
A Vocal Data Management System∗†

JEFFREY BARNETT

Abstract—This paper describes an implementation strategy for a
vocal data management system (VDMS) being developed by the voice
input/output project at the System Development Corporation. VDMS
will accept connected speech of a language describable by 25–50 phrase
equations and having a vocabulary of approximately 1000 words formed
from about 100 data records.

The strategy is based on the concept of predictive linguistic con-

straints (PLC). The present concepts of fixed directionality in parsing

are replaced by a more generalized approach. To facilitate this flexi-

bility, the system comprises a set of near-independent coroutines that

are interconnected by a software busing structure. The VDMS acoustic

processors verify the predictions. Very loose matching criteria are used

for locating the predicted words. Special attention is given to word

segments that are experimentally determined to be most invariant.

The Approach: Predictive Linguistic Constraints in

Higher Level Processing

The ultimate goal of a speech-understanding system is the acceptance of and
correct action upon a large subset of naturally spoken English, whether or
not input utterances can be completely interpreted or translated to written
text.

In view of the success in computer processing of natural and formal lan-
guages, [4], [5] one may wonder at the difficulties experienced in attempts

∗Manuscript received April 30, 1972. This work was supported by the Advanced Re-
search Projects Agency of the Department of Defense under contract DAHC15–67–C–
0149. The author is with the System Development Corporation (SDC), Santa Monica,
Calif. 90406.

†This article originally appeared in the IEEE Transactions on Audio and Electroacous-
tics AU–21 (3), 1973, 185–188.

1



to process speech utterances [1], [6]. A review of the literature indicates
that: 1) the information provided by acoustic phonetics is neither complete
enough nor invariant enough to ensure successful computer processing of
speech; 2) almost all efforts at speech processing have been concentrated on
low-level phenomena, such as the recognition of phones and isolated words
(in this paper, low level and bottom end are equivalent and refer to direct
processing of acoustic data); and 3) with two exceptions [2], [3], almost no
consideration has been given to the higher level linguistic phenomena of con-
nected speech.

The obvious approach to constructing systems that recognize continuous
speech is to employ the linguistic constraints offered by syntactic and seman-
tic rules describing the domain of discourse as aids in recognizing and un-
derstanding utterances. However, the method of applying these constraints
is not clear. All current natural language processors employ fixed, direc-
tional strategies made up of some combination of left-to-right, right-to-left,
top-to-bottom, or bottom-to-top techniques, and none handles ungrammat-
ical inputs in any general way. (One system [5] does handle a subset of
ungrammatical inputs.)

To use similar strategies for speech understanding seems unwise. Acous-
tic data would have to be used in near isolation to generate candidate units,
which would then be passed upward for inspection. This would make it
essential that the low-level acoustic processing be very accurate. However,
achieving such accuracy would require significant breakthroughs, and no se-
rious investigator is presently claiming any for the near future. We assume
that progress must be sought through higher level nondirectional strategies.

A nondirectional scanning approach will allow parsing algorithms to pro-
cess an input utterance as a whole. The benefits are the ability to initiate
processing at any point in the utterance at which there is a high probability
of correct match or, upon recognition of any linguistic unit,1 the ability to
use that information to limit the possibilities or fill in gaps at other points
in either side of the utterance. A corollary to the use of nondirectional scan-
ning is the need to review descriptive meta-languages as active hypothesis
generators and predictors instead of passive constraint checkers and labelers.
Since syntax matching must occur upon partial satisfaction of the criteria,

1“Linguistic unit” refers to words such as “automobile” or “General Motors” found in
a lexicon and to meta-words describing phrases such as “relational expression” or “where
clause”; it does not refer to phonetic labels.

2



the rule set must not only validate the relationships between units already
found but must become active and predict, on the basis of information al-
ready obtained, the subsets of units that would satisfy the remainder of the
constraints.

Predictive linguistic constraints (PLC) is our name for descriptive meta-
languages and systems with the above features and capabilities, and for the
concept we are applying to the construction of VDMS. The use of PLC tech-
niques by the higher levels greatly relaxes the low-level criteria for matching
or accepting the existence of a lexical item because the task is limited to
verifying that a predicted candidate is in the input stream.

The following sections describe the architecture of a PLC-VDMS sys-
tem that employs active rules, the PLC concept, and a hypothesis-verifying
bottom end.

System Architecture

The system will consist of four types of entities: modules, buses, global stores,
and an executive. The modules are coroutines with some special restrictions:
they may not directly call one another; they have no arguments and return
no values; and all references to external data are through functions provided
by the executive. The busses are prioritized queues; only the highest priority
item is seen on each bus. Global stores are common data regions of two types:
static and semistatic. An example of a static store is a lexicon; the semistatic
stores are communication regions used to give data long-term visibility not
achievable by the bussing arrangement. The executive performs several tasks.
All modules are executed, and the busses are then updated by discarding the
highest priority items and bringing the next highest to the top of the queues.
This procedure continues until either the input is “understood” or no module
indicates a desire to continue the processing. The commonly available data
are, in effect, hidden from the modules and may be accessed or modified only
through the executive—an arrangement that will allow the synchronization
problems of parallel computing coroutines to be finessed. (A Raytheon 704
mini-computer will handle the low-level acoustic recording and processing,
while the top end of the system will operate under ADEPT on an IBM
370/145.)

The use of busses for communication should remove major dependency
on order of execution among the modules. The only order-of-execution de-
pendencies that may occur are those caused by order of updates to the global

3



stores; if they hamper the long-term operation of the system, then the order
of execution of the modules will have to be dealt with.

Fig. 1 is a gross representation of the system and some of the data flow
paths among the modules (rectangles) and global stores (circles).

User-State Model

The user-state model establishes interutterance syntax limitations. A user
may be thought of as being in a particular state or as trying to accomplish a
particular task. For example, when he first approaches the computer (initial
state), his only option is to log into the system. After logging in, he may
query a data base or describe a report for off-line generation. The assumption

4



is that, after he enters either the interactive-query or report-generation state,
he will remain in that state for several iterations. When he is finished with his
activities, he signs off. A state of confusion may occur when he requests meta-
information about the system. In each of these states, he uses a particular
syntax; the system, by keeping track of what state he is in, can reduce to
a minimum the number of syntactic possibilities for successive utterances.
Thus, if the user is querying the data base, syntax for imperative report
description would not be used except in a default or “nothing-else-works”
situation.

Thematic Memory

The thematic memory is the content-word equivalent of the user-state syntax
model. It is assumed that the user will exhibit goal-directed behavior toward
finding specific information relating to a universe that is small compared to
the whole data base. Content words (item names and values) contained in
the last questions and answers are retained by the thematic memory and pro-
posed as highly likely to occur in the next utterance. For example, consider
the following query:

PRINT MANUFACTURER WHERE PRODUCT EQUALS AUTOMOBILE (1)

and the answer is

GENERAL MOTORS, AMERICAN MOTORS, etc. (2)

The thematic memory would retain the words “manufacturer,” “product,”
“automobile,” “General Motors,” “American Motors,” etc. Each retained
word is weighted by: 1) the number of times it has been used in the last
several interactions; and 2) its use as (ranked from high to low): a) an item
value in the answer; b) an unqualified item name in the question; c) a qualified
item name in the question; or d) an item value in the question. Thus, the
query

PRINT PRODUCT WHERE MANUFACTURER EQUALS AMERICAN MOTORS (3)

is well predicted by the thematic memory assembled from (1) and (2).

5



Classifier

The classifier module is the output interface between the acoustic recognizers
and the syntax modules. It simply identifies the recognized words as syntax
terminals, item names, and/or item values.

Syntax Modules

Three modules handle intrautterance syntactic relationships: a bottom dri-
ver, a side driver, and a top driver.

In addition to syntactic relationships, the bottom driver also handles
most of the intrautterance, nonsyntactic constraints. Recognized meta-words
(phrases) are used to index the rule set for all phrase equations containing an
item as a top-level occurrence. Previously recognized meta-words (phrases)
are used to index the rule set for all phrase equations. The intrautterance
rules that pertain to those items so far recognized are applied to determine
whether the trial candidate is legitimate. The phrase, completed as best as
possible, is bussed to the side driver.

The side driver examines the phrase to determine whether it is complete.
If it is, the phrase label is used to bottom-drive the system up one level; if it
is not, equations are formed that would allow successful filling of the holes,
and the system is top-driven to search for such a match. If a completed
phrase is a top-level equation, it is assumed to be the input utterance and is
bussed to the various modules as shown in Fig. 1.

The syntax top driver strips key words (such as PRINT and TALLY) from
the top-level equations to a shallow depth—say, two rules deep—to catch key
words like WHERE. (The best depth will be determined experimentally.) The
key words are proposed to the CWIPER modules for matching. It should
be noted that content-word possibilities may be so restricted by the bottom
and side drivers that they may be handled as alternative key words.

Some examples of restrictions arising from the bottom driver may help
to clarify these procedures. For instance, if the word MANUFACTURER is found,
a reduced phrase equation may be

MANUFACTURER

{

EQUALS

IS-NOT-EQUAL

}

manufacture name (4)

Where manufacturer name is GENERAL MOTORS, CHRYSLER, etc. The original

6



equation was

item name relation item value.

As another example, if the word CHRYSLER is found, then a reduced phrase
equation is

MANUFACTURER

{

EQUALS

IS-NOT-EQUAL

}

CHRYSLER (5)

Of course, for each of these examples, other equations would also be pro-
posed; but the reduction in the number of possibilities for a data base of the
size described is a factor of between 500 and 50,000. The predictive pow-
ers of the system are enormous and, fortunately, easy to formulate. In the
above, recognition of partial phrases quickly reduced the remaining items to
syntactic terminals or a relatively restricted set of content words. The side
driver would strip them and propose them to the top driver.

Low-Level Processing

Low-level processing in VDMS is accomplished by three modules: the acous-
tic processor, constrained word in phrase extraction routine (CWIPER), and
CWIPER’. The acoustic processor, a combination of hardware and software
that segments the speech signal in the time domain, is based on the Stanford
Speech Recognition System [2] originally developed by Vicens and Reddy;
the segmentation is tentative and is done to facilitate quick operation by
CWIPER and CWIPER’.

CWIPER and CWIPER’ perform hypothesis-verification tasks. CWIPER
looks for a plausible lexical item in a time-constrained portion of the acous-
tical data. CWIPER’ performs a similar task, except that a mutually exclu-
sive list of plausible lexical items is presented along with the time constraints
[an example would be locating either “EQUALS” or “IS-NOT-EQUAL”—but not
both—for (4) and (5)]. The time constraint may be virtually nonexistent,
as in the case of propositions from the thematic memory, which merely pre-
dicts the occurrence of a highly plausible word somewhere in the utterance,
or it may be quite tight, as in the case of filling a gap between tentatively
identified left and right constituents.

So that the CWIPER modules can take advantage of the looser matching
criteria, a new technique for word recognition is being developed and tested.

7



Each lexical item (word) is recorded in several contexts of continuously spo-
ken utterances. In each utterance, the item is isolated by the experimenter in
an interactive mode by ear. Each copy of the item is then segmented by the
acoustic processor and grossly labeled; the labeling resembles the recognition
process described by Vicens. The least variable labeled segments are then
determined and noted. This process is repeated for the entire vocabulary.
From this data, a confusion matrix is built for the labeled segments showing
little variation across contexts. It is assumed that such “invariants” will most
often be stressed vowels or other interior segments high in energy and long
in duration [7]. Finally, the item is stored in a lexicon along with its labeled
patterns and data on the variance of individual segments.

Given such a lexicon, the plausibility-recognition procedure performed
by CWIPER is fairly straightforward. The stored pