing provides high throughput transfer, while an on-chip processor could implement

massively parallel computational models. Adaptation is also more conveniently facilitated: the results of

processing are readily available to sensing for adaptation.

So far, a great majority of computational sensory solutions implement local operations on a single light sen-

sitive VLSI chip (for examples, see [11] [13] [19]). Local operations use operands within a small spatial/

temporal neighborhood of data and, thus, lend themselves to graceful implementation in VLSI. Typical

examples include filtering and motion computation. Local operations produce preprocessed “images;” there-

fore, a large quantity of data still must be read out and further inspected before a decision for an appropriate

action is made — usually a time–consuming process. Locally computed quantities could be used for adapta-

tion within the local neighborhood, but not globally. Consequently, a great majority of computational sen-
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sors built thus far are limited in their ability to quickly respond to changes in the environment and to globally

adapt to a new situation.

Global operations, on the other hand, produce fewer quantities for the description of the environment. An

image histogram is an example of a global image descriptor. If computed at the point of sensing, global

quantities can be routed off a computational sensor through a few output pins without causing a transfer bot-

tleneck. In many applications, this information will often be sufficient for rapid decision making and the

actual image does not need to be read out. The computed global quantities also can be used in top–down

fashion to update local and global properties of the system for adapting to new conditions in the environ-

ment. Implementing global operations in hardware, however, is not trivial. The main difficulty comes from

the necessity to bring together, or aggregate, all or most of the data in the input data set [5] [3]. This global

exchange of data among a large number of processors quickly saturates communication connections and

adversely affects computing efficiency in parallel systems — parallel digital computers and computational

sensors alike. It is not surprising that there are only a few computational sensors for global operations: [18]

and [8] show computational sensors for detecting isolated bright objects against the dark background and

computing the object’s position and orientation, and [16] and [6] show attention–based computational sen-

sors that globally select the “most salient features” across the array of photoreceptors.

This work introduces a novel intensity–to–time processing paradigm — an efficient solution for VLSI

implementation of low–latency massively parallel global computation over large groups of fine–grained

data. By using this paradigm, we have developed a sorting computational sensor — an analog VLSI chip

which sorts pixels of a sensed image by their intensities. The sorting sensor produces images of indices that

never saturate. As a by-product, the chip provides a cumulative histogram — a global descriptor of the

scene— on one of the pins; this histogram can be used for low–latency decision making before the image is

read out.

2.   Intensity–to–Time Processing Paradigm

The intensity–to–time processing paradigm implements global operations by aggregating only a few of the

input data at a time. Inspired by biological vision [20], the paradigm is based on the notion that stronger

input signals elicit responses before weaker ones. Assuming that the inputs have different intensities, the

intensity–to–time paradigm separates responses in time allowing a global processor to makes decisions

based only on a few inputs at a time. The more time allowed, the more responses are received; thus, the glo-

bal processor incrementally builds a global decision first based on several, and eventually based on all, the

inputs. The key is that some preliminary decision about the environment can be made as soon as the first

responses are received. Therefore, this paradigm has an important place in low–latency vision processing. 

The architecture supporting intensity–to–time processing is shown in Fig. 1. After a common reset signal at

t=0, a cell k generates an event at the instant:
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(EQ 1)

where f(.) is a monotonic function, and Ik the radiation received by the cell k. Therefore, any two cells

receiving radiation of different magnitude generate events at different times. If f(.) is decaying, then the

ordering of events is consistent with a biological system: stronger stimuli elicit responses before weaker

ones. 

A global processor receives and processes events. In addition, there can be a local processor attached to each

cell. The generated events then control the instant when a local processor in each cell performs at least one

predetermined (i.e., pre–wired or pre–programmed) operation. By separating the input data in time, the

intensity–to–time processing paradigm eases the global data aggregation and computation: 1) the global pro-

cessor processes only a few events at a time, 2) the communication resources are shared by many cells, and

3) the global processor and local processors infer the input operand intensity by measuring the time an event

is received (e.g., Ik = f–1(tk).) 

Traditionally, the intensity–to–time relationship has been used in single and double slope A/D

converters [10]. In vision, it has been used to improve diffusion–based image segmentation [7] — a local

operation, and for image acquisition in a SIMD architecture [9] — an architecture well suited only for local

operations. In contrast, our architecture allows global operations and shares some features of traditional

MIMD parallel processing. Namely, the local processors perform their operations asynchronously, an essen-

tial feature for the quick response and the low latency performance of parallel systems [3]. 

The intensity–to–time is closely related to the event–address neural communication schemes proposed by a

number of researchers [15] [12] [17]. In these schemes the plurality of artificial neurons fire pulses (i.e.

events) at rates reflecting their individual levels of activity. The goal is to communicate this activity to other

neurons or to an output device. The event–address scheme shares communication wires by communicating

the identity (i.e. address) of the neuron when it fires a pulse. Since the time is inherently measured across the

entire system, the receiver recovers the firing rate for each transmitting neuron. The intensity–to–time para-

digm synchronizes the responses at the beginning of operations and deals with the time intervals each “neu-

ron” takes to fire its first pulse.

3.   Sorting Image Sensor Chip

By using the intensity–to–time paradigm, we have developed a sorting computational sensor — an analog

VLSI sensor which sorts the pixels of an input image by their intensities. The chip detects an image focused

thereon and computes an image of indices. The image of indices has a uniform histogram which has several

important properties: 1) the contrast is maximally enhanced, 2) the available dynamic range of readout cir-

cuitry is equally utilized, i.e., the values read out from the chip use available bits most efficiently, and 3) the

image of indices never saturates, and always preserves the same range (e.g., from 1 to N, where N is the

tk f Ik( )=
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number of pixels). During the computation, the chip computes a cumulative histogram — one global

descriptor of the detected scene — and reports it with low–latency on one of the pins. In fact, the global

cumulative histogram is used in top–down fashion to update information in local processors and produce the

image of indices.

The sorting operation is accomplished in the following way. The plurality of cells detect light and generate

events according to (EQ 1), where  is decaying function. Cells receiving more light generate events

before cells receiving less light. The global processor counts the events generated within the array. Since the

intensities are ordered in time, the count represents the order, or index, of the cell that is generating an event

next. For example, if K events were generated, when a K+1st cell generates the event, the order of the K+1st

cell is K. Therefore, the sorting is done by associating the cell(s) currently generating an event with the cur-

rent count produced by the global counter. 

Fig. 2 shows the circuit of the sorting sensor. The global processor/counter comprises an array of constant

current sources Io, a current–to–voltage converter (resistor R), a voltage follower, and wires Win and Wout.

Upon the arrival of the event generated by a cell, the corresponding individual current source Io is turned on

via switch S6. The current sources are summed in the wire Wout. The cumulative current in the wire Wout

continuously reports the number of cells that have responded with an event—the global count. The cumula-

tive current is converted to a voltage via resistor R, and fed in a top–down fashion to the local processors in

the cell array via wire Win.

The local processor in each cell comprises a track–and–hold (T/H) circuit. The T/H tracks the voltage on Win

until the event in the cell is generated. At that point the local processors remember voltage supplied by the

global counter on the wire Win. Thus, the appropriate index is assigned to each cell.

The remaining portion of the cell comprises the photo sensitive intensity–to–time event generator which

generates an event according to (EQ 1). Fig. 3 shows the simulation of the circuit operation for the sorting

sensor with four cells. A photodiode PD operating in the photon flux integrating mode [21] detects the light.

In this mode of operation the capacitance of the diode is charged to a high potential and left to float. Since

the diode capacitance is discharged by the photo current, the voltage decreases approximately linearly at a

rate proportional to the amount of light impinging on the diode (Fig. 3, top graph). 

The diode voltage is monitored by a CMOS inverter. Once the diode voltage falls to the threshold of the

inverter, the inverter’s output changes state from low to high (Fig. 3, second graph). A switch S3 is included

to provide a positive feed back and force rapid latching action. The transition in the output of the inverter

represents the event generated by the cell. It controls the instant when the capacitor C in the T/H memorizes

the voltage supplied on the wire Win. It also controls the instant when the current Io is supplied to the wire

Wout. 

f( )
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The voltage on the wire Win (Fig. 3, third graph) represents the index of a cell that is changing state and is

supplied to the global input wire. The T/H within each cell follows this voltage until it is disconnected, at

which point a capacitor C retains the index of the cell (Fig. 3, bottom graph). The bottom graph shows that

the cell with the highest intensity input has received the highest “index,” the next cell one “index” lower, and

so on. The charge from the capacitors is readout by scanning the array after all the cells responded or after a

predetermined time-out.

The sorting sensor computes several important properties about the image focused thereon. First, the time

when a cell k triggers is approximately inversely proportional to the input radiation it receives: 

(EQ 2)

where C is the diodes capacitance, VDD the power supply voltage, Vth the threshold voltage of the inverter,

and Ik photocurrent approximately proportional to the radiation, and Id is the dark current.

Second, by summing up the currents Io, the global processor knows at each given time how many cells have

responded with an event. Since events are generated according to (EQ 1), the cumulative current in the wire

Wout, or its inverse, the voltage on the wire Win, are recognized as being temporal representations of the

cumulative histogram of the input data, with the horizontal axis being proportional to . The time deriva-

tive of the cumulative histogram signal is related to a histogram of the input image [2]. The cumulative his-

togram is one global property of the scene that is reported by the chip with very low latency. Such

information can be used for preliminary decision making as soon as the first responses are received. In fact,

it is used on-chip to quickly adapt index values for every new frame of input data.

4.   VLSI Realization and Evaluation

A 21 x 26 cell sorting sensor has been built in 2µ CMOS technology. The size of each cell is 76µ by 90µ,

with 13% fill factor. The micrograph of the chip is shown in Fig. 4. An image was focused directly onto the

silicon. The cumulative histogram waveform as well as the indices from the sorting sensor were digitized

with 12–bit resolution. 

Scene 1 of an office environment was imaged by the sorting chip under common office illumination coming

from the ceiling. Fig. 5(a) and (b) shows the cumulative histogram of the scene and the image of indices

both computed by the chip. We evaluated the histogram of the indices which is shown in Fig. 5(c). From

Fig. 5(c) it is seen that most pixels appeared to have different input intensities and, therefore, received differ-

ent indices. Occasionally, as many as 3 pixels were assigned the same index. Overall, the histogram of indi-

ces is uniform, indicating that the sorting chip has performed correctly.

tk C
VDD Vth–( )

I k Id+
-----------------------------=

1 t⁄
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Scene 2 from the same office was also imaged. Scene 1 (Fig. 5) contains more dark regions than Scene 2

(Fig. 6) because the moderately bright wall in the background is replaced by the dark regions of the person

in partial shadow. Therefore, the chip takes longer to compute Scene 1 than Scene 2, but the dynamic range

of the output indices is maintained. The total time shown on the time sample axis of the cumulative histo-

grams is about 200ms.

By producing the cumulative histogram waveform and the image of indices, the sorting computational sen-

sor provides all the necessary information for the inverse mapping — the mapping from the indices to the

input intensities. Fig. 7(a) shows the image of indices for Scene 1 and the image of inferred input intensities.

Fig. 7(b) includes an image taken by a commercial CCD camera for showing natural light conditions in the

office environment from which Scene 1 was taken. The inferred input intensities closely resemble the natu-

ral low contrast conditions in the environment.

There is a total of 546 pixels in the prototype described in this paper. The uniform histogram of indices

(Fig. 5c and Fig. 6c) indicates that most of the pixels received different indices. Therefore, without special

considerations as to the illumination conditions, low–noise circuit design and temperature and dark current

control, our lab prototype readily provides indices with more than 9 bits of resolution. Furthermore, the

range of indices remains unchanged (from 0 to 545) and the indices maintain uniform histogram regardless

of the range of input light intensity or its histogram.

