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Abstract

This paper describes the development of a virtual-machine

monitor (VMM) security kernel for the VAX architecture.

The paper particularly focuses on how the system’s hard-

ware, microcode, and soft ware are aimed at meeting Al-

levcl security requirernents while maintaining the standard

interfaces and applications of the VMS and ULTRIX–32 op-

erating systems. The VAX security kernel supports multiple

concurrent virtual machines on a single VAX system, provid-

ing isolation and controlled sharing of sensitive data. Rigor-

ous engineering standards were applied during development

to comply with the assurance requirements for verification

and crmfigurat ion management. The VAX security kernel

has been developed with a heavy emphasis on performance

and on system management tools. The kernel performs suf-

ficiently well that all of its development is now carried out

in virtual machines running on the kernel itself, rather than

in a conventional time-sharing system.

1 Introduction

The VAX security kernel project is a research effort to deter-

mine what is required to build a production-quality security

kernel, capable of receiving an Al rating from the National

Computer %cnrity Center. A production-quality security

kernel is very different from the many research-quality secu-

rity kernels that have been built in the past, and this research
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effort has been primarily aimed at identifying the differences

and their cost in development effort and in kernel complexity.

This paper describes how the VAX security kernel meets

its five major goals:

●

●

●

●

●

Meet all Al security requirements.

Run on commercial hardware without special modifica-

tions other than microcode changes for virtualization.

Provide soft ware compatibility y for applications written

for both the VMS and ULTRIX-32 operating systems.

Provide an acceptable level of performance.

Meet the requirements of a commercial software

product.

The VAX security kernel is a research effort. Digital.

Equipment Corporation makes no commitment to offer it

as a product.

2 Kernel Overview

The VAX sccurit y kernel is a virtual-machine monitor

that runs on the VAX 8530, 8550, 8700, 8800, and 8810

processors. 1 It crest es isolated virtual VAX processors, each

of which can run either the VMS or ULTR.IX–32 operat-

ing systcm. If desired, virtual machines running each of thc

operating systems can run simultaneously on the same com-

puter systern.2 The VAX architect urc was not virt ualizable,

and therefore extensions were made to the architecture and

to the processor microcode to support virtualization. (See

Section 3.2. )

Figure 1 shows a typical VAX security kernel corrfigura-

tion. While the VAX security kernel is a VMM, it is primar-

ily a sccnri ty kernel. ‘1’hcrcfore, certain features tradit ion-

ally seen in VMMS, such as self-virtualizatiorr or debugging

of one VM from snot her, have been omitted to reduce kernel

complexity.

lThe VMM does not run on VAX 8820, 8830, or 8840 processors,

due to rnicrocodc and console differences.

2At least one virtual machine must always run the VMS operating

system, to carry ont certain system ruanagemcnt functions.
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Figure 1: VAX VMMSecurity Kernel Configuratimr

The VAX security kernel applies both mandatory and dis-. .
cretionary access controls to virtual machines. Each virtual

machine is assigned an access cla,ss that consists of a secrecy

class and an integrity class, .similar to those in the VMS

Security Enhancement Service (VMS SES) [5]. The secrecy

and integrity classes are based on the Bell and LaPadula

security [2] and Bibs integrity [4] models, respectively. The

VAX security kernel also supports access control lists (ACLS)

on all objects, similar to those in the VMS operating sys-

tem [14].

The VMM security kernclis rurta general purpose oper-

ating system. The principal subjects andobjccts are virtual

machines and virtual disks, rather than conventional pro-

cesses and files. That is the inherent difference between a

VMM and a traditional operating system. Processes and

files are implemented within thevirtual machines by either

the VMSm ULTRIX–320perating systems.

The VAX security kernel can support large numbers of

simultaneous nsers.3 All software development of the VAX

security kernel is now carried out on several virtuaJ machines

3Exact numbers depend on the precise hardware configuration.

running on the VMM on a VAX 8800 systcm. on a typical

day, about 40 software engineers and managers are logged

in running a rnixeclload of text editing, compilation, system

building, and docurncnt formatting. The system provides

adequate interactive response time and is sufficiently reliable

to support an engineering group that must meet strict mile-

stones and schcdulcs. As far as wc know, the VAX security

kernclis the first security kernel to support its own devel-

opment team. The Multics Access Isolation Mechanism [36]

was developed on Multics itself, but Multics with AIM was

not a security kernel and only received a B2 rating.

The VAX security kernel is currently in the Design Anal-

ysis Phase with the National Computer Security Center

(NCSC) for an Al rating. It is being formally specified in Ina

Joand formal proofs are being done on the specifications.

3 Design Approach

This section describes several of the design choices in the

VAX security kernel, including details about the virtual ma-
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require that all sensitive instructions and all references tochine approach to secxrrit y kernels, virt ualizing the VAX ar-

chitecture, subjects and objects, access classes, our layered

design, and other soft ware engineering issues.

3.1 Virtual Machine Approach

The choice to build the VAX security kernel as a VMM was

driven by two goals: to maintain compatibility y with exist-

ing soft ware writ ten for the VAX architect ure and to keep

software development and maintenance costs to a minimum.

Digital Equipment Corporation began plans to enhance

the security of the VAX architecture in mid-1979. Our ini-

tial effort was the design of security enhancements to the

VMS operating system, first prototype in 1980 and avail-

able today in the base VMS operating system and in the

VMS Security Enhancement Service [5].

At the time of the initial prototype of the VMS secu-

rit y enhancements [16], Digital considered a traditional ker-

nel /emulator security kernel to support VMS applications.

However, it quickly became clear that the software devel-

opment costs of a VMS emulator would be comparable to

the cost of development of the VMS operating system itself.

Worse still, the emulator would have to track all changes

made to the VMS operating system, resulting in ongoing

costs that would be unacceptably high for the limited market

for Al-secure systems. The kernel/emulator system could

not replace the existing VMS operating system because its

performance would not be as good, and it would likely be

export controlled. Furthermore, the growing demand for

UNIX-based software would force development of a UNIX

emulator at still more development cost.

To resolve these development cost and compatibility prob-

lems, we chose a VMM security kernel approach. A VMM

security kernel presents the interface of a computer archit cc-

ture that is comparatively simple and not subject to frequent

change. Thus, the VAX security kernel presents an interface

of the VAX architecture [21] and supports both the VMS

and ULTR.IX -32 operating systems with relatively few mod-

ifications.

The idea of a VMM security kernel is not a new one. Mad-

nick and Donovan [22] first suggested the merits of VMMS for

security, and Rhode [30] first proposed VMM security ker-

nels. From 1976 to 1982, Systems Development Corporation

(now a division of the UNISYS Corporation) built a ker-

nelized version of IBM’s VM/370 virtutd-rnachine monitor,

called KVM/370 [12]. While the design of the VAX secu-

rity kernel is very different from KVM/370, we have applied

some of the lessons learned in the KVM/370 project [11].

Section 7 compares the VAX security kernel with KVM/370.

Gasser [10, Section 10.7] provides more detail on some of the

trade-offs between a VMM security kernel approach and a

kernel/emulator approach.

3.2 Virtualizing the VAX

The requirements for virtualizing a computer architecture

were specified by Popek and Goldberg [26]. In essence, they

sensitive data structures trap when executed by unprivileged

code. A sensitive instruction or data structure is one that

either reveals or modifies the privileged state of the proces-

sor.

3.2.1 Sensitive Instructions

Unfortunately, the VAX architecture does not meet Popek

and Goldberg’s requirements. Several instructions, includ-

ing Move Processor Status Longword (MOVPSL), Probe

(PROBEX), and Return from Exception or Interrupt (REI)

are sensitive, but unprivileged. Furthermore, page table en-

tries (PTEs) are sensitive data structures that can be read

and written with unprivileged instructions.

