
1

A Vocabulary Approach to Partial Streamline
Matching and Exploratory Flow Visualization

Jun Tao, Student Member, IEEE, Chaoli Wang, Senior Member, IEEE,

Ching-Kuang Shene, Member, IEEE Computer Society, Raymond A. Shaw

Abstract—Measuring the similarity of integral curves is fundamental to many important flow data analysis and visualization tasks such

as feature detection, pattern querying, streamline clustering, and hierarchical exploration. In this paper, we introduce FlowString, a

novel vocabulary approach that extracts shape invariant features from streamlines and utilizes a string-based method for exploratory

streamline analysis and visualization. Our solution first resamples streamlines by considering their local feature scales. We then classify

resampled points along streamlines based on the shape similarity around their local neighborhoods. We encode each streamline

into a string of well-selected shape characters, from which we construct meaningful words for querying and retrieval. A unique

feature of our approach is that it captures intrinsic streamline similarity that is invariant under translation, rotation and scaling. We

design an intuitive interface and user interactions to support flexible querying, allowing exact and approximate searches for partial

streamline matching. Users can perform queries at either the character level or the word level, and define their own characters or words

conveniently for customized search. We demonstrate the effectiveness of FlowString with several flow field data sets of different sizes

and characteristics. We also extend FlowString to handle multiple data sets and perform an empirical expert evaluation to confirm the

usefulness of this approach.

Keywords—Streamline similarity, shape invariant features, partial matching, exploratory flow visualization, user interface.

✦

1 INTRODUCTION

In flow visualization, measuring the similarity between dis-

crete vectors or the similarity between integral curves is of

vital importance for many tasks such as data partitioning, seed

placement, field line clustering, and hierarchical exploration.

This need has become increasingly necessary and challeng-

ing as the size and complexity of flow field data continue

to grow dramatically over the years. Early research in this

direction focused on vector field similarity and hierarchical

classification [7], [19]. This focus has shifted to similarity

measurement of integral curves in recent years. Many of the

similarity measures designed were targeted on fiber bundle

clustering in diffusion tensor imaging (DTI). In this context,

spatial proximity is the major criterion for clustering these

DTI fiber tracts. Fiber bundles can be formed to characterize

different bunches of tracts that share similar trajectories.

In computational fluid dynamics (CFD), integral curves such

as streamlines or pathlines traced from flow field data are more

complex than DTI fiber tracts. Many CFD simulations produce

flow field data featuring regular or turbulent patterns at various

locations, orientations and sizes. Clearly, only considering

• J. Tao and C.-K. Shene are with the Department of Computer Science,

Michigan Technological University, 1400 Townsend Drive, Houghton, MI

49931.

E-mail: {junt, shene}@mtu.edu.

C. Wang is with the Department of Computer Science & Engineering,

University of Notre Dame, Notre Dame, IN 46556.

E-mail: chaoli.wang@nd.edu.

R. A. Shaw is with the Department of Physics, Michigan Technological

University, 1400 Townsend Drive, Houghton, MI 49931.

E-mail: rashaw@mtu.edu.

the spatial proximity alone is not able to capture intrinsic

similarity among integral curves traced over the field. As

a matter of fact, pointwise distance calculation commonly

used in proximity-based distance measures is not invariant

to translation, rotation and scaling. Although other measures

have also been presented that extract features from integral

curves and consider feature distribution or transformation for

a more robust similarity evaluation, none of them is able to

explicitly capture intrinsic similarity that is invariant under

translation, rotation and scaling. Furthermore, most of the

existing solutions for streamline similarity measurement take

each individual streamline of its entirety as the input, measur-

ing partial streamline similarity is not naturally integrated.

In this extended version of our IEEE PacificVis 2014 paper

[18], we present FlowString, a novel vocabulary approach

for streamline similarity measurement using shape invariant

features. Given a flow field data set, we advocate a shape mod-

eling approach to extract different feature characters from the

input streamline pool. Each individual streamline is encoded

into a string of characters recording its shape features. This

draws a clear distinction from existing solutions in that we

are now able to perform robust partial streamline matching

where both exact and approximate searches are supported.

Built on top of the underlying shape analysis framework, we

present a user interface that naturally integrates the concepts

of characters and words for convenient low-level and high-

level streamline feature querying and matching. Our Flow-

String explicitly categorizes shape features into characters and

extracts meaningful words for visual search, which offers

a more expressive power for exploratory-based streamline

analysis and visualization. The effectiveness of our approach

is demonstrated with several flow data sets exhibiting different

2

characteristics. Extension of FlowString to handle multiple

data sets and feedback from a domain expert are new to the

journal version of this work, and thus significantly extends the

work in the IEEE PacificVis 2014 paper [18].

2 RELATED WORK

Many similarity measures were presented for clustering DTI

fiber bundles and field lines. The spatial proximity between

two integral curves is the foundation of many of them [5], [24],

[4], [13], [2], [9]. While proximity-based measures are solely

based on point locations, other measures extract features from

the field or integral curves for similarity analysis. Examples

include shape and orientation [3], and local and global geomet-

ric properties [16]. Feature distributions of integral curves are

less sensitive to noise in the data and sharp turns or twists

at certain locations [23], [11], [17], [10], [12]. Therefore,

they are often used for more robust similarity measuring. In

other approaches, the similarity between integral curves are

measured in a transformed feature space [1], [22], [14].

Closely related to our work are the work of Schlemmer

et al. [15], Wei et al. [22], Lu et al. [10], and Wang et al.

[21]. Schlemmer et al. [15] leveraged moment invariants to

detect 2D flow features which are invariant under translation,

scaling and rotation. However, their work is restrictive to 2D

flow fields and patterns are detected based on local neighbor-

hoods rather than integral curves. Wei et al. [22] extracted

features along reparameterized streamlines at equal arc length

and used the edit distance to measure streamline similarity.

Features of varying scales are only roughly captured by simply

recording the length of each resampled streamline. Lu et al.

[10] computed statistical distributions of measurements, such

as curvature, curl and torsion, along the trajectory to measure

streamline similarity. Their approach is invariant to translation

and rotation, but not scaling. Wang et al. [21] segmented the

streamlines, and applied global alignment to the root segment

to match other segments. Their approach could query a pattern

including multiple streamline segments. However, the global

alignment is needed for every query, which could be costly.

Our FlowString advocates a shape-based solution for

streamline resampling, feature characterization, and pattern

search and recognition. It distinguishes from all previous

solutions in that it is specifically designed for robust and flex-

ible partial streamline matching, invariant under translation,

rotation and scaling. We enable this through the construction

of character-level alphabet and word-level vocabulary. Another

distinction is that FlowString is integrated into a user-friendly

interface to support intuitive and convenient user interaction

and streamline exploration, expressing a more powerful way

to visual analytics of flow field data.

3 TERMS AND NOTATIONS

Before giving the overview of our algorithm, we first define

the following terms that will be frequently used in the paper:
• Character: A character is a unique local shape primitive

extracted from streamlines which is invariant to its geo-

metric position and orientation. Characters are the low-

level feature descriptors for categorizing streamline shape

features.

Fig. 1. Resampling a streamline traced from the crayfish

data set. The red dots indicate resampled points.

• Alphabet: The alphabet consists of a set of characters that

describe various local shape features of streamlines traced

from a given flow data set.

• Word: A word is a sequence of characters encoding a

streamline shape pattern. Words are the high-level feature

descriptors for differentiating regional streamline shape

features.

• Vocabulary: The vocabulary consists of a set of words

describing various regional shape features of streamlines

traced from a given flow data set.

• String/substring: A string is the mapping of a global

streamline to a sequence of characters. A substring

encodes a portion of the corresponding streamline. A

substring could match with a word in the vocabulary.
The notations for string operation are mostly consistent

with the convention. However, some minor changes are also

introduced to adapt to this specific context, which are listed

as follows:
• Character notation: The shape primitive represented by a

character is formed by a set of points in order. A character

is denoted as a single lowercase letter a (a’) if the sample

points on the streamline ordered along the flow direction

is in the same (reversed) order of the shape primitive.