5.   Sorting Sensor Image Processing

The data that are stored in the local processors are provided by the global processor. These global data — a

function of time — define a mapping from the input intensities to output data. For the sorting operation, this

global function is the cumulative histogram computed by the chip itself. In general, when appropriately

defined, this global function enables the sorting sensor to perform numerous other operations/mappings on

input images. Examples of such operations include histogram computation and equalization, arbitrary point-

to-point mapping, region segmentation and adaptive dynamic range imaging. In fact, in its native mode of

operation — sorting — the chip provides all the information necessary to perform any mapping during the

readout. 

Histogram Equalization. When the voltage of the cumulative histogram (computed by the chip itself) is

supplied to the local processors, the generated image is a histogram–equalized version of the input

image [2]. This is the basic mode of operation for the sorting chip and has been illustrated in the previous

section.

Linear Imaging. When the waveform supplied to the input wire is inversely proportional to time, the values

stored in the capacitors are proportional to the input intensity, implementing a linear camera. The results of

such mapping have been illustrated in Fig. 7. As expected, the result is similar to the image obtained by the
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linear CCD imager. (The CCD image and sorting sensor image are obtained within minutes from each other,

under the same illumination condition.)

Scene Change Detection. Analyzing the change in the histogram pattern is a basic technique to classify

images or detect a scene change. The sorting computational sensor computes the cumulative histogram at

real–time and can be used for low-latency scene discrimination/surveillance without requiring the image to

be read out. For example, by comparing the cumulative histograms for Scenes 1 and 2, one could conclude

that the brightest pixels (i.e. computer monitor) did not change (see Fig. 8). One also could conclude that the

remainder of the image in Scene 2 is brighter than in Scene 1, since the Scene 2 takes less time to compute.

Other more intelligent and detailed reasoning about the scene based only on the cumulative histogram is

possible.

Image Segmentation. Thresholding is a rudimentary technique to segment an image into regions. The

cumulative histogram can be used to determine this threshold. Pixels from a single region often have pixels

of similar intensity that appear as clusters in the image histogram [2]. The values which ought to be stored in

the cells can be generated to correspond to the “label” of each such region. A global processor can be

devised that performs this labeling by updating the supplied value (i.e. label) when the transition between

the clusters in the (cumulative) histogram is detected. An example of segmentation is shown in Fig. 10(b)

and Fig. 10(c) in which the illuminated and shadowed regions respectively are “colored” as a black region.

Adaptive Dynamic Range Imaging. For faithful imaging of scenes with strong shadows, a huge dynamic

range linear camera is needed. For example, the illumination of the scene which is directly exposed to the

sunlight is several orders of magnitude greater than the illumination for the surfaces in the shadow. Due to

the inherently large dynamic range of the sorting sensor, both illuminated and shadowed pixels can be

mapped to the same output range during a single frame.

We demonstrate this concept with back illuminated objects. Fig. 9 shows a global view of this scene as cap-

tured by a conventional CCD camera. Due to the limited dynamic range of the CCD camera, the foreground

is poorly imaged and is mostly black. (The white box roughly marks the field–of–view for the sorting sen-

sor.)

When the scene is imaged with the sorting sensor (Fig. 10a), the detail in the dark foreground is resolved, as

well as the detail in the bright background. Since all 546 indices are competing to be displayed within the

256 levels allowed for the postscript images in this paper, one enhancement for purpose of human viewing is

to segment the image and amplify only dark pixels. The result is shown in Fig. 10b. Conversely, as shown in

Fig. 10c, the bright pixels can be spanned to the full (8 bit) output range. Finally, if these two mappings are

performed simultaneously, the shadows are removed (Fig. 10d.)

The same method can be applied to the image obtained from a standard CCD camera. If the CCD image of

Fig. 9 is cropped to the white box, and such an image is histogram–equalized, we arrive at the result shown
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in Fig. 11a. This image is analogous to the image of indices obtained by the sorting sensor (Fig. 10a). Due to

the limited dynamic range, noise and quantization, the CCD image only resolves the face with 2–3 bits. The

histogram–equalized image from the CCD is used for further mapping using the same steps as for Fig. 10d.

Due to obvious reasons, the result is poor. In contrast, the sorting computational sensor allocates as many

output levels (i.e., indices) as there are pixels within the dark region, or the entire image for that matter. By

comparing Fig. 10(d) and Fig. 11(b), the superior utilization of the sensory signal with the sorting chip is

obvious.