As a ~esult, we made a number of extensions to the VAX

architecture to support virtualization. In particular, we

added a VM bit to the processor status longword (PSL)

that indicated whether or not the processor was executing

in a virtual machine. A variety of sensitive instructions

were changed to trap based on the setting of the VM bit,

so that the VMM security kernel could emulate their exe-

cution. Space does not permit a full discussion of the in-

struction changes, but some details are discussed by Karger,

Mason and Leonard [18].

3.2.2 Ring Compression

The most significant and security-relevant change to the

VAX architecture was to virtualize protection rings. In the

past, only processors with two protection states (such as

the IBM 360/370 architecture) had been virtualized. Gold-

berg [13, section 4.3] described the difficulties of virtualizing

machines with protection rings and therefore more than two

protection states. He proposed several techniques for map-

ping ring numbers, some in software and one with a hardware

ring relocation register, but he recognized that none of his

techniques were satisfactory. His software techniques broke

down because the physical ring number remained visible, and

his hardware ring relocation technique broke down because

virt ualizing a machine with N rings always required N+ 1

rings.

Since the VMS operating system uses all fonr of the pro-

tection rings of the VAX architecture, it was essential that

we develop a new technique for virtualization of protection

rings. That technique is called ring compression.

Figure 2 shows how the protection rings of a virtual VAX

processor are mapped to the rings of a real VAX proces-

sor. Virtual user and supervisor modes map to their real

count erparis, but virtual executive and kernel modes both

map to real executive mode. The real ring numbers are con-

cealed from the virtual machine’s operating system (VMOS)

by three extensions to the VAX architecture: the addition of

the VM bit to the PSL (described in Section 3.2.1), the ad-

dition of a VM processor status longword register (VMPSL),

and the modification of all instructions that could reveal the

real ring number. Those instructions either trap to the VMM

security kernel for emulation or obtain their information from
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Figure 2: Ring Compression

the VMPSL, which contains the virtual ring number rather

than the real ring number. Additional details can be found

in Karger, Mason and Leonard [18].

Ring compression also requires that the security kernel

change the memory protection of pages belonging to virtual

machines so that their kernel-mode pages become accessible

from executive mode. This change of memory protection

could adversely affect security within a given virtual machine

because the virtual machine’s kernel mode is no longer fully

protect;d from its executive mode.

For the two operating systems of interest to the VAX se-

curit y kernel, there is no effective loss of security within the

virtual machines themselves, alt bough there is a loss of ro-

bustness against potentially bug-laden executive mode code.

Fortunately, the VMS operating system grants all programs

that run in executive mode the right to change mode to ker-

nel at will and uses the the kernel/executive mode boundary

only as a reliability y mechanism. Furthermore, the ULTR.IX–

32 operating system does not use executive mode at all.

Of course, the compression of kernel and executive modes

in the virtual machines in no way compromises the security

of the VMM, as the security kernel runs only in real ker-

nel mode, and no virtual machine ever is granted access to

real kernel mode pages. If there were some other VAX op-

erat ing system that actually used all four rings for security

purposes, it would lose some of its own secllrity, m~~~h as

IBM operating systems 10SCsome of their secnrit y when run

in VM/370. However, no such operating systems exist for

the VAX architecture.

3.2.3 1/0 Emulation

Traditional virtual-machine monitors, such as IBM’s

VM/370, have virtualized not only the CPU, but also the

1/0 hardware. Virtualization of the 1/0 hardware allows

the VMOS to run essentially unmodified. Virtualizatiorr of

the VAX 1/0 hardware is particularly difficult because its

1/0 devices are programmed by reading and writing control

and status registers (CSRS) that are located in a region of

physical memory called 1/0 space. This type of 1/0 origi-

nated on the PDP–11 series of computers and caused per-

formance difficulties in the UCLA PDP-11 virtual-machine

monitor [27] because the VMM must somehow simulate ev-

ery instruction that manipulates a CSR. Vahey [33] proposed

a complex hardware performance assist, but such a device

would add excessive complexity and development cost to the

VAX security kernel.

Instead, the VAX security kernel implements a special 1/0

interconnect ion st rat egy for virtual machines. The VAX ar-

chitecture [21] does not specify how 1/0 is to be done, and

different VAX processors have implemented very different

1/0 interfaces. The VAX security kernel 1/0 interface is

a specialized kernel call mechanism, optimized for perfor-

mance, rather than traditional CSR-based 1/0. In essence, a

virtual machine stores I/O-related parameters (such as buffer

addresses, etc. ) in specified locations in its 1/0 space, but no

1/0 takes place until the virtual machine executes a Move to

Privileged Register (MTPR.) instruction to a special kernel

call (KCALL) register. This MTPR, traps to security kernel

soft ware that then performs the 1/O. Thus, thc number of

traps to kernel software is dramatically less than would be

required for CSR emulation.

This special kernel 1/0 interface means that special un-

trusted virtual device drivers had to be written for both the

VMS and ULTRIX 32 operating systems, but this effort was

no more than is typically required to support a new VAX

processor, a small number of engineer-years.

Because the virturd VAX processors have an 1/0 interface

different from that of any existing VAX processors, the VAX

security kernel drrcs not fall into any of Goldberg’s tradi-

tional categories of VMMS. Goldberg [13, pp. 22-26] defines

a Type I VMM as a VMM that runs on a bare machine. HC

defines a Type II VMM as a VMM that runs under an ex-

isting host operating system. Goldberg [13, section 3.3] also

defines a Hybrid Virtual-Machine Monitor as one in which

all supervisory-state instructions arc simulated, rather than

just the privileged instructions. The VMM security kernel is

essentially a cross between a self-virtualizing Type I VMM

for all non-I/O instructions and a Hybrid Virtual-Machine

Monitor for 1/0 instructions.

3.2.4 Self-Virtualization

As we designed the extensions to the VAX archit cc-

tnre, we ensured that the architecture would permit sel~-

virtua,fization. !%lf-virt ualization is the abilit y of a virt ual-

machine monitor to run in onc of its own virtual machines

and rccnrsivcl y create second-level virtual machines. Sclf-

virtualizatirrn is very useful for developing and debugging

the virtual-machine monitor itself, but it is of little value to

actual users. Since self-virtualizatiorr would have added sig-
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nificant complexity to the Trusted Computing Base (TCB),

no software support has been done.4

3.3 Subjects

There are two kinds of subjects in the VAX security kernel,

users and virtual machines (VMS). A user communicant es

over the trusted path with a process called a Server. Servers

are trusted processes, but unlike the trusted processes in

other systems such as KS OS-11 [3], servers run only within

the kernel itself. User sub jects cannot run user-written code;

servers execute only verified code that is part of the TCB.

The powers of a server are determined by:

● The user’s minimum and maximum access clarrs. (See

Section 3.5.)

● The terminal’s minimum and maximum access class.

● The user’s discretionary access rights.

● The user’s privileges. (See Section 3.6. )

● The privileges exercisable from the terminal

A virtual machine is an untrusted subject that runs a

VMOS. A user interacts with the VMOS in whatever fashion

is normal for that operating syst em, for example, by logging

into that VMOS and issuing commands. A user may write

and run code inside a VM and even penetrate the VMOS,

all without affecting the security of other vi~tual machines

or the security kernel itself. At worst, a penetrated virtual

machine could only affect other virtual machines with which

it shared disk volumes.

On login to the security kernel, the VMM est ablishcs a

connection between the user’s terminal line and the user’s

Server, called a session. When the user wants to use some

virtual machine, the user issues the CONNECTcommand to his

or her Server, specifying the name of that VM. If the con-

nection is authorized, the system suspends the user’s existing

session with the Server and establishes a new session between

the user’s terminal line and the requested virtual machine.

Thus, the Servers and the VMS have distinct identities and

distinct security attributes.