We use the uppercase letter A to indicate that the sample

points could be in both directions.

• Multiple characters with common features: | This symbol

specifies multiple characters that share some common

properties, e.g., (a1|a2| . . .|al) denotes a local shape

represented by any character appearing in the parenthesis.

• Word concatenation: | and & We use two symbols |

(or) and & (and) to concatenate two words with the

square brackets [] for distinguishing word boundaries.

For example, [aaa]|[bbb] returns the segments that

match either aaa or bbb. [aaa]&[bbb] finds the

segments that contain both aaa and bbb within some

distance threshold.

• Other symbols: +, ?, and * We allow the use of single

character repetition +, and wildcard symbols ? and *.

The use of them is consistent with the convention.

4 OUR ALGORITHM

Our FlowString algorithm consists of two major components:

alphabet generation and string operation. Alphabet generation

3

a b c d

e f g h

i j k

(a) (b) (c)

Fig. 2. Characters generated from a two-level bottom-up affinity propagation clustering of the crayfish data set. (a)

shows the 11 high-level cluster centers, which are assigned to characters a to k in order. (b) shows the 23 members

in the cluster highlighted with a box in (a), which are low-level cluster centers. (c) shows the 24 members in the cluster

highlighted with a box in (b).

is to generate the alphabet that describes unique local shape

features of streamlines traced from a given flow data set.

With this alphabet, we can treat a streamline as a string with

a sequence of characters assigned to its sample points. The

sample points are resampled from the streamlines based on

the local shapes in a preprocessing stage. String operation

refers to the matching and querying of the strings based

on this alphabet. A suffix tree is built to represent all the

strings to enable efficient search and pattern recognition.

We automatically extract words from strings to construct the

vocabulary to support high-level feature querying.

4.1 Streamline Resampling

For each sample point, its local shape is represented by a set

of sample points in its neighborhood with a size of r, i.e.,

the sample point itself and the (r−1)/2 nearest neighbors in

both the forward and backward directions along the streamline.

The desired streamline resampling should meet two crucial

requirements. First, a streamline segment between two sample

points should be simple enough, so that no feature is ignored

due to under-sampling. Second, since we use a neighborhood

of size r to represent the local shape, the density of sample

points should be related to the local feature size. That is, for a

meaningful comparison, the local features with the same shape

should contain the same number of sample points.

Let us consider a continuous 3D curve C and another curve

C′ which results from uniformly scaling C by a factor s. Let p1

and p2 be two points on C, and p′1 and p′2 be two points on

C′ which correspond to p1 and p2, respectively. The curvature

κ ′ of each point on C′ is κ/s, where κ is the curvature of

the corresponding point on C. Since the arc length l′ between

p′1 and p′2 is s× l, where l is the arc length between p1

and p2, the accumulative curvature between p′1 and p′2 is the

same as that between p1 and p2. This implies that keeping

a constant accumulative curvature between two neighboring

sample points will produce similar resampling for features

with the same shape but of different scales.

For a streamline which is often represented as a polyline,

the curvature is not immediately available. Thus, we compute

the discrete curvature κi at point pi by

κi = cos−1(−−−→pi−1 pi ·
−−−→pi pi+1), (1)

where pi−1, pi and pi+1 are three consecutive points along

the streamline. In other words, the discrete curvature at a

point could be approximated by the angle between its two

neighboring line segment, and the accumulative curvature

becomes the winding angle of a streamline segment. Although

the winding angle might be affected by the density of points

along a polyline, it is very stable if the points traced along the

streamline are dense enough.

Our resampling starts from selecting one end of a streamline

as the first sample point, and iterates over the other traced

points along the streamline. During the iterations, we accumu-

late the winding angle from the last sample point to the current

point. Once the winding angle is larger than a given threshold

α , the current point is saved as a new sample point and the

winding angle is reset to zero. Note that the neighborhood

size r is closely related to the selection of α . That is, when α

is smaller, r should be larger to cover the same range of the

streamlines in order to capture the shape of local features. If

the cumulative winding angle does not reach the threshold for

an entire streamline, i.e., mostly a straight line, then we place

r sample points evenly on that streamline. In our experiments,

we find that setting α = 1 (in radian) and r = 7 works well for

all our test cases. This is because when α = 1, the pattern of a

streamline segment between two neighboring sample points is

relatively simple, and seven consecutive points cover mostly

the range of a circle, which is enough to describe a local shape

and yet not too complex. Figure 1 shows our resampling result.

The three highlighted regions are with three different local

scales, which all contain a similar number of sample points

after resampling.

4.2 Alphabet Generation

The alphabet generation evaluates the dissimilarity among

local shapes of sample points using the Procrustes distance,

which only considers the shape of objects and ignores their

geometric positions and orientations. Then, we apply affinity

propagation to cluster the local shapes and the cluster centers

become the characters.

Dissimilarity Measure. We compute the dissimilarity be-

tween the local shapes of two sample points as the Procrustes

distance between their neighborhoods, where each neighbor-

hood is a sample point set of size r. Before shape comparison,

the two point sets must be superimposed or registered to

obtain the optimal translation, rotation, and uniform scal-

ing. This registration is often referred to as the Procrustes

superimposition. After the superimposition, the two paired

4

(a) (b) (c)

Fig. 3. Character concatenation. The blue and red lines

indicate the neighborhoods of blue and red sample points,

respectively. (a) characters are assigned to all sample

points. r − 1 sample points are shared by the neighbor-

hoods of blue and red sample points, which produce a

deterministic shape. (b) and (c) characters are assigned

to every r−1 sample points. Only one point is shared by

the neighborhoods, which produces different shapes.

point sets representing the same shape will exactly coincide

and thus have the distance of zero. The optimal translation

T, rotation R, and uniform scaling s from one point set

Pa = {pa1, pa2, . . . , par} to another Pb = {pb1, pb2, . . . , pbr} are

the ones that minimize the summation of the pairwise point

distances [8]

d =
r

∑
i=1

∣

∣pbi − p′ai

∣

∣

2
, where p′ai = sRpai +T. (2)

Note that the minimized d is the Procrustes distance between

Pa and Pb. However, in Equation 2, we assume that pai should

be paired with pbi, which might not always be the case for

two streamline segments, since two segments with the same

shape might be indexed in the opposite directions. Therefore,

we compute the distance d+ between Pa and Pb in the original

order and the distance d− in the reversed order, and use the

minimum of d+ and d− as the final dissimilarity value.

Affinity Propagation Clustering. Given the dissimilarity

measure, we compute the pairwise dissimilarity among all

sample points and apply affinity propagation for clustering.

The similarity values are then obtained as the negative of

the dissimilarity values, as suggested by Frey and Dueck [6].

Unlike k-means and k-medoids clustering algorithms, affinity

propagation simultaneously considers all data points as poten-

tial exemplars and automatically determines the best number of

clusters, with the preference values for each data point as the

only parameters. In our scenario, affinity propagation usually

generates a fine level of clustering result (with hundreds of

clusters). To support pattern query and recognition at a coarser

level, the cluster centers at the first level are then clustered by

applying affinity propagation again to generate the second-

level clusters. In our experiments, the second-level cluster

indices serve as the characters, and we find that they already

have enough discriminating power.

Figure 2 shows an example of the clustering results. As we

can see, the members in the same clusters are usually similar

to each other. Although some shapes in the higher level cluster

also appear to be similar under this viewing direction, we find

that they actually represent different shapes as judged from the

query results. For example, they might be portions of spirals

with different torsions, which are not revealed under this view.

Character Concatenation. A character corresponding to a

(a) (b) (c) (d)

Fig. 4. Matching results using the crayfish data set. A

zoomed-in view is used to show a partial volume for

clearer observation. (a) and (b) show respectively, exact

match results for patterns EE and FF, where E (F) is a

spiral pattern with large (small) torsion (refer to Figure 2

(a)). (c) and (d) show respectively, exact and approximate

(k = 15) match results for pattern (E|F)(E|F).

sample point determines the local shape of its neighborhood

of size r. If a character is assigned to every sample point,

a concatenation of two characters represents the shape of a

neighborhood of size r + 1. As shown in Figure 3 (a), this

shape is mostly determined by the two characters centering on

the blue and red sample points. However, if the characters are

only assigned to every r−1 points, even if the two characters

are exactly the same, the resulting shape of 2r−1 points could

vary significantly. This is because the relative orientation of the

two local shapes is undetermined, as shown in Figure 3 (b) and

(c). Moreover, since these r points in a neighborhood might not

be evenly spaced, the overlapping region of two neighborhoods

also decides their relative scale. Also notice that the order of

points for each character might affect the shape represented by

a string. Certainly, if r is large, we might not need to assign

a character to every sample point to maintain the overlapping

region of size r− 1. In practice, since we opt to use a small

value for r to avoid too complex local shapes, assigning a

character to every sample point seems to be necessary in order

to produce deterministic shapes for a string.

4.3 String Operation

Streamline Suffix Tree. After we convert each streamline to a

string, we construct a suffix tree [20] in linear time and space

to enable efficient operations on these strings. A suffix tree is

a special kind of tree that presents all the suffixes of the given

strings. Each edge of the suffix tree is labeled with a substring

in the given strings. For a path starting from the root to any

of the leaf nodes, the concatenation of these substrings along

this path is a suffix of the given strings.

The problem of search for a string then becomes the search

for a node in the suffix tree. Considering that the size of the

alphabet is constant, the decision on which edge to visit could

be made in constant time, and the search of a string with length

m can be performed in O(m) time. Assuming the number of

appearance of a string to be searched is z, reporting all the

positions of that string takes O(z) time. As a result, with the

suffix tree, an exact match of a substring that appears in the

given string multiple times only takes O(m+ z) time.

Vocabulary Construction. Given a pool of traced stream-

lines, one interesting yet challenging problem is to auto-

matically identify meaningful words in these streamlines to

5

TABLE 1

The ten flow data sets and their parameter values. The timing for matrix is the running time for computing pairwise

distance among the neighborhoods of sample points. The timing for affinity propagation clustering includes both the

first- and second-level clustering. The column “max dist.” shows the maximum dissimilarity between any two sample

point in that data set.

sample # cluster max timing

data set dimension # lines # points points 1st level # char. dist. matrix CPU clustering GPU clustering setup

vessel 40×56×68 100 25606 1338 56 5 31.11 1.45 sec 0.60 min 2.0 sec 0.06 sec

five critical pts. 51×51×51 150 18618 1720 75 6 31.06 2.39 sec 1.04 min 3.6 sec 0.07 sec

electron 64×64×64 200 24191 1415 38 4 13.98 1.62 sec 0.77 min 3.3 sec 0.05 sec

tornado 64×64×64 200 200735 12363 141 6 29.80 126.06 sec 47.07 min 115.0 sec 1.77 sec

two swirls 64×64×64 200 209289 13508 156 6 36.05 150.39 sec 86.65 min 247.1 sec 2.07 sec

supernova 100×100×100 200 56210 8542 150 7 35.28 35.28 sec 28.85 min 139.0 sec 1.08 sec

crayfish 322×162×119 150 164605 7590 178 11 33.77 33.77 sec 21.22 min 89.6 sec 0.97 sec

solar plume 126×126×512 200 257087 12484 247 12 36.63 128.47 sec 71.22 min 221.6 sec 2.09 sec

computer room 417×345×60 400 361258 9772 262 11 35.91 78.94 sec 36.53 min 75.2 sec 1.43 sec

hurricane 500×500×100 200 293572 4766 98 7 35.13 18.42 sec 7.93 min 16.5 sec 0.28 sec

construct the vocabulary. Since the words are depicted by a se-

quence of characters, we need to not only select representative

streamlines, but also extract important segments from them for

word identification. With our streamline suffix tree, this could

be efficiently solved as we select the most common patterns

from the streamlines. In other words, streamline segments that

appear most frequently could be identified as words.

We implement our approach on the streamline suffix tree

by a simple tree traversal scheme. Since the shape of each

streamline segment is captured by a substring in our suffix

tree, selecting the common patterns of streamline segments

could be considered as the detection of the most frequently

appeared substrings. Considering that each potential substring

is associated with a node in the suffix tree, the number of

appearance for a substring can be efficiently counted with the

following two cases:
• If the substring corresponds to a leaf node, its number of

appearance is the number of position labels attached to

that node.

• If the substring corresponds to an internal node, its

number of appearance is the summation of the counts

for all the children of that node.
This information could be gathered by a traversal of the tree

in the depth-first search manner. Then, all substrings with the

length and number of appearance larger than certain thresh-

olds could be reported by another tree traversal. Therefore,

identifying words to form the vocabulary can be performed in

O(n) time, where n is the total length of the original strings,

since the number of nodes is linear to n.

Exact vs. Approximate Search. Since the string is used

to represent the shape of streamline segments, exact string

matching normally does not provide enough flexibility to

capture streamline segments with similar shapes. First, the

similarities among the shapes represented by different char-

acters are different, e.g., a portion of spiral with large torsion

is more similar to that with small torsion than other shapes.

But exact match only produces a binary result, which is

either the same or different. Second, with respect to human

perception, different numbers of repetition of a certain shape

often seem to be similar. For instance, a spiral that contains

three circles and another one that contains five circles are

usually considered to be similar. Assuming a shape similar

to a circle is represented by character a, then strings aaa

and aaaaa should be matched in our search. To enable these

approximate searches, we implement a dynamic programming

approach to detect k-approximate match on the suffix tree,

where k is a threshold used in the edit distance. This approach

is similar to the traditional computation of edit distance, with

the difference that it fills the table when traversing the suffix

tree. For implementation detail, we refer readers to our IEEE

PacificVis 2014 paper [18].

Figure 4 shows some search results using the crayfish data

set, where E is a character representing a spiral pattern with

large torsion and F represents a spiral pattern with small

torsion. E and F correspond to e and f as shown in Figure

2 (a) respectively. We can observe from Figure 4 (a) that

streamline segments matched with EE are mostly spirals with

large torsion, and those matched with FF in (b) are mostly

spirals with small torsion. In (c), streamline segments include

the results from both (a) and (b). If we enable approximate

search, more swirling streamline segments are detected, as

shown in (d).

4.4 Further Consideration

High-Level Features. Large-scale shapes or features at higher

levels that contain small-scale features could be challenging

to detect, due to the extra characters created for small-

scale features. For example, in Figure 5 (a), the streamline

segment forms a circle, but with a small turbulent portion.

Our resampling strategy will densely sample this portion to

capture the turbulent feature. This hinders the overall circular

shape to be captured. As shown in the Figure 5 (a), neither the

neighborhood of the green sample point nor the blue sample

point can cover the entire circle. The corresponding shapes to

these two sample points are most likely to be identified as a

turbulent segment and a hook shape, respectively.

To allow the overall shape of a streamline segment to be

correctly understood, we first smooth the streamlines, which

removes small-scale features. As shown in Figure 5 (b), the

turbulent portion of streamline is smoothed out, so that the

circular pattern can be captured at the red sample point. In

Figure 5 (c), we demonstrate this with a streamline traced in

the crayfish data set. On the left, we can observe that the small

6

(a) (b)

(c)

Fig. 5. Using smoothed streamlines to capture high-

level features. (a) illustration of resampling on original

streamlines. (b) illustration of resampling on smoothed

streamlines. (c) resampling on a streamline before and

after smoothing. The original streamline is shown on

the left with a segment highlighted in a red rectangle.

The smoothed streamline is shown on the right with the

corresponding segment highlighted in a green rectangle.

features create denser sample points on the original streamline.

The right one has the streamline smoothed, and the sample

points distribute more evenly along the streamline.

In our implementation, we apply a simple Laplacian

smoothing for several iterations. In each iteration, we move a

point on a streamline towards the center of its two neighbors.

More precisely, in each iteration, we update the position of a

point pi with

λ p′i +(1−λ)

(

p′i−1 + p′i+1

2

)

, (3)

where p′i, p′i−1 and p′i+1 are the positions of points pi, pi−1

and pi+1, respectively, and λ is a factor that controls the

smoothing speed. The smoothing speed is maximized when

λ = 0, which means that we update the position of pi with

the center of its two neighbors. In this paper, we use a

moderate smoothing speed with λ = 0.5. Once the smoothed

streamlines are available, users can choose to include the

smoothed streamlines in a query. The query will then be

performed on both the original and the smoothed streamlines.

Streamline segments matched on the smoothed streamlines

will be mapped back to the original streamlines. The matched

segments will always be shown in the form of the original

streamlines.

Universal Alphabet. The approach described above can be

naturally extended to multiple data sets by applying the alpha-

bet generation procedure on multiple streamline sets produced

from different data sets. As a result, a universal alphabet will

be generated for all the data sets. This is possible because for

different data sets or streamline sets, most characters will still

be similar, although certain characters might be absent in some

data sets due to the lack of corresponding features. In practice,

we find that most flow patterns can be captured by a limited

set of characters, and the universal alphabet can be generated

using a moderate number of data sets that contain various flow

features. The universal alphabet is beneficial in two aspects.

First, it will eliminate the need to generate an alphabet for each

data set, if the basic shape primitives presented in one data set

are already captured by the universal alphabet. Second, it will

provide a more natural way to compare flow patterns across

multiple data sets.

Our universal alphabet is also generated using affinity

propagation. Similar to the alphabet generation procedure for

a single data set, the universal alphabet is generated in two

steps. The first step still computes the first-level cluster centers

for each data set independently. Then, we simultaneously

consider all the first-level cluster centers as the candidates for

the universal alphabet, by computing the dissimilarity values

among them and applying affinity propagation for the second-

level clustering. Note that we can also generate the univer-

sal alphabet in an incremental way using leveraged affinity

propagation. Assume the data point set is P and the range

of possible dissimilarity values is S, the entire dissimilarity

matrix can be considered as a mapping M : P×P→ S. Affinity

propagation considers all data points at the same time and

computes the best exemplars (i.e., clustering centers) from

M. Unlike affinity propagation, leveraged affinity propagation

samples a subset of data points P′ ∈ P and computes the best

exemplars from the mapping M′ : P×P′ → S. In each iteration,

leveraged affinity propagation keeps the best exemplars from

the previous sample points and replaces the other data points

with new sample points. This iterative scheme could be applied

to extend our alphabet to include extra features from a new

data set by a simple modification: in each iteration, we

consider the previous universal alphabet and a subset of data

points from the new data set as the candidates for the second-

level cluster centers, i.e., characters.

The benefit of incremental clustering is mostly on the per-

formance side. However, a data set normally has hundreds of

first-level cluster centers. This implies that affinity propagation

should be able to handle tens of data sets, which is enough to

generate the universal alphabet. Therefore, we prefer affinity

propagation that considers all first-level cluster centers at the

same time, since it usually yields better clustering results.

4.5 User Interface and Interactions

To make our FlowString a useful tool to support exploratory

flow field analysis and visualization, we design a user interface

for intuitive and convenient streamline feature querying and

matching. Our interface includes four major components: the

alphabet, vocabulary, query string, and streamline widgets, as

shown in Figure 6. These components support visual query

and result retrieval.

The alphabet widget visually displays all the characters, as

shown in Figure 6 (a). Users can construct a query string from

7

(a) (b)

(c) (d)

Fig. 6. Alphabet widget (a), vocabulary widget (b), and

query string widget (c) with the solar plume data set.

Streamline widget (d) with the computer room data set. (a)

shows the alphabet visualization where the last character

is created by the user to match either G, K or L. (b) shows

the first page of the vocabulary widget. (c) shows a query

string in the forms of text and polyline. (d) shows the user-

selected query segment on the upper-left subwindow

(where two red spheres are used to delimitate the blue

segment as the query pattern), all streamlines on the

lower-left subwindow, and the query result on the right

subwindow.

this widget by clicking on the displayed characters or typing in

an input box. After clicking on each character, the query string

and the query result will be updated on the fly. Users can also

select multiple existing characters to create a new character,

which can match with either of the selected characters. For

example, they can select G, K and L to create the character

G|K|L, as shown in the bottom of (a). Clicking on this new

character, the query string widget will append (G|K|L) to the

current query string. The query string generated from clicking

on (G|K|L) five times is shown in (c). The vocabulary

widget visualizes all the words automatically detected from the

streamline suffix tree, as shown in Figure 6 (b). Users can click

on a word to retrieve the corresponding pattern in the flow

field. They can also select multiple words in sequence to search

streamline segments matching with the concatenation of those

words. In the first row of Figure 8, we show the selected words

in the vocabulary widget and their corresponding query result

in the streamline widget. The query string widget displays the

query in both textual and visual forms, as shown in Figure 6

(c). Users can freely change the textual query string and its

visual form will be updated accordingly. Several sliders are

provided to adjust the parameter for k-approximate search, and

the thresholds of frequency and length for word generation. In

Figure 6 (d), the streamline widget shows the input streamlines

at the bottom left, from which users select a streamline. Users

can then specify a segment of the streamline to query by

moving the two end points, which are shown as the red balls.

In this example, a “U”-shape segment is selected, and the

(a) (b)

(c) (d)

Fig. 7. Circular patterns queried by MMM in “universal

1” alphabet (Figure 11 (a)) at the user-specified scale

using the two swirls data set. (a) small-scale features.

(b) medium-scale features. (c) large-scale features. (d)

histogram of feature scales. The red, brown and cyan

rectangles represent the selected scale ranges corre-

sponding to (a), (b) and (c), respectively.

query result is shown on the right of this widget.

In addition, we provide a bar chart histogram visualization

for users to perceive the scales of matched segments and

specify a desired range of scales to further refine the query

result. In Figure 7, the circular pattern is queried by MMM, and

the histogram of scales is plotted in the bar chart as shown in

(d). Then, users can brush the histogram to select a range of

scales for query. In (a), (b) and (c), we show the matched

segments at small, medium and large scales, respectively.

The brushed ranges are indicated in (d) by the red, brown

and cyan rectangles, respectively. To compute the scale of a

matched segment, we follow the optimal scale computation

in the registration of two point sets [8]. Formally, considered

P = {p1, p2, . . . , pn} to be the sample points on the matched

segment, the scale of this segment is given by

s =

√

n

∑
i=1

(pi − c)2, (4)

where s is the computed scale and c = (p1 + p2 + · · ·+ pn)/n

is the center of points in P.

5 RESULTS AND DISCUSSION

5.1 Performance and Parameters

Table 1 shows the configurations of ten data sets, the timing

for the first- and second-level affinity propagation clustering,

and launching the program. For each of the data sets, we

randomly placed seeds to trace the pool of streamlines. All

the timing results were collected on a PC with an Intel Core

8

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Case study for the crayfish data set. (a) to (d) show streamline segments matched by four automatically gener-

ated words. (e) to (h) show query results of (A|I)+(D|E|F|K)(D|E|F|K), (A|I)(A|I)+(D|E|F|K)(D|E|F|K),

(A|I)???(D|E|F|K)(D|E|F|K), and (A|I)*(D|E|F|K)(D|E|F|K), respectively.

i7-960 CPU running at 3.2GHz, 24GB main memory, and an

nVidia Geforce 670 graphics card with 2GB graphics memory.

From the results shown in Table 1, it is obvious that

affinity propagation clustering dominates the timing when it is

performed on the CPU. We leveraged GPU CUDA to speed

up this procedure. For most of the data sets, we performed

the clustering by affinity propagation using the GPU. For the

solar plume and two swirls data sets, a GPU implementation

of leveraged affinity propagation was used, since the memory

needed to perform affinity propagation exceeds the limit of

graphics memory. Unlike affinity propagation which considers

all the data points (and the similarities among them) at the

same time, leveraged affinity propagation samples from the

full set of potential similarities and performs several rounds

of sparse affinity propagation, iteratively refining the samples.