The adaptation of the dynamic range of the sorting sensor is also illustrated in Fig. 12, showing a sequence

of 93 images of indices computed by the sorting sensor. The sensor was stationary, and the only changes in

the scene are due to subject movement. By observing the wall in the background, we can see the effects of

adaptive dynamic range: even though the physical wall does not change the brightness, it appears dimmer in

those frames in which bright levels are taken by pixels which are physically brighter (e.g., subject’s face and

arm). When the subject turns and fills the field–of–view with dark objects (e.g., hair) the wall appears

brighter since it is now taking higher indices. Also, note that the maximum contrast is maintained in all the

images since all images of indices have a uniform histogram.

6.   Error Analysis

Theoretically, the dynamic range of the scene detectable by the sorting sensors is unlimited. Of course, in

practice the actual dynamic range of the sensor will be determined by the capabilities of the photodetector,

as well as by the switching speed and dark current levels. 

First we investigate the mismatch of the cells. Even when receiving same light levels, the cells do not

respond at the same time. This determines the fundamental accuracy of the intensity–to–time paradigm.

Given (EQ 2), the input photocurrent can be found as:

(EQ 3)

where , and is the dark current. The relative error can be found as:

(EQ 4)

where , σId represents fluctuation of the dark current over the sensor area, σC represents fluc-

tuations of the photodetector capacitance (e.g., mismatch of the photodetectors), σV represents the mismatch

of the threshold voltages and the diode’s reset noise, and σt represents the fluctuation in the switching speed

of the control element. After substituting (EQ 2) in the last term in (EQ 4) relative error becomes:

Iλ
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(EQ 5)

(EQ 6)

where A, B, and C substitute constant terms in (EQ 5). This error model follows the intuition: for high levels

of illumination, when the cells respond quickly, the dominant cause of error is the fluctuation in the switch-

ing speed; for low illumination levels, the dominant factor is the fluctuation in the dark current. 

The constants A, B and C were experimentally determined from the prototype chip. Without the lens in front

of the sensor, the sensor was illuminated by a halogen light source reflected from a white cardboard. As the

cardboard was positioned several meters from the sensor, the illumination field was considered uniform over

the sensor’s surface. The amount of light falling on the sensor’s surface was controlled by changing the

angle between the light source and the cardboard. The cumulative histogram waveform was gathered for 43

different light levels. (We don’t know the absolute value of light levels. As an illustration for a reader, the

brightest level in our experiment was comparable to the level of an average size room (e.g., 12’ x 12’) illu-

minated with a 150W bulb; the darkest level was comparable to the same room illuminated with a desk

lamp.) From the cumulative histogram waveforms and (EQ 3), the mean value I, and standard deviation σI,

were computed in arbitrary current units [ACU]. (1 ACU = 1/s, i.e., 1 ACU triggers an event according

to (EQ 2) 1 second after the beginning of the frame integration.) The error model (EQ 6) was fitted to the

data. The results are tabulated in Table 1, and graphed in Fig. 13.

For the signal–to–noise ratio (SNR) of one, the dynamic range of the sensor based on the model is over 106.

If the three sigma rule is used for the noise limits, the dynamic range is over 105. However, the detectable

lower limit on the input photocurrent is determined by the level of the dark current. In the experiment, we

determined that the average dark current is about 0.2 ACU; therefore, for SNR=1 we require the lowest input

photocurrent to be 0.2 ACU. Then, the dynamic range is 1: 116650 for one sigma rule and 1:38880 for the

three–sigma rule. Given constant dark current, the dynamic range is limited by the error the sensor makes

TABLE 1. Error performance of the sorting sensor prototype.