Virtual machines may be run in a single-user mode to pro-

vide maximum individual accountability. Alternately, they

can be run in a multi-user mode. In such a case, individual

accountability might be achieved by running a VMOS with

4The software changes nccdcd for self-virtnalization primarily cons-

ist of changes to tbe virtual device drivers described in Section 3.2.3

and some changes in the emulation of certain sensitive instructions.

Under the proposed Trusted VMM Intcrprctatirm [1], it might even be

possible for a self-virtualized security kernel to itself remain Al rated.

To achieve that goal, the first level VMM would map the second level

VMM’s kcnml mode to real executive mode, while the VMS running on

top of the second level VMM would have their supervisor, executive,

and kernel modes all mapped to real supervisor mode. Of course, as

one continues to recursively self-virtualir.e, one runs out of protection

rings at the fourth level VMM, and that VMM would no longer be

protected from its virtual machines.

at least a C2 rating, as suggested by the proposed Trusted

VMM Interpretation [I] of Trusted Information Systems, Inc.

Virtual machines can also be treated as objects bccausc a

user may request that the TCB provide a connection between

the user’s terminal and some VM. For this operation, the

user is the subject and the VM is the object.

3.4 Objects

The VAX security kernel supports a variety of objects in-

cluding real devices and volumes and security kernel files.

One group of objects comprises the real devices on the

system: disk drives, tape drives, printers, terminal lines, and

single access-class net work lines. As these devices can con-

tain or transrnit information, access to them must be con-

trolled by the TCB. Another object is the primary memory

that is allocated to each VM whcu it is activated.

Disk and tape volumes arc also objects. The contents of

some disk volumes are completely under the control of a vir-

tual machine. They may contain a file system structure or

just an arbitrary collection of bits, depending on the method

used by thc VMO S to access the volume. Such volumes are

called ezcharzgeable volumes because they may bc exchanged

with other computer systems running conventional operating

systems. Other disk volumes contain a VAX security kernel

file structure and are called VAX securdy kernel volumes.

These volumes must not be directly accessed by a VMOS

or exchanged with other systems, as an untrusted subject

could subvert the kernel’s file system or read information to

which it was not entitled. The VAX security kernel does not

provide trusted tape volumes; all tape volumes are exchange-

able.

VAX security kernel volumes contain VAX security kernel

files that are organized as a flat file system. VAX security

kernel files are used for a variety of purposes in the eystem

and are considered objects by the TCB. Onc use for VAX

security kernel files is to hold long-term system databases

such as the audit log and the authorization file. These files

arc considered part of the TCB and, with the exception of the

audit log, error log and crash dump files, cannot be directly

referenced by virt nal machines.

Another use of VAX security kernel files is to create vir-

tual disk volumes, loosely analogous to mini-disks in IBM’s

VM/370 [23, pp. 549--563]. Mini-disks allow a physical disk

to be partitioned, so that one need not dedicate an entire

physical disk to a small virtual machine that only requires a

small amount of disk space. Such virtnrd disks may contain

the file structure of some VMOS, such as a VMS file struc-

ture or an ULTRIX--32 file structure. However, the VMM

deals with virtual disks only as a whole. The contents of a

virtual disk are all part of a single object as far as the VMM

is concerned.

3.5 Access Classes

The VAXsecurity kernclerlf<>rces mandatory c(>ntr()ls, asre-

qniredof all Al systems. Both secrecy andintegrity rnodcls
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are supported, based on the work of Bell and LaPadula [2]

and of Bibs [4], respectively. To implement mandatory con-

trols, each kernel subject and kernel object is assigned a

sensitivity label, called an access class.5 An access class

consists of two components, a secrecy class and an integrity

class. Th&e components areeach further divided into a level

and a category set. A secrecy level is a hierarchical classifi-

cation. Thesecrecy category set is the set ofnon-hierarchical

secrecy categories that represents the sensitivity of the ac-

ccss class. The integrity level and integrity category set are

defined analogously. Forcompatibility with VMSSES [5],

the kernel supports 256 secrecy levels, 256 integrity levels,

64 secrecy categorics, and 64 integrity categories.

Given thecomplex strnctureof access classes, twodefini-

tions must be carefully constructed:

Definition 1 An access class A is equal to an access class

B if and only if:

The secrecy level of A is equal to the secrecy level of B,

The secrecy category set of A as equal to the secrecy

category set of B,

The integrity level of A is equal to the integrity level of

B, and

The integrity category set of A is equal to the integrity

category set of B.

Definition 2 An access class A dominates an access class

B if and only if:

The secrecy level of A is greater than or equal to the

secrecy level of B,

The secrecy category set of A is an improper superset of

the secrecy category set of B,

The inu!egrzty level of A is less than or equal to the

zntegrity level of B, and

The integrity cate.qory set of A is on improper subset of

the inte~rity- category- set of B.

The secrecy and integrity models define that a subject

may reference an object dc:pending on the access classes of

the subject and object and on the type of reference. A sub-

ject may read from an object only if the sub ject’s access class

dominates the access class of the object. A subject may write

to an object only if the object’s access class dominates the

access class of the subject.6 Thns, for example, a virtual

machine may mount for read-write access an exchangeable

volume only if the VM’S access class is equal to that of the

volume. However, the VM may mount for read-only access

any exchangeable volume where the VM’s access class dom-

inates that of the volume.

%ome objects, such as terminal lines, may be assigned a range of

access classes.

61n general, write access is even further restricted; a enbject may

write to an object only if the subject’s and object’s access classes are

equal. This disallows blind writes to an object that cannot bc read.

3.6 Privileges

System managers, security managers, and operators gain

their powers by having privileges. The privileges allow great

flexibility y in the assignment of powers and responsibilities,

including a measure of two-person control and separation of

duties. Privileges restrict access beyond the protection pro-

vided by mandatory and discretionary access controls. A

privileged user cannot see data that would be otherwise in-

accessible. Only the downgrading privileges allow bypassing

of access cent rols, and the use of those privileges is audited.

Most privileges can be exercised only through the trusted

path and are called user privileges. (See Table 1.) Two

privileges can be exercised by virtual machines and are called

virtuat-machine privileges. (See Table 2. )

3.7 Layered Design

The VAX security kernel has been implemented following the

Gtrict levels of abstraction approach originally used by Dijk-

dra [8] in the THE system. Janson [15] developed the use of

levels of abstraction in security kernel design ae a means of

reducing complexity and providing precise and understand-

able specifications. Each layer of the design implements Gome

abstraction in part by making calls on lower layers. In no

case dots a lower layer invoke or depend upon higher layer

abstractions. By making lower layers unaware of higher ab-

stractions, we reduce the total number of interactions in the

system and thereby reduce the overall complexity. Further-

more, each layer can be tested in isolation from all higher

layers, allowing debugging to proceed in an orderly fashion,

rather than haphazardly throughout the system. This type

of layering is called out in the requirements for B3 and Al

systems when the NCSC evaluation criteria [7, p. 38] state

that, “The TCB shall incorporate significant use of layering,

abstraction and data hiding. Significant system engineering

shall be directed toward minimizing the complexity of the

TCB ...”

The layered design of the VAX security kernel was based

heavily on the Multics kernel design work of Janson [15] and

Reed [28] and to a leseer extent on the Naval Postgraduate

School kernel design [6]. Figure 3 shows a diagram of the

layers of the VAX eecurity kernel. The arrows in the diagram

indicate how each layer functionally depends on the abstract

machine created by lower layers.

Each layer adds specific functions within the security ker-

nel, such that at the security perimeter, the secrecy and

integrity models are enforced. The kernel itself is process

structured, as described in the summary of the various lay-

ers. Unlike many other kernels, all of the trusted processes

run within the security perimeter and are included in the

formal specifications described in Section 5.4.

HIH The Hardware-Interrupt Handler layer is immediately

above the physical VAX hardware and modified mi-

crocode. It contains the interrupt handlers for the vari-

ous 1/0 controllers and certain CPU-specific code.
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Privilege

CLASSIFY.DEVICE

CLASSIFY.SUBJECT

CLASSIFY-VOLUME

DELETE_AUDIT

DOWNGRADE_SECRECY

DOWNGRADE_SECRECY_NOINSPECT

ENABLE_DEBUGGER

OPERATE

REGISTER

SET.AUDIT

SET_COVERT.CHANNEL_DEFENSE

SET_FILE

SET_PASSWORD

UPGRADE_INTEGRITY

UPGRADE_INTEGRITY_NOINSPECT

Table 1: User Privileges

Powers

Assign access classes to 1/0 devices and privileges to terminals

Assign access classes and privileges to subjects; name levels and

categories

Register and assign access classes to volumes

Delete audit data

Downgrade secrecy of text after hmwan inspection

Downgrade secrecy of data without inspection

Enable untrusted kernel debugger

Mount volumes, change printer paper, boot and shutdown system

Register and change non-security attributes of devices, virtual

machines, and users

Control audit log and real-time alarms

Enable or disable covert channel defenses

Create, delete, or copy kernel files

Change users’ passwords and password parameters

Upgrade integrity of text after human inspection

Upgrade integrity of data without inspection

Privilege Powers

OPERATE Dismount volumes; activate and deactivate other virtual machines; set

SET_ACL

) Iogin limits

I Change any object>s ACL, if access class permits I
Table 2: Virtual Machine Privileges

LLS The Lower-Level Schedulerkbased strongly on Reed’s

two-level scheduler design [28]. It creates the abstrac-

tions of level one virtual processors (vpls) that are the

basic unit of scheduling for the system. The LLS sup-

ports symmetric multiprocessing by binding and un-

binding real CPUS to individual vpls. As shown in

Figure 4, there are three kinds of vpls: dedzcated vpls

that typically contain device drivers, bindable vpls that

can be bound to dedicated vp2s by the higher level

scheduler, and addressable vp 1s that can be bound to

bindable vp2s and thereby to virtual machines. Vpls

are intended to be very inexpensive processes for usc

within the kernel. Only addressable vpls have full ad-

dress spaces; all other vpls run out of the global address

space of the kernel. Thus, the lower-level scheduler can

cent ext switch in and out of most vp Is by merely sav-

ing registers and swit thing stack point crs. The lower-

level scheduler also implements eventcounts [29] as the

basic synchronization mechanism of the kernel. Evcnt-

counts can be awaited or advanced in the normal way,

or a processor interrupt can be tied to an event count,

such that a VM can be interrupted when an eventcount

has reached a particular value. This processor interrupt

mechanism provides upward transfers of control that are

otherwise forbidden in the kernel. Processor interrupts

are only delivered when the CPU is executing outside

the security kernel.

10S The 1/0 services layer implements device drivers that

control the real 1/0 devices. The current version sup-

ports only directly conncctcd terminals and storage de-

vices.

VMP The VM physical memory layer rnanagcs real physi-

cal memory, and assigns it to virtual machines.

VMV The VM virtual memory layer implcrncnts the

shadow page tables needed to support virtual memory

in the virtual machines.7 VMV implements a primarY-

memory only strategy, requiring that all the physical

memory that a virtual machine sees be physically res-

ident when that virtual machine is active. While this

technique limits the number of simultaneously active

7Shadow page tables are created by a VMM, bccanse the physical

addresses in page table entries must lx rclocatcd. Shadow page ta.

blcs arc dcscribcd in detail by Madnick and Donovan [23, Section 9-5].

Shadow page tables are also where ring compression occurs.
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Figure 3: VAX Secrrrit y Kernel Layers

virtual machines to the number that can fit into physi-

cal mcmmy simultaneously, it significant Iy reduces ker-

nel complexity by eliminating the need for a demand-

paging mechanism in the kernel. It also eliminates the

phenomenon of double pa,gin,g that is often seen in other

VMMS, where the demand paging rncchanisrns of the

VMM and of the VMOS can thrash against one an-

other, leading to scriorrs performance degradation. In

the VMM security kernel, the virtual machines are al-

located a fixed amount of physical memory and do all

their own paging.

HLS The Higher-Level Scheduler is also based on Reed’s

two-level scheduler [28]. Unlike Reed’s design, our

higher-level scheduler is extremely simple because it

does not need to schedule access to primary memory.

The HLS does create the abstraction of level-two virtual

processors (vp2s). There are two kinds of vp2s: dedi-

co,ted vp2s that are usecl primarily by the SSVR layer

described below and bindable vp2s that are used for vir-

tual machines. Figure 4 shows the relationships between

vpls and vp2s.

AUD The auditing layer provides the facilities for security

auditing and security alarms. It is described in detail in

a companion paper [31].

F1 lF The Files- 11 Files layer implements a subset of the

ODS 2 file system that is also used in the VMS op-

erating system. s The most significant restrictions on

the VAX security kernel implement ation of ODS-2 are

that all files must be prc-allocated and contiguous. This

reduces kernel complexity by eliminating the need for

dynamic file extensions. F1lF implements ODS 2 files

only as a flat file system.

VOL The Volumes layer implements VAX security kernel

and exchangeable volumes and provides registries of all

sub jccts and objects. These rcgist ries are much simpler

than ODS 2 directories.

VTerm The Virtual Tcrrninals layer implements virtual ter-

minals for each virtual machine, and manages the physi-

cal terminal lines. Each user may have multiple sessions

connect cd to different virtual machines, and VTcrrn prw

vidcs the session management functions, as described

in Section 4.1. VTerm also implements asynchronous

network lines to allow virtual machines to connect to

single-access-class networks via specially dedicated ter-

minal lines. The cnrren t version of the system has no

support for higher-speed net work connect ions.

VPrint The Virtual Printers layer implements virtual print-

ers for each virtual machine and rnultiplcxes the real

physical printers among the virtual printers. It provides

top and bottom labeling, as well as trusted banner pages

to delimit listings of different access classes and different

VMS.

‘A brief summary of the Files-l 1 ODS -2 structure can be found in

the appendices of [35].
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KI The Kernel Interface layer implements virtual controllers

for the various virtual 1/0 devices and the security

function controller, which implements such functions as

loading virtual disks into virtual drives.

VVAX The Virtual VAX layer completes the virtualization

process by emulating sensitive instructions, delivering

exceptions and interrupts to the virtual machine, etc.

SSVR The Secure Server layer implements the trusted path

for the security kernel, logs users in and out, and pro-

vides security-related administ rat ive functions. There

is a dedicated vp2 for each terminal line to provide a

Server process for each logged in user.

VMOS The VMOS layer is the virtual machine’s operating

system.

USERS The users in Figure 3 include both the untrusted

applications programs that run on top of the VMOS,

and the human beings who communicate directly with

the secure server via the trusted path.

Figure 4: Level One and Level Two Virtual Processors

3.8 Software Engineering Issues

A number of interesting software engineering issues arose

during the development of the VAX security kernel. While

space does not permit discussing all of them, this section

highlights a few of the most significant.

3.8.1 Programming Language Choice

Perhaps the most critical software engineering issue in the

VAX security kernel design was the choice of a programming

language. From the problems that KSOS 11 had with its

choice of compilers [3, 25], it was clear that we rmedcd high

quality compilers to develop our sccurit y kernel. While we

wanted as strongly-typed a language as possible, it was much

more critical that the compiler correctly compile very large

programs, produce high quality VAX object code, and be

supported by an organization that could quickly respond to

any problems we might find.

At the time the VAX security kernel prototype effort be-

gan, there were only a small number of systems program-

ming languages available for thc VAX architect urc: BLISS --

32, PL/1, PASCAL, and C. BLISS 32 was rejected bccansc

of its lack of data typing facilities. PASCAL was rcjcctcd

because the V2.O compiler that grmcrated high quality code

was not yet available. This left PL/I and C, both of which

used the same good quality code generator. We chose PL/I

because of its slightly better data typing support, Lecansc

of its better support for character string manipulation, and

because the first prototype developers had cxtcnsivc prior

experience in coding operating systems in PL/I.

We were not happy with the choice of PL/I because its

data types were not strongly enforced. When the high qual-

ity V2.O PASCAL compiler became available, we began writ-

ing new code for the kernel in PASCAL. PASCAL provides

much stronger data-type checking than PL/1, and the VAX

calling standard made inter-language calls easy to imple-

ment.

Higher-level language compilers cannot generate optimal

code for all programs. Therefore, we found it ncccssary

to implement those modules that actual measurements had

shown to be performance-critical in the MACRO 32 assem-

bly language. Table 3 shows how much code was writ tcn in

each of the languages for each layer of thc kernel. 9 The table

shows the number of executable source code statements (ex-

cluding comments, declarations, and white space) and per-

layer and per-language totals

In retrospect, the use of both PL/I and PASCAL has Icd

to certain difficulties. Software engineers must be trained

in both languages, and some kernel bugs have resulted from

misunderstandings of how to pass parameters from onc lan-

guage to the other. Future security kernel dcvclopcrs would

do well to choose one systems programming language and

stick to it.

3.8.2 Coding Strategies

A nnmbcr of coding strategies proved very useful in the de-

velopment of the VAX security kernel. For exarnplc, we

avoided all use of global pools within the kernel to mini-

mize the possibility of storage channels. The maximum size

of data structures is determiucd at system boot time (based

‘Table 3 incluclcs a. nurnbcr of entries that arc not shown in the

layer diagram in Fignre 3. These layers, COMMON, PMM, SVSJ300,

VMMIKK)T, and VMMLIB provide certain booting and mutimc li-
brary support functions. The normal rnntime libraries for the PL/I

and PASCAL langl~agesare not linked into the kemcl because they

would have added a large amount of code that would need to be cva.l-

uatcd and placed nndcr configuration control.
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Layer

VVAX

SSVR

KI

VPRINT

VTERM

VOL

FIIF

AUD

HLS

VMV

VMP

10S

LLS

HIH

COMMON

PMM

SVSBOO

VMMBOOT

VMMLIB

Total

MACRO

3371

0

10

0

0

0

0

0

0

129

0

0

1289

815

244

0

2541

55

3021

11475

PASCAL

1502

6676

3354

1455

1419

2553

2962

543

0

0

0

4725

13

2393

0

0

734

213

503

29245

PL/I

o

330

0

0

0

0

0

0

430

1069

352

0

3839

174

0

176

0

430

1265

8065

Total

4873

7206

3364

1455

1419

2553

2962

543

430

1198

352

4725

5141

3382

244

176

3275

698

4789

48785

Table 3: Executable Statements per Layer

on system Generation parameters), and memory is allocated

for that maximum siz; during kernel initialization.

Different sections of memory within the kernel are sep-

arat ed by m-access guard pages to det cct run-away array

or string references. Unused memory is set to all ones to

increase the chance of detecting the use of uninitialized vari-

ables because zeros are less likely to generate exceptions.

The layers of the kernel are coded defensively with sanity

checks to protect each layer from higher layers. If irregulari-

ties arc detected, the system crashes to avoid the possibility

of a security compromise. These sanity checks were devised

to aid in the debugging of the kernel and do not themselves

provide security assurance mechanisms. However, many of

the checks remain enabled in the finished kernel to help de-

tect any remaining bugs.

The actions of a user or a virtual machine cannot crash the

kernel. They can cause error messages, exception conditions

raised in the virtual machine, or in extreme cases, the halting

of an offending subject.

Since the entire TCB runs in kernel mode, there are

no hardware-enforced firewalls between layers. However,

the layering methodology forbids lower layers from calling

higher layers. To help us spot layer violations, we ap-

plied both automatic and manual techniques. Using the fea-

tures of the VAX DEC/Module Management System (VAX

DEC/MMS) and the VAX DEC/Code Management Systems

(VAX DEC/CMS), we were able to isolate all dependencies

of a layer on other layers. By visual inspection, we could

immediately spot upward references. In fact during develop-

ment, we did detect and fix several such occurrences.

4 Human Interfaces

High-security systems have developed a reputation for being

hard to use, primarily due to their limited user interfaces. We

believe that it is essential that a human interface meet the

expect at ions of today’s commercial computer users. How-

ever, we faced the same obstacles faced by other developers

of high-security systems:

Q Development resources are limited and satisfying the Al

criteria takes precedence over all other efforts.

● The kernel must be small and verifiable. User interface

feat ures, such as a sophisticated command parser, arc

large and often difficult to verify. Consequently, an in-

terface built entirely on trusted code cannot match the

usability of an interface built on untrusted code.

We overcame these obstacles by creating two separate

command sets: the Secure Server commands and the SE-

CURE commands. The Secure Server commands are imple-

mented entirely in trusted code. The administrative com-

mands, the SECURE commands, arc parsed in the VMS

and ULTRIX -32 operating systems. With this approach,

we reduce the amount of trusted code and ~~in the well-

developcd cornrnand interfaces of these mature commercial

operating systems. SECURE commands arc normally only

issued by the system manager, the security manager, the op-

erators, and the auditors, although ordinary users may need

to issue a fcw of them at times. By contrast, all users must

issue some Secure Server commands to login and corrncct to

virtual machines.

4.1 Secure Server Commands

The Secure Server is the user’s direct interface to the kernel.

A user invokes a trusted path to the Secure Server by pressing

the Secure Attcntimz Key. This key operates at all times and

cannot be intercepted by untrusted code. We have chosen

the BREAK key to be the Secure Attention Key.

The Secure Server’s commands control terminal connec-

tions to virtual machines in the same way that a terminal

server cord rols tcrminal connect ions to physical machines,

using cmnrnands such as: CONNECT,DISCONNECT,RESUME,

and SHOWSESSIONS.A user can create sessions with several

virtual machines at different access classes and can quickly

switch from one to another.

The interface for the Secure Server commands is built eu-

tircly in trusted code and offers only minimal command-line

editing functions.

4.2 SECURE Commands

The tools for managing the system arc the SECURE com-

mands. The SECURE commands and utilities are im-

plemented just as are other commands in the VMS and

ULTRIX- 32 command languages, except that they issue ker-

nel calls to do their work. The complete set of SECURE
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commands and utilities is installed in the VMS operating

system. A subset of the SECURE commands is offered by

the ULTRIX–32 operating system.

The SECURE commands, unlike the Secure Server com-

mands, are parsed by the VMS and ULTRIX--32 command

language interpreters. The user can take advaut age of such

features as command-line recall and command procedures.

There are two types of SECURE commands: VIM

SECURE commands and User SECURE commands. Both

types of SECURE commands arc issued from the VM’S

operating-system command lCVC1. VM SECURE commands

arc executed in the context of the issuing VM. User SECURE

commands are submitted to the Secure Server for execution.

The commands are distinguished by the type of subject, a

user or a virtual machine, that holds the access class and

privileges necessary to issue the command.

4.3 Command Confirmation

While both the User and VM SECURE commands are ad-

ministrative commands, only the User SECURE commands

must be trusted. For such security-relevant commands, we

require A 1 assurance that:

●

●

●

The command was issued by a user and not by a Trojan

horse in a VM.

The command received by the Secure Server is exactly

the same command typed by the user and not a com-

mand that was covertly modified by a Trojan horse.

The user who issued the command can be identified in

the audit log.

Our design for the User SECURE commands provides

both trust and individuality accountability even for com-

mands issued from an untrusted environment. Upon receipt

of a valid User SECURE command, the VM instructs the

user to press SECURE ATTENTION. This key invokes a

trusted path between the user’s terminal and the Secure

Server. A SECURE ATTENTION signal can bc sent to the

Secure Server only by manually pressing the BREAK key.

This prevents a Trojan horse from completing the execution

of a User SECURE command.

To prevent a VM from spoofing the user by passing a dif-

ferent command from what the user typed, the Secure Server

displays the action that will be taken by the command and

prompts the user to approve or reject the operation. Figure 5

is an abbreviated example of a User SECURE command is-

sued from a VMS virtual machine. li!esuming indicates that

control of the tcrminrd will bc returned to the virtual ma-

chine.

4.4 SECURE Utilities

Managing the VMM security kernel requires a nnmbcr of

ntilities. Onr SECURE utilities are modeled after VMS util-

ities and are summarized in Table 4.

$ SECURE DELETE TLS : STATUS . RPT

Press SECURE ATTENTION to complete

execution of this conmrand.

User presses SECURE ATTENTION to establzsh a

trusted path.

Delete VAX security kernel file

TLS : STATUS. RPT

Confirmation [Yes or No] : Y

VMM: File deleted

Resuming. . .

Figure 5: Example of a User SECURE command

SECURE Utility

Authorize

Register/Dcvicc

Register/Volume

Sysgcn

Crash Dump Analyzer

Purpose

Registers users and virtual

machines, etc.

Registers 1/0 devices.

Registers disk and tapc

volnmes.

Sets limits on system resources.

Provides data for determining

the cause of a systcm crash.

Table 4: SECURE Utilities

4.5 Reclassifying Information

Users can be permitted to change the access class of the

contents of a VAX security kernel file or an exchangeable

volume with the SECURE RECLASSIFY command. This

command copies the contents of a kernel file or volume to an

existing kernel file or volume labeled with a different access

class. The source and destination objects must lie within the

user’s access-class range. In addi tion, privileges are required

if the rcclassificatiorr downgrades the data’s secrecy class or

upgrades its integrity class.

Reclassification normally reqnircs trusted inspection by

the user. Inspection is required to be snre that a Trojan

horse has not inserted additional information that the user

did not intend to reclassify. To make inspection easier, tke

user can opt to print the VAX security kernel file or display

the file on the terminal, one screen at a time. Once the

complete file is printed or displayed, the user is prompted

to approve the reclassification. To prevent the covert pass-

ing of information from the source file to the target file in

the form of invisible escape sequences, inspected files must

cent ain only printing char act crs, spaces, and form feeds. A

line may not end with a space becanse a trailing space would

be invisible. The reclassification is terminated if any illegal

character is cncount ered.
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5 Assurance

The principal reason for building an Al security kernel is to

provide a high degree of assurance that the security features

of the system actually work correctly. This section describes

some of the techniques that we have used in the VAX se-

curity kernel to provide the necessary assurance of security,

to meet both the requirements of an Al evaluation and the

requirements of real-world users. It is this integration of

both Al requirements and real-world requirements that is

of particular research interest, as previous security kernels

have not succeeded at integrating the Al requirements with

good performance and compatibility with large amounts of

existing commercial software.

Gasser ~10, p. 163] describes Honeywell’s STOP kernel for

the SCOMP [9] and Gemini Computers’ GEMSOS [32] as

commercial-grade security kernels. However, STOP does

not provide software compatibility with existing operating

systems, and GEMSOS to date has only been used in spe.

cialized environments. Shockley, Tao, and Thompson [32]

report that research is under way to provide both UNIX

and MS-DOS environments for GEMS OS, but it is not clear

whether those environments are yet working. If Gemini suc-

ceeds in providing both UNIX and MS-DOS environments

in GEMSOS, they will have succeeded at integrating Al re-

quirements with real-world requirements. The VAX security

kernel supports both the VMS and ULTRIX- 32 operating

systems with their layered applications today.

5.1 Design and Code Changes

Every change to our code undergoes both design and code re-

view, regardless of whether the code is trusted or untrusted,

or whether it is a whole new layer or a bug fix. Design

reviews for even the smallest fixes ensure that system-wide

effects are considered. Each layer has an owner, who partici-

pates in the design review, and is responsible for the quality

of that layer. Each code change is reviewed both in the con-

text of its own layer and in the contexts of its calling and

called layers, so as to catch inter-layer problcrns.

Reviewers learn from the code they review, as well as shar-

ing their knowledge through review comments. R.eviewcrs

address readability and clarity, security, performance, ele-

gance and adherence to guidelines. Much like access con-

trols, design and code guidelines are either mandatory or

discretionary. Mandatory guidelines are based on prior expe-

rience in security kernel developments. Discretionary guide-

lines are used to avoid well-known traps in the programming

language, and to produce consistent, readable code. This

consistency makes it easier for an engineer to pick up and

debug in a new area, reducing engineering costs and time.

The code review results, along wit h the design and test

plan, are publicized for the entire group to check. This prac-

tice provides a last review of the entire change by a large

audience. Code review results can also serve as examples

from which engineers can learn good coding practices.

The development team makes extensive use of VAX Notes

online conferences to publicize design and coding guidelines,

to discuss specific design issues, to track bug reports, and

to record and publicize the results of the above-mentioned

design and code reviews.

Each coding task is integrated with the current working

system as soon as it is complete. This integration always

produces a working system. (See Section 5.3. ) Continual and

incremental integration avoids major unexpected failures by

identifying design and/or coding errors as soon as possible.

5.2 Development Environment

As mentioned in Section 2,we have been developing the VAX

security kernel on a VAX security kernel syst em. Thus, our

group does its daily work on a system designed to meet Al

security requirements, using most of its features and con-

trols. Our VMS run at meaningful access classes. Different

versions of the kernel are maintained on different VMS to

keep orthogonal tasks from impinging on each ot her. We also

use VMS for developing and testing the untrusted code that

must run in the VMS and ULTRIX--32 operating systems.

Wc have separated the roles of our own system manager and

security manager, as recommended in the NCSC Evaluation

Criteria [7].

The CPU and console of the development machine are

kept inside a lab that only members of the VAX security

kernel development group can enter. Within that lab, the

development machine is protected by a cage, which consists

of another room with a locked door. Physical access to both

the lab and to the cage within the lab is controlled by a

key-card security system. Finally, our development machine

is not yet connected to Digital’s internal computer network,

to minimize the external threat to our dcvelopmen_t environ-

ment and our pro ject.

5.3 Testing

Integrating a coding task requires that a dcvclopcr run a

standard regression test suite. Integration occurs usually at

least once a week, and as often as twice a day.1” This regres-

sion suite consists of two portions: lager- tests and KCALL

tests. Layer tests arc linked directly into the kernel, and

test layer interfaces and internal routines by calling thcm di-

rectly and checking their outcome. KC ALL tests run in a

VM, issuing Icgal, illegal, and malformed requests, to check

the VM interface.

A separate suite of tests, issued via the VAX DEC/Test

Manager (DTM), is run once every two weeks to test the user

command interface. These tests currently run for 30 hours.

They consist of commands that are successful, commands

that produce errors, and commands that scud malformed

packets to the SSVR layer, DTM checks both the results of

each command and the displays it produces.

Wc also run the standard VAX architecture cxcrciscr

(AXE) that verifies that a particular CPU correctly implc-

loDcvclOPc,~ of ~ot,r~eruu individual tests prior ho ink+gratiou.
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ments a VAX computer. We run AXE to test the VAX

virtualization, described in Section 3.2. AXE tests were run

extensively during the development of the CPU microcode

extensions and the VVAX layer. They will be run again

when the kernel reaches final completion.

We are currently developing test plans for fully exercising

all of the access control decisions and other security-relevant

checks made by the system and for system-penetration test-

ing. Some of these new tests will be developed from scratch,

and some will be based on the formal specifications.

5.4 Formal Methods

The requirements for an A 1 security evaluation state that a

formal security policy model must be written, that a formal

top-level specification (FTLS) of the system design must be

writ ten and proven to satisfy the security policy model, that

the system implementation must be informally shown to be

consistent with the FTLS, and that formal methods must

be used in covert channel analysis of the system. The FTLS

must accurately model system external interfaces, externally

visible behavior, and securi ty-relevant actions. A descriptive

top-level specification (DTLS) is also required as a complete

natural language description of the system.

We use the Formal Development Methodology (FDM)

specification and verification system [19] to help meet these

requirements. We arc writing both our security policy model

(which consists of criteria and constraints and the top-level

specification (TLS) of the various transforms) and our FTLS

in the FDM specification language, Ina Jo. We are using

the FDM interactive theorem prover (ITP) to show that the

TLS obeys the policy and that the FTLS maps to the TLS.

The DTLS consists of our internal design documentation,

plus some speciti glue documents that tie the DTLS and the

FTLS together, particularly describing areas of the kernel

that are not formally modeled in the FTLS.

Table 3 shows the number of executable statements in the

security kernel. For comparison, table 5 shows an estimate

of the total number of lines of Ina Jo (comments excluded)

and the number of lines of transforms (declarations excluded)

required to specify that kernel. The numbers are estimates

because the FTLS is not yet complete. The totals show that

the number of lines of transforms are about one sixth of the

number of executable statements in the security kernel.

I Level of Specification I Lines of Ina Jo I.
Total Transfornrs

TLS I 650 I 294

FTLS 11756 8410

Tot al ! 12406 I 8704

Table 5: Lines of Formal Specifications

We are doing a formal covert channel analysis using a new

technique for automating the Shared-Resource Matrix ap-

proach [20] using code-level flow analysis tools.

Formal methods do not make the system secure by them-

selves. Successful proof that our specifications meet security

policy does not guarantee that there are no lurking imple-

mcntatirm bugs. However, the use of formal methods sig-

nificant Iy improves the overall quality of the security ker-

nel. When combined with the informal testing procedures of

Section 5.3, the use of formal methods improves the assur-

ance that the security features are effective. Indeed, the very

act of formally specifying the security kernel in Ina Jo has

already det cct ed several kernel bugs, both because of con-

straints imposed by proof procedures, and because the pro-

cess of code correspondence provides a thorough method for

reviewing the TCB code and informal design specifications.

The separation of duties between the software engineer and

the verifier, by itself, provides valuable extra assnrancc, even

if no proofs were ever done.

5.5 Configuration Control

We maintain strict configuration control on many items, in-

cluding design documents, trusted kernel code, test suites,

user documents, and verification documents. All of our code

is maintained under the VAX DEC/Code Management Sys-

tem (CMS) to maintain a history of each change to each

module. Security reviews check each item against the specific

NCSC criteria requirements [7] it fulfills and check among

the items for internal consistency. Items that have been re-

viewed are stored on a master pack that is physically pro-

tcctcd against modification.

Our hardware, firmware, and software development tools

are developed by other groups within the corporation. We

review hardware and firmware ECOS, prior to supporting

them in the VAX security kernel. New versions of software

development tools are tested on a stand-rdonc laboratory sys-

tem prior to use on the kernel development machine. We usc

only the standard, released versions of software development

tools, the same versions that have been checked out for ship-

ment to our customers. With rare exceptions, no field-test

versions are permitted on the kernel development machine.

5.6 Trusted Distribution

The end user of a security kernel must have some assurance

that no one has tampered with or substituted counterfeit

copies of the hardware and software that makeup the system.

Hardware and software have different trusted distribution

requirements.

5.6.1 Hardware Trusted Distribution

To assure that the hardware systems would arrive at the

customer’s site meeting the trusted distribution criteria, we

have developed a security-seal program. If someone tam-

pered with the seal, evidence would be provided of the at-

tempted entry. A locking device would combine with the se-

curit y sealing procedures to ensure a trusted shipment. Full

individual accountability would be provided, including logs

of the delivery.
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5.6.2 Software Trusted Distribution

Installation of an Al system involves achieving a trusted

state. The steps to do this on VAX 8800 hardware are com-

plex. The console processor soft ware and CPU microcode

must be installed and cryptographically checksummed with

stand-alone software to detect any possible tampering. If a

secure site loses its trusted state for any reason, they must re-

install the console software and the CPU microcode. Trusted

state could be lost just by running an untrusted operating

system or hardware diagnostics on the system.

Next, the trusted code is instaIled via untrusted code

(VMS) and the result is cryptographically checksummed to

verify that the untrusted code has not tampered with the

trusted code. The result of the checksum is checked against

a message authentication code toverify correct inst all at ion.

The checksumming software is shipped separately from the

rest of the software, so that a single failure of the trusted dis-

tribution system could not compromise both the checksum

program and the authentication code.

For software, there would also bean option of using trusted

couriers instead of the separate delivery paths.

6 Production-Quality Kernels

A production-quality security kernel is designed to protect

and ensure the quality of real-world information. This sec-

tion describes some of the differences between research and

production-quality security kernels that are required to meet

general user requirements, as well as to satisfy the NCSC cri-

teria for an Al operating system.

6.1 Producing the Kernel

The primary tools for creating a security kernel are compil-

ers. Quality compilers must work for large programs, pro-

duce efficient object code, and be reliably supported. We

sacrificed programming language elegance in favor of com-

pilers with a strong track record: the VAX PASCAL and

PL/I compilers. We maintained cent act with the compiler

developers throughout the dcvelopruent, and they provided

much needed help to us, including occasional changes to the

actual compiler code.

A second tool, a symbolic debugger/crash dump anal yzcr,

is needed to develop and debug the system. It would also be

needed by users and support personnel to diagnose problems,

and by users who might wish to add functions to the kernel.

A production-quality security kernel must have adequate

performance to justify its purchase in the face of other op-

tions such as multiple separate computers or periods pro-

cessing. To he] p ensure at tent ion to performance, we do our

own development work on a VAX security kernel systcm.

Performance-critical paths were written in a high-level lan-

guage and then re-written in assembly language for speed.

We have meters to find performance-critical routines, and

a rudimentary performance monitor to gather statistics on

CPU and 1/0 usage.

Bug tracking mechanisms arc needed both to satisfy NCSC

configurate ion management guidelines, and to give us a means

to respond to problems on a timely basis. They also provide

a means to check against our dcfini tion of quality: having no

security bugs and no bug that keeps production work from

running. Statist ics on the number of bugs and their scvcrit y

provide concrete feedback on stability.

6.2 Documentation

A real security kernel requires extensive docunrcntation for

its users and for its system and security managers. These

documents must not only meet the content requirements of

the NCSC; they must also bc clear and understandable to

both novice and sophisticated customers. The VAX security

kernel documcntatiorr set consists of nine manuals and a ref-

erence card. The manuals include a user’s guide, guides to

both system security and systcm rnanagcmcnt, a command

reference rnaunal, both basic and advanced programmer’s

manuals, an installation guide, a master index, and rclcasc

notes. These manuals have been written to the same qual-

ity standards as the manuals for the VMS and ULTRIX 32

operating systems.

7 Comparison with KVM/370

While the VAX security kernel superficially bears a strong

resemblance to KVM/370, in that both systems crcatc vir-

tual machines that run at different access classes, the intcrual

strncturcs of the two systems arc very cliffercut.

Most significantly, KVM/370 was designed as a retrofit

to the existing VM/370 product, with a specific goal of

leaving at least half of the original code intact [11]. As

a result, KVM/370 was strncturcd as shown in Figure 6.

The KVM/370 security kernel used a variation on sclf-

virtualizatiou to create a series of NKCPS (Non-Kernel Con-

trol Programs), each at a distinct mandatory access class.

The NKCPS ran unmodified VM/370 code to crcatc multi-

ple virtual rnachincs that then ran the CMS (Conversational

Monitor System), a single-user operating systcm designed

to run in a virtual machine. The disadvmtagc of this al)-

proach is that many functions cxccutcd by a virtual ma-

chine required two context switches, first into the NKCP

and then into the security kernel. By comparison, VAX se-

curity kernel achicvcs a higher performance lCVC1by allowing

the virtual machines to communicate directly with the sc-

curit y kernel. This makes the VAX security kernel larger

than the KVM/370 security kernel, but we believe that the

performance gains justify thc increase in sir,c. 11

KVM/370 never implcrncntcd support for VMOSS that

supported virtual memory. It implemented demand paging

within its TCB. By contrast, the VAX sccnrity kernel leaves

virtual memory support to the VMOSS. As discussed in

llThi~ ~ornparis{)n is not strictly fair to KVM/370 b~~alls~ ‘Ilc

KV M/370 tcarn was required to nlaiutain compatit)ilit y and a large

body of original code from VM/370, while the VAX scawity km,cl

team had the liberty of designing and coding from scratch.

15



Virtual

Mechlnea
(VMa)

i IRM 270. . . ..

Non-Kernel
ControlPrograms

(NKCPa)

I .-. . ..-

I I

EEEEEEl 1- IBM 370

Figure 6: KVM/370 Configuration

Section 3.7, eliminating demand paging reduces kernel com-

plexity and improves performance at the cost of limiting the

number of simultaneously active virtual machines.

Another major difference is that KVM/370 has a very lim-

ited interface for system management and security manage-

ment functions. For example, new users cannot be added

during online operation. By contrast, the VAX security ker-

nel offers a full complement of system and security manage-

ment tools, such as are required in a general-purpose syst cm.

(See Section 4.)

While performance comparisons are very tricky to make,

the relative performance of the VAX security kernel seems

better than that of KVM/370. KVM/370 reports [11] per-

formance ranges from 10% to 50% of VM/370, depending

on the workload. By cent rast, the VAX security kernel ex-

hibits performance ranges from 30% to 90% of VMS capacity,

again depending on the workload. The KVM /370 measure-

ments were of an untuned system, while the VAX security

kernel measurements were of a system with a Iimitcd amount

of tuning. The KVM/370 comparisons were to VM/370, it-

self a virtual-machine monitor with performance ~cgradation

compared to a native operating system. The VAX security

kernel comparisons were to the native VMS operating sys-

tem, KVM/370 reported a. number of desirable performance

optimization that had not been done, and likewise, we know

of a number of optimization that have not yet been applied

to VAX security kernel because of limited development re-

sources.

8 History of the Project

The idea of a virtual-machine monitor security kernel for the

VAX, similar in concept to KVM/370, was first conccivcd

by Paul Kargcr and Steve Lipner in a Mexican restaurant in

Pak) Alto, CA, immediately after the 1981 Symposium on

Security and Privacy. An initial design study [17] concluded

in 1982 that such a security kernel would be practical for the

VAX architecture.

The secnrit y kernel was initially prototype on a VAX-

11/730 system. The VAX- 11/730 CPU [34] was particularly

attract ivc bccanse it was vert ica.lly microprogrammed, and

its microcode was exccut ed from a writ eablc cent rol store
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(WCS) that could be reloaded from magnetic tape cassettes.

This environment was ideal for experimenting with alternate

microcode extensions to the VAX architecture, although the

CPU itself was quite slow.

The VMS operating system first successfully booted in a

virtual machine on 19 July 1984. That version of the security

kernel was a research prototype and was not a production-

quality system. It was extremely slow (due in part to the

choice of the VAX–11/730 and in part to the initial soft-

ware design that emphasized quick development and exten-

sive self-checking, but not performance), and its user inter-

face was extremely crude.

Once the VMM security kernel prototype was running re-

liably on the VAX-11/730 and we had accomplished some

performance tuning (that improved system performance by

at least an order of magnitude), we then began investiga-

tion of what a production-quality version would be like. The

extensions to the VAX architecture were re-implemented on

the VAX 88OO family of CPUS to provide a high-performance

base for the system. Like the VAX-11/730, the VAX 8800

CPU [24] runs its microcode from a writeable control store

(WCS), so modifications were possible. The VAX 88OO mi-

crocode is organized horizontally, rather than vertically, and

the microcode is pipclined, so the actual implementation of

the extensions was much more complex than for the VAX-

11/730.

Going from the research prototype to the practical version

also gave us the opportunity to revisit a number of design

decisions. In particular, the extensions to the VAX arch-

itecture to support virtualization were simplified, in part

due to the limited availability of microcode memory in the

VAX 88oo. A performance study of the VAX security ker-

nel prototype revealed that some of our architectural exten-

sions did not provide the expect cd performance gains, while

other extensions would be more valuable. For example, the

prototype design included complex microcode assistance for

delivering exceptions and interrupts to the virtual machines,

but these microcode assists proved not to be useful, and a

much simpler scheme was implcmcntcd for the VAX 8800.

Sim~larly, performance measurements of the prototype re-

vealed that VAX operating systems (and VMS in particular)

use the MTPR instruction to change their interrupt priority

level (IPL) much more frequently than anyone had expected.

Therefore, the software was changed to optimize this particu-

lar path, and microcode assistance was considered, although

not implemented in this version.

The move to the production-quality kernel also marked

the development of such features as user and system man-

agement intcrfa~es ) auditing) and error logging The proto-

type kernel, as a research kernel, had no need of such tools,

but a real Al systcm must have them, so that the end users

can manage and reliably run real applications on the systcm.

By January 1988, the kernel was sufflcimrtly stable that

some engineers could begin doing their development work on

a VM. Also in .January 1988, the first VAX security kernel

was inst ailed outside the kernel dcvelopmerrt group. That

system was installed in the European ULTRIX Engineer-

ing Group in Reading, England for porting the ULTRIX–32

operating system to a virtual machine. ULTRIX 32 first

booted in a virtuaJ machine on 15 February 1988, only two

months after detailed design for the port began, and less

than one month after a working VAX security kernel system

was available for usc in Reading.

By August 1988, VAX security kernel builds were being

done on virtual machines, and by early 1989, essentially all

software development work was being done on the kernel.

By Spring of 1989, the kernel was srrfflciently stable that

the VAX 8800 that had been running a conventional VMS

time sharing systcm for the kernel developers was rclcascd

for other purposes.

9 Conclusions

The VAX security kernel is a working, production-quality

VMM security kernel with performance sufficient to support

a large number of time-sharing users. It is sufficiently fast

and stable that it supports its own development team. It

supports vast amounts of existing user software that has been

written for both the VMS and the ULTRIX -32 operating

systems, and it supports both operating systems running

simultaneously on the same CPU. VAX security kernel is

current] y (as of February 1990) in thc Design Analysis Phase

with the National Computer Security Center (NCSC) for an

Al rating. As a research project in what is required to build

a practical security kernel, it has been a major success.

The development of VAX security kernel has been long

and arduous, and wc have learned a number of lessons dur-

ing that time. Performance of a security kernel is extremely

important, and get ting good performance is very hard. It

requires detailed analysis of what portions of the kernel are

performance-critical and a willingness to redesign those por-

tions for performance and possibly re-code them in assenrbly

language or to provide microcode performance assistance.

Building the system twice, once as a research prototype

and once as a research study of a production-quality systcnr,

was extremely valuable. The second time around, we were

able to apply some of the performance lessons learned by

adjusting our microcode assistance, and wc dcvclopcd the

user and management interfaces that are essential in a real

system.

Developing a system to Al standards is very hard work.

Some of the Al requirements can directly conflict with per-

formance and usability goals, and the testing and review

rcquircrnents are very time consuming. Furthcrrnore, the

export controls imposed on A 1 systems can seriously reduce

the potential market for a systcm, making it difficult to re-

cover the costs in achieving the A 1 rat ing. On the ot hcr

hand, the discipline required to meet Al requirements defi-

nitely improves overall soft ware quality and reliability.
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