Thus, the required memory space is reduced with leveraged

affinity propagation. The performance of affinity propagation

was greatly improved using the GPU. For most of the data

sets, the clustering step only took around one minute. For the

two swirls data set which contains the most number of sample

points, it still could be completed in five minutes. We believe

that the timing for clustering is acceptable, since it only needs

to run once for a pool of streamlines.

The dissimilarity matrix computation can be performed in

reasonable time using the GPU. For the two swirls data set,

it took 150 seconds to complete, and the costs for other data

sets were even less. Other than these preprocessing steps, the

other steps could be finished on the fly. It only took seconds to

setup the program for a new run, which includes the time for

resampling, computing the dissimilarities between each sample

point and each character, and constructing the suffix tree.

Parameter setting is straightforward. The approximation

threshold k, minimum number of repetition q, and minimum

length and frequency for generating the vocabulary are four

parameters that users can configure. They could be adjusted to

update the query result in real time. The insertion and deletion

(a) (b)

(c) (d)

Fig. 9. Case study for the tornado data set. (a) shows all

streamlines. (b) shows query results for a user-selected

streamline segment with different settings. (c) and (d)

show streamline segments matched by two automatically

generated words.

costs are automatically decided for each data set. To avoid

frequent insertion and deletion, they are both assigned twice

the value of maximum dissimilarity between any two sample

points in that data set. This rule applies to all the following

case studies.

5.2 Case Studies

Crayfish. Figure 8 demonstrates query results of both auto-

matically generated words and user inputs using the crayfish

data set. In the first row of Figure 8, the four words are selected

from a vocabulary of seven words, which are generated

with the minimum number of appearance and the minimum

9

(a) (b)

(c) (d)

Fig. 10. Case study for the two swirls data set. (a) shows

all streamlines. (b) shows the query result for a user-

selected streamline segment with the minimum number

of repetition q = 1. (c) and (d) show query results for a

user-selected streamline segment with q = 0 and q = 1,

respectively.

length set to 100 and 3, respectively. We can see that the

word b’b’b’ mostly corresponds to streamline segments of

“C”-shape. The word ch’h’ finds those turbulent segments

inside. The word d’d’d’ matches segments with swirling

patterns. Unlike those in Figure 4 (b), d’d’d’ is usually an

elliptical spiral instead of a circular one. Finally, the word

iii corresponds to streamline segments of “L”-shape on the

outer layer along the boundary. We find that most of words

with clear patterns are repetitions of a single character. A word

with multiple characters often indicates a streamline segment

that connects multiple patterns, which is less distinguishable

by human observers.

In the second row of Figure 8, we demonstrate an example

of using user input to search for a combined pattern that

contains a straight segment followed by a spiral pattern. As

shown in Figure 2, characters A and I represent shapes

that start with straight segments and D, E, F and K are

mostly swirling patterns. (e) shows the query result for user

input (A|I)
+
(D|E|F|K)(D|E|F|K), where + indicates

that character A|I could repeat multiple times. We then

further refine the query result by repeating character A|I,

which ensures that the straight segment is obvious enough

for human perception. As shown in (f), the refined query

matches less streamline segments, but the straight segment

can be better observed in most of the matched segments.

The query (A|I)???(D|E|F|K)(D|E|F|K) allows any

pattern represented by less than three characters to be inserted

between the straight pattern and the swirling pattern, which

makes the resulting segments in (g) contain more complex pat-

terns. Finally, if we allow any pattern with arbitrary length to

be inserted by querying (A|I)*(D|E|F|K)(D|E|F|K),

almost all the input streamlines could be matched, since most

of the streamlines contain a straight portion on the outer layer

and spirals inside the volume.

Tornado. In Figure 9 (b), the query result on the left is

matched by using the exact string a’bbba’a’bbba’a’a’b,

which corresponds to the user-selected segment. The query

result on the right is found by replacing each of the characters

with a user-defined character (A|B|E), since these three

characters are similar. The exact string matches only the

segments that are almost the same as the query segment, while

the modified query matches more segments in the core of the

tornado. Figure 9 (c) and (d) show the segments corresponding

to the words ccca and c’c’c’d, respectively. Characters a

and c are mostly circles, and character d matches the segments

with “S”-shape on the outer layer of the tornado. We can

observe that when c concatenates with a, it corresponds to

the small-scale circles. When c connects with d, it matches

the large-scale circles. This demonstrates that the scale of a

character in a streamline depends on its context, which ensures

that the shape for a string is mostly determined.

Two Swirls. Figure 10 demonstrates query results of two

user-selected streamline segments. In (b), the query seg-

ment is one that connects a small spiral pattern and a

large swirling pattern. The corresponding query string is

d’d’c’c’c’e’e’a’a’c’d’d’d’, which matches only

the query string itself. The reason is that the query string is

somewhat complicated, and even the very similar segments

might vary for one or two characters, especially in terms of the

number of repetition. We then change the minimum number

of repetition q to one, and the query string is modified to

D+C+E+A+C+D+. Note that D+ at the beginning and the

end allows the spirals to be displayed in the query result.

This query finds two more similar patterns, as shown in

(b). In (c) and (d), the query segment is one that connects

two large swirling patterns. The query using the exact string

d’c’c’a’aba’a’c’d’d’d’d’d on that segment finds

itself and another very similar one. For the same reason as the

previous example, we set q= 1. The query string is changed to

D+C+A+B+A+C+D+ accordingly. It matches more segments

with the same pattern. In (d), we manually change the query

string to DC+A+B+A+C+D, which ignores the swirling pattern

at the two ends for a clearer observation.

5.3 Universal Alphabet

Qualitative Comparison. Figure 11 demonstrates two ex-

amples of universal alphabet when matching with the solar

plume data set. Figure 11 (a) shows the universal alphabet

generated with all the ten data sets, and Figure 11 (b) shows

the universal alphabet generated from five data sets (namely,

crayfish, computer room, solar plume, supernova, and two

swirl data sets). Data sets used to generate the second universal

alphabet are selected according to their coverage of flow

patterns. The five selected data sets are more complicated

and contain various kinds of flow pattern, so that they are

more likely to generate a meaningful universal alphabet. By

comparing the shape and frequency of appearance in the solar

plume data set for each character, we can observe that the

two universal alphabets are actually quite similar. The most

10

TABLE 2

The ten flow data sets and their average and standard deviation of errors. “universal 1” and “universal 2” correspond

to the universal alphabets generated using all the ten data sets and five of the ten data sets, respectively. “single”

indicates the alphabet for each data set generated using only that data set.

five critical two solar computer

vessel points electron tornado swirls supernova crayfish plume room hurricane

universal 1 average 7.61 6.90 4.52 5.35 4.48 6.31 7.49 6.35 7.19 5.61

standard deviation 1.70 2.05 1.62 2.01 2.32 2.36 1.94 1.98 2.57 2.19

universal 2 average 7.59 8.14 5.32 6.65 3.60 6.04 7.50 5.98 7.18 5.35

standard deviation 1.97 3.28 2.28 2.64 2.53 2.31 2.56 1.98 2.71 2.45

single average 6.63 6.15 2.56 3.93 3.84 5.1 6.89 5.56 7.61 5.01

standard deviation 2.54 2.86 1.84 1.94 2.77 2.43 1.92 1.98 2.49 2.54

universal 1 vs. single avg. difference 0.97 0.75 1.96 1.42 0.64 1.25 0.60 0.79 -0.42 0.60

universal 2 vs. single avg. difference 0.96 1.99 2.76 2.71 -0.25 0.99 0.61 0.42 -0.43 0.34

(a) (b)

Fig. 11. Universal alphabets when matching with the

solar plume data set. The green bar on the left side of

each character indicates its number of appearance in the

data set. The alphabets are generated using (a) all the ten

data sets and (b) five of the ten data sets, respectively.

(a) (b) (c)

Fig. 12. The small-scale spirals matched by the character

I in the universal alphabet. The data sets used are (a)

hurricane, (b) supernova, and (c) computer room.

common character is H in the first alphabet and L in the second

one. The shapes of these two characters are almost the same.

This relationship can be found between I and P, M and E,

A and B, E and K, and D and J, where the first characters in

these pairs are from the first universal alphabet and the second

characters are from the second universal alphabet.

In Figure 12, we demonstrate the matching result for

III using the first universal alphabet with different data

sets. The character I mostly corresponds to the small-scale

spirals. Figure 12 shows that in the hurricane, supernova, and

computer room data sets, string III finds us the small-scale

spirals, which are difficult to notice and locate. However, if

the alphabet from a single data set is used, the comparison of

the same flow feature across multiple data sets needs to start

from the very first step for every data set. Moreover, users

will have to make the connection of strings or words across

data sets by themselves. Using the universal alphabet, users

can simply apply the previous query on the later data sets.

Thus, the universal alphabet makes it convenient to compare

and explore flow patterns for multiple data sets.

Quantitative Comparison. In addition to qualitative com-

parison, we also evaluate the effectiveness of different al-

phabets through quantitative comparison. Table 2 shows the

average and standard deviation of errors for each data set

using different alphabets. The error is given by the Procrustes

distance between the neighborhood of a sample point and

the corresponding character. We can observe that the errors

using the universal alphabet are usually slightly larger, which

is expected. Note that the errors using the alphabet from a

single data set is not always smaller due to the fact that affinity

propagation is not specifically designed to reduce the within-

group variance.

We apply t-tests to evaluate differences between errors

using the alphabet “universal 1” and “single”, and using the

alphabet “universal 2” and “single” for each data set. All the

p-values are smaller than 1× 10−26, indicating that for each

data set significant difference is found between the universal

alphabets and the alphabet from a single data set. This is

not surprising with the large sample size and relatively small

standard deviation. According to the central limit theorem, the

estimated variance of sample averages is very small in this

case. Thus, even small difference between the sample averages

could be significant. However, even if the errors are unlikely

to come from the same distribution, the differences between

the averages are not large. We can observe in Table 2 that

most of the differences are smaller than one, and the largest

difference is 2.76 (between “universal 2” and “single” for the

electron data set). These value are relatively small compared

to the maximum distance between the neighborhoods of any

two sample points, which is usually larger than 30 (Table

1). In addition, for the more complicated data sets, e.g., the

crayfish, solar plume, computer room, and two swirls data

sets, we find that although the errors are usually larger, the

differences between errors from universal and single alphabets

are actually smaller. For example, the computer room data

set has the largest average error with the alphabet from a

single data set, but the average errors even decrease with the

universal alphabets. In contrast, the data sets that have simple

11

(a) (b) (c)

(d) (f) (e)

(g) (h) (i)

Fig. 13. The words of electron data set using the alpha-

bets generated from itself (first row), from all the ten data

sets (second row), and from five of the ten data sets (third

row), respectively.

flow patterns, e.g., the electron and tornado data sets, suffer

from larger error differences. This is probably due to the fact

that the streamlines in these data sets are similar and better

captured by a small alphabet generated from a single data set.

Thus, they are more likely to be affected when we consider

other data sets with different features.

Discriminative Power. Our results show that although the

universal alphabet usually produces comparable results for

those complicated data sets, the discriminative power of the

universal alphabet to simple data sets often reduces. In the

first row of Figure 13, we can observe that the alphabet

generated from only the electron data set produces a high-

quality vocabulary. The word aaa finds the mostly straight

streamlines; bbb matches the dissymmetric curvy streamlines;

ccc corresponds to the symmetric curvy streamlines with

different winding angles. In the second and third rows of

Figure 13, six words are shown based on the universal alphabet

generated from all the ten data sets and five of the ten

data sets, respectively. Although the words still distinguish

streamlines with different winding angles to some degree, the

discriminative power apparently decreases compared to the

alphabet generated from a single data set. This is due to the

fact that the streamlines in the electron data set contain only

simple patterns. If the electron data set is the only one to

generate the alphabet, these patterns could be well captured.

However, when other data sets are considered, these clusters

have to compromise with other data sets. As a result, the

discriminative power for this data set is traded to enhance

the overall effectiveness. As we can observe in Figure 13, the

features shown in (a) and (b) are merged in (d), when all

the data sets are considered. On the other hand, since more

complicated data sets already contain various kinds of flow

(a) (b)

Fig. 14. Patterns matched by GGG (a) and OOO (b) in “uni-

versal 1” alphabet using both the original and smoothed

streamlines of the crayfish data set. The yellow segments

are matched on the original streamlines. The blue seg-

ments are only matched on the smoothed streamlines.

pattern, including other data sets might not introduce new

patterns or increase the in-group variance. Therefore, applying

our approach on these kinds of data set seems to produce more

stable results.

5.4 Smoothed Streamlines

In Figure 14, we query the crayfish data set using “universal

1” alphabet with both the original and smoothed streamlines.

To demonstrate the effectiveness, the segments that are only

matched on the smoothed streamlines are highlighted in blue.

In (a), the queried pattern corresponds to GGG, which is

a hook shape with a small circle-like pattern at one end.

We can observe that the yellow segments matched on the

original streamlines have exactly the queried shape, but the

blue segments are more likely to contain some turbulent

portion of the hook. In (b), a “U”-shape pattern is queried.

The segments matched on the smoothed streamlines seem to

contain even more diversified shapes. But overall, they are

either in the “U”-shape or elongated ellipse shape, which can

be considered as the concatenation of two “U”-shape patterns.

Actually, this query result depends on the degree that we

smooth the streamlines, because this degree determines which

features will be smoothed out. If the degree is large, more

features will be removed, and the query result will be more

diversified when mapped back to the original streamlines.

5.5 Library Release

To reduce the effort for other researchers who would be

interested in applying or extending our FlowString approach,

we encapsulate our C++ implementation into a library, which

is available for download at

http://www.nd.edu/˜cwang11/flowstring.html.

This library defines a new class called “FlowString” together

with various methods. These methods can be applied to encode

a pool of streamlines using a universal alphabet and perform

queries on the encoded streamlines. All the features of query

described in Section 4 are included in this release. The uni-

versal alphabet generated from the ten data sets listed in Table

1 is currently available on the same webpage. Further change

to this universal alphabet is possible in order to include new

flow features. Our ultimate goal is to produce a benchmark

field line shape database extracted from various kinds of flow

12

field data sets, i.e., a more complete universal alphabet that

could be applied to as many data sets as possible.

5.6 Limitations

Performance. In Table 1, we can see that the affinity propa-

gation clustering dominates the running time, especially using

CPU. Utilizing the computation power of GPU, this can be

greatly reduced. For any data set listed in Table 1, it takes up

to several minutes for the dissimilarity matrix computation

and GPU clustering. Users can freely apply any centroid-

based clustering on our dissimilarity matrix to achieve better

efficiency, thus further improving the performance. On the

other hand, with an existing alphabet or using the universal

alphabet, our approach is very efficient as the setup time only

takes a few seconds.

Meaning of Character. Our approach is based on the

similarity measure on the local neighborhood, which does

not always conforms to human perception. Characters may

be considered to be similar by human if they share certain

characteristics. However, the Procrustes distance between the

corresponding point sets can still be large. In our current

approach, this is solved by allowing users to define a new

character for multiple characters with common features. In

the future, we may also consider the distance in some feature

space, so that the meaning of a character can be better

expressed. For example, we may generate a character for all

spiral patterns.

Straight Segments. None of the two universal alphabets

contains a character representing straight segments, as our

resampling strategy will not generate enough sample points

on a straight segment. This means that a straight segment is

not treated as a standalone feature in our approach. It can

only form a character together with the other patterns. For

example, a hook shape is a straight segment concatenated

with a portion of a circle, as shown by characters A, B and

E in “universal 1” alphabet. The term “straight segment” is

not well-defined, because it normally depends on the scale

of a segment. Specifically, a segment which is considered

to be straight usually should be long enough comparing to

the pattern that connects to it. Therefore, we believe that

combining the straight segment with the other patterns to form

characters is reasonable, as this describes the relative size of

the straight portion in the character. If there is a specific need

to discover the standalone straight segments, a query could be

perform to return all segments where the distances between

two consecutive sample points are larger than a user-specified

value.

6 EMPIRICAL EXPERT EVALUATION

To evaluate the effectiveness and learning difficulty of the

FlowString, we collaborate with a domain expert in turbulent

flow (Dr. Raymond Shaw), whose research focuses on under-

standing the influence of turbulence on cloud particle growth

through condensation and collision. Although three tasks were

designed, this study aimed at providing comprehensive rea-

soning on the effectiveness instead of quantitative results. Dr.

Shaw was informed that the comments on reasons behind his

rating and selection were more important than the accuracy of

tasks. The three tasks are:
• Task 1: In the solar plume data set, find the streamline

segments of the small spiral pattern and those of the

turbulent flow pattern.

• Task 2: In the crayfish data set, find the streamline seg-

ments corresponding to the pattern of a hook connecting

with a spiral, and those corresponding to the pattern of

small repeated spirals.

• Task 3: In the two swirls data set, find all the common

flow patterns.
For the first two tasks, images of the specific flow patterns

to find are provided along with text description. For each

task, similar questions are asked. These questions can be

summarized in three categories:
• Rate the effectiveness in the five-point Likert scale of

the vocabulary, approximate search, multiple characters

with common features, single character repetition, and

wildcard characters.

• Select the most helpful functions to accomplish the tasks.

• Provide detailed comments on the rating and selection.
Comments. After learning the features and interface of

the program and practicing on various data sets, Dr. Shaw

performed the tasks and provided the following feedback. In

general, the FlowString is novel and effective. It provides

multiple searching features to identify and locate flow fea-

tures. The characters successfully capture the basic pattern of

flow features. The overlapping of six sample points for two

neighboring characters enforces their unique shapes, which is

powerful for identifying specific features of interest. In many

cases, the repeated use of a single character is very useful

for narrowing down the matched results to a specific pattern.

In addition, users can define a feature that combines multiple

characters which appear similarly. This greatly enhances the

ability to locate specific types of flow features. The ability to

work with the alphabet, including wildcard characters, allows

for great flexibility. Even early in the evaluation the question

mark was found to be especially useful in matching a set of

characters in a more flexible or general way. For example,

if a set of characters was combined so as to search for a

specific flow structure of interest, but had become too narrowly

defined, inclusion of one or more question marks efficiently

allowed the query to become more general. As experience was

gained with the range of alphabet capabilities, aspects such as

the “prefer user alphabet” proved to be powerful in identifying

specific types of features. In particular, the ability to impose

directionality on the ordering of the characters is very useful

in finding specific geometries of interest.

Visual aspects of the FlowString tool were found to be very

effective. Specifically, the interface visualizes characters and

words effectively. In this regard, the ability to rotate individual

characters in 3D is very important, e.g., for observing the

torsion of a spiral. Certain characters, when viewed as 2D

projections, initially look like minor variations on a theme, but

when viewed in 3D their differences become much clearer. The

user interface tools for rotating and viewing shapes are easy to

learn. The streamline widget was another graphical interaction

tool that proved to be very simple to use and efficient in its

13

ability to allow interaction between the streamlines themselves

and the alphabet. In fact it was found that this widget was very

useful in “teaching” users how to use the alphabet, e.g., the

important aspects like repeated characters.

The vocabulary was found to be one of the most powerful

tools, especially for a new user. In effect, the vocabulary has

already identified dominant flow structures, even when these

features were complex, varying widely in shape and across

scales. For example, a search was initiated for what physically

could be described as an entrainment event in the crayfish

pattern, specifically a long, straight steamline near the outside

of the flow, that ends in a tight swirl as it enters the more

complex central flow region (e.g., see outer flow features

in Figure 8 (h)). Such entrainment events would be typical

of a flow pattern of interest in exploring a physical system.

Initially the pattern was searched for by using the streamline

widget to select a specific example, and then the resulting

word was generalized by including wildcard characters, etc.

Subsequently, when moving to the vocabulary approach, it was

found that a variety of complex but similar streamline patterns

were quickly identified, including the same pattern that was

originally selected using the streamline widget. Ultimately, the

vocabulary proved not only more efficient, but more effective

in generalizing the query.

Dr. Shaw further commented that the scale independence of

the method is powerful, once fully appreciated. This would be

similar to the concept of a wavelet display, in which correlation

is shown as a function of position and scale. In terms of

learning difficulty, FlowString has sufficient basic features that

a user can achieve an impressive range of tasks even after

minimal training. FlowString has a range of powerful but

more subtle capabilities and benefiting from the full range of

these features requires practice and development of experience.

Furthermore, it is important to discuss specific features of

this tool with an expert for full understanding. The biggest

challenge for a scientific user, in his opinion, is the mental

picture originally brought to the problem of scale dependence

of the flow features and its relationship to streamline sam-

pling resolution. It is crucial to understand that the character

matching involves a resampling of seven points, i.e., that the

identification of features through cumulative curvature results

in the ability to identify similar shapes or features across a

wide range of scales. With around an hour of experimenting

with FlowString alphabet and vocabulary options the ability

to find specific types of features increases rapidly.

Rating and Multiple Selection Questions. Each of the

five query features, i.e., the vocabulary, approximate search,

multiple characters with common features, single character

repetition, and wildcard characters, was rated for each of the

tasks. The rating scores of the effectiveness of these features

echo these comments. Two features were not rated because

they were not used in the tasks. For the thirteen scores in the

five-point Likert scale we received, ten of them were rated

four points, two were rated five points, and one was rated

three points. In the first task, Dr. Shaw felt that every query

feature is useful in some aspect, and rated each of them four

points. Among these query features, he selected approximate

search and single character repetition as the most helpful ones.

This might due to the fact that these two features require less

experience to use, since the approximate search can reduce

the difficulty in composing the exact query string, which is

convenient for beginners and the concept of single character

repetition is straightforward. In the second task, he rated

the approximate search five points and the single character

repetition three points. In addition, he selected the alphabet

widget to be the most helpful one to compose the query string,

and multiple characters with common features and wildcard

characters to be the most effective ones to refine the query

results. This selection is consistent with the characteristics

of the crayfish data set, where each streamline might cross

multiple flow features, with less single character repetition.

In this case, the multiple characters with common features

can group similar flow features, and the wildcard characters

can deal with the somewhat turbulent segments connecting the

query patterns. This indicates that with only tens of minutes

of experience with the tool, users will be able to determine the

most effective features to use, even if the use of those features

is not trivial. In the third task, Dr. Shaw rated the vocabulary

widget to be very useful to find all flow patterns with five

points. He did not use the approximate search and wildcard

characters in this task, since he was confident to choose which

features to use. He selected the vocabulary widget, streamline

widget, and multiple characters with common features to be

the most helpful features. The streamline widget was used to

determine the encoding of a segment when composing the

query string. Overall, from these observations, we feel that

although users might experience some difficulties in using the

tool at the very beginning, they should be able to understand

the use of different features and determine the appropriate

features according to the given task within one or two hours.

7 CONCLUDING REMARKS

We have presented FlowString, a novel vocabulary approach

for partial streamline matching for exploratory flow visu-

alization. The unique features of our FlowString are the

following: First, our approach supports robust partial matching

of streamlines by capturing their intrinsic similarity that is

invariant under translation, rotation and scaling. Second, we

extract basic shape characters from streamlines to construct

an alphabet, from which we detect meaningful shape words

to compose a vocabulary to enable both character-level and

word-level feature querying and pattern retrieval. Third, we

leverage the suffix tree data structure to efficiently speed up

both exact and approximate searches, achieving an optimal

search efficiency when retrieving multiple occurrences of a

single pattern from the streamline pool. Fourth, our method

integrates a user-friendly interface for intuitive exploration,

allowing users to define their own shape characters and words

for customized search. Fifth, our work naturally extends to

handle multiple data sets to enable flow feature exploration

and comparison across different data sets. To the best of our

knowledge, our work is the first one that investigates shape-

based streamline similarity measure leveraging the metaphors

of characters/alphabet and words/vocabulary. By demonstrat-

ing results from different flow field data sets, we show

14

that FlowString represents a new way to flexible streamline

matching and expressive flow field exploration.

ACKNOWLEDGMENTS

This research was supported in part by the U.S. National Sci-

ence Foundation through grants IIS-1017935, DUE-1140512,

IIS-1456763, and IIS-1455886.

REFERENCES

[1] A. Brun, H. Knutsson, H.-J. Park, M. E. Shenton, and C.-F. Westin.
Clustering fiber traces using normalized cuts. In Proceedings of

International Conference on Medical Image Computing and Computer

Assisted Intervention, pages 368–375, 2004.

[2] W. Chen, S. Zhang, S. Correia, and D. S. Ebert. Abstractive represen-
tation and exploration of hierarchically clustered diffusion tensor fiber
tracts. Computer Graphics Forum, 27(3):1071–1078, 2008.

[3] Y. Chen, J. D. Cohen, and J. H. Krolik. Similarity-guided streamline
placement with error evaluation. IEEE Transactions on Visualization

and Computer Graphics, 13(6):1448–1455, 2007.

[4] I. Corouge, S. Gouttard, and G. Gerig. Towards a shape model of white
matter fiber bundles using diffusion tensor MRI. In Proceedings of

International Symposium on Biomedical Imaging, pages 344–347, 2004.

[5] Z. Ding, J. C. Gore, and A. W. Anderson. Classification and quantifica-
tion of neuronal fiber pathways using diffusion tensor MRI. Magnetic

Resonance in Medicine, 49(4):716–721, 2003.

[6] B. J. Frey and D. Dueck. Clustering by passing messages between data
points. Science, 315:972–976, 2007.

[7] B. Heckel, G. H. Weber, B. Hamann, and K. I. Joy. Construction
of vector field hierarchies. In Proceedings of IEEE Visualization

Conference, pages 19–25, 1999.

[8] B. K. Horn. Closed-form solution of absolute orientation using unit
quaternions. Journal of the Optical Society of America A, 4(4):629–
642, 1987.

[9] R. Jianu, Ç. Demiralp, and D. H. Laidlaw. Exploring 3D DTI fiber tracts
with linked 2D representations. IEEE Transactions on Visualization and

Computer Graphics, 15(6):1449–1456, 2009.

[10] K. Lu, A. Chaudhuri, T.-Y. Lee, H.-W. Shen, and P. C. Wong. Exploring
vector fields with distribution-based streamline analysis. In Proceedings

of IEEE Pacific Visualization Symposium, pages 257–264, 2013.

[11] S. Marchesin, C.-K. Chen, C. Ho, and K.-L. Ma. View-dependent
streamlines for 3D vector fields. IEEE Transactions on Visualization

and Computer Graphics, 16(6):1578–1586, 2010.

[12] T. McLoughlin, M. W. Jones, R. S. Laramee, R. Malki, I. Masters, and
C. D. Hansen. Similarity measures for enhancing interactive streamline
seeding. IEEE Transactions on Visualization and Computer Graphics,
19(8):1342–1353, 2013.

[13] B. Moberts, A. Vilanova, and J. J. van Wijk. Evaluation of fiber
clustering methods for diffusion tensor imaging. In Proceedings of IEEE

Visualization Conference, pages 65–72, 2005.

[14] C. Rössl and H. Theisel. Streamline embedding for 3D vector field ex-
ploration. IEEE Transactions on Visualization and Computer Graphics,
18(3):407–420, 2012.

[15] M. Schlemmer, M. Heringer, F. Morr, I. Hotz, M.-H. Bertram, C. Garth,
W. Kollmann, B. Hamann, and H. Hagen. Moment invariants for the
analysis of 2D flow fields. IEEE Transactions on Visualization and

Computer Graphics, 13(6):1743–1750, 2007.

[16] K. Shi, H. Theisel, H.-C. Hege, and H.-P. Seidel. Path line attributes - an
information visualization approach to analyzing the dynamic behavior
of 3D time-dependent flow fields. In Topology-Based Methods in

Visualization II, pages 75–88. 2009.

[17] J. Tao, J. Ma, C. Wang, and C.-K. Shene. A unified approach to
streamline selection and viewpoint selection for 3D flow visualization.
IEEE Transactions on Visualization and Computer Graphics, 19(3):393–
406, 2013.

[18] J. Tao, C. Wang, and C.-K. Shene. FlowString: Partial streamline
matching using shape invariant similarity measure for exploratory flow
visualization. In Proceedings of IEEE Pacific Visualization Symposium,
pages 9–16, 2014.

[19] A. Telea and J. J. van Wijk. Simplified representation of vector fields.
In Proceedings of IEEE Visualization Conference, pages 35–42, 1999.

[20] E. Ukkonen. On-line construction of suffix trees. Algorithmica,
14(3):249–260, 1995.

[21] Z. Wang, J. M. Esturo, H.-P. Seidel, and T. Weinkauf. Pattern search
in flows based on similarity of stream line segments. In Proceedings

of International Workshop on Vision, Modeling and Visualization, pages
23–30, 2014.

[22] J. Wei, C. Wang, H. Yu, and K.-L. Ma. A sketch-based interface for
classifying and visualizing vector fields. In Proceedings of IEEE Pacific

Visualization Symposium, pages 129–136, 2010.
[23] L. Xu, T.-Y. Lee, and H.-W. Shen. An information-theoretic framework

for flow visualization. IEEE Transactions on Visualization and Computer

Graphics, 16(6):1216–1224, 2010.
[24] S. Zhang, Ç. Demiralp, and D. H. Laidlaw. Visualizing diffusion tensor

MR images using streamtubes and streamsurfaces. IEEE Transactions

on Visualization and Computer Graphics, 9(4):454–462, 2003.

Jun Tao is a PhD student of computer science at
Michigan Technological University. His research
interests include flow visualization, image resiz-
ing, and mesh editing. He received a BS de-
gree in software engineering from Sun Yat-sen
University, China, in 2008, and a MS degree in
computer science from Michigan Technological
University in 2010. He is a student member of
the IEEE.

Chaoli Wang is an associate professor of com-
puter science and engineering at University of
Notre Dame. He received a PhD degree in com-
puter and information science from The Ohio
State University in 2006. Prior to joining Notre
Dame, he was a postdoctoral researcher at
University of California, Davis (2007-2009) and
an assistant professor of computer science at
Michigan Technological University (2009-2014).
His main research interest is scientific visualiza-
tion, in particular on the topics of time-varying

multivariate data visualization, flow visualization, and information-
theoretic algorithms and graph-based techniques for big data analytics.
He is a recipient of the NSF CAREER Award, and has served on the
program committees of the IEEE SciVis, EuroVis, and IEEE PacificVis.
He is a senior member of the IEEE.

Ching-Kuang Shene is a professor of computer
science at Michigan Technological University.
His research interests include geometric mod-
eling, mesh processing, software visualization,
and computer science education. Shene has
a PhD degree in computer science from The
Johns Hopkins University in 1992, and is a mem-
ber of ACM, AMS, Eurographics, IEEE/CS, MAA
and SIAM.

Raymond A. Shaw is a professor of physics at
Michigan Technological University. His research
involves the physics of the earth’s atmosphere,
with an emphasis on clouds and experimental
tools for studying clouds. Shaw has a PhD from
Pennsylvania State University in 1998, was a
postdoctoral fellow in the Advanced Study Pro-
gram at the National Center for Atmospheric Re-
search, and has been a Humboldt Fellow at the
Institute for Tropospheric Research in Leipzig,
Germany.