A 2.2860e-2 [ACU]

B 5.0636e-3

C 4.2862e-5 [1/ACU]

Imin 0.0229[acu]

Imax 23330[acu]

Dyn. range 1:1020565

Imin 0.0686[acu]

Imax 7776 [acu]

Dyn. range 1:113373
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when detecting the high illumination levels. The dominant source for this error is the fluctuation in the turn–

on time of the inverters. In our experiment, this fluctuation is about 43µs (i.e., constant C). This is very high

switching fluctuation. It is probably due to the fact that 1) the input voltage is slowly approaching threshold

level of the inverter, thus causing the long transition times at the inverter’s output, 2) the positive feedback

transistor is active only after the “decision” to trip is made, 3) in a static CMOS inverter the p– and n–chan-

nel transistors “fight” each other for slow–changing inputs, and 4) there could be some systematic limitation

in our instrumentation setup and/or the conditions under which we assume equal illumination for all pixels.

In all, the switching fluctuation is approximately10% of inverter output transition time (i.e., rise time) in the

cell receiving the highest intensity in our experiment, which is reasonable. A higher gain thresholding ele-

ment would probably perform better. This hypothesis will be verified with a new prototype currently being

fabricated. Other sources of error, fluctuations in the dark current (i.e., constant A) and mismatch of C and V

(i.e., constant B), are within reasonable limits. Relative error for the dark current is approximately 10%,

while the lumped relative error for C and V is approximately 0.5%. 

The second issue we would like to consider is the error the sorting sensor makes when computing the cumu-

lative histogram. This error is due to the mismatch of the current sources Io. Since there are typically thou-

sands of cells in the sorting image sensors, the level of current Io is very low, pushing the corresponding

transistors into the subthreshold regime. In this regime, the current sources could mismatch by 100%, i.e.,

one current source can be twice as large as another [14]. Nonetheless, the monotonousness in the cumulative

histogram is maintained. When the cumulative histogram is used for inverse mapping, the mapping from

indices to the input intensities, the error in cumulative histogram is not significant as it will be directly

undone. 

The error that could be significant when mapping from indices to input intensities, however, is the readout

error for each index. If the scene produced long horizontal segments in the cumulative histogram, such as the

example in Fig. 10a, then a small error in index can result in a large error in inferred response time for a par-

ticular cell. This problem can be handled by prohibiting the mapping process to return times within the inter-

val of the long horizontal segments in the cumulative histogram. A few pixels may be grossly misclassified,

but overall recovery of input intensities is good. 

7.   Conclusion

The intensity–to–time processing paradigm enables VLSI computational sensors to be massively–parallel

computational engines which make global computation or overall decisions about the sensed scene and

reports such decisions on a few output pins of the chip with low latency. The power of this paradigm is dem-

onstrated with an analog VLSI implementation of sorting — an operation still challenging in computer sci-

ence when performed on large groups of data. This work shows that, if an appropriate relationship is
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maintained between the circuitry, algorithm and application, a surprisingly powerful performance can be

achieved in a fairly simple but fairly high resolution VLSI vision computational sensor.
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Fig. 1.  A computational sensor architecture for the intensity–to–time processing paradigm.
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Fig. 3.  Sorting computational sensor: a four cell simulated operation.
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Fig. 4.  Micrograph of the sorting chip.
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Fig. 5.  Scene 1 imaged by the sorting sensor: a) cumulative histogram computed by the chip (voltage on
Win), b) image of indices, c) histogram of indices.
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Image of indices:

Fig. 6.  Scene 1 imaged by the sorting sensor: a) cumulative histogram computed by the chip (voltage on
Win), b) image of indices, c) histogram of indices.
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Image of indices: Input Intensity (inferred)

Fig. 7.   a) Indices from the sorting sensor and inferred input intensity, b) CCD camera image.
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Fig. 8.  Detecting a scene change by observing cumulative histograms only.
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Fig. 9.  A scene with backlit objects as captured by a conventional CCD camera. 
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g. 10.  Sorting sensor processing: a) data from the sensors; b) segmentation (viewing the shadowed
gion); c) segmentation (viewing illuminated region); d) segmentation and shadow removal.
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Fig. 11.  Conventional CCD camera processing: a) histogram equalization of the window; b) segmentation
and shadow removal.
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Fig. 12.  Sequence of images of indices computed by the sorting sensors. 
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Fig. 13.  Relative error σI/I: experimental data points and fitted error model.
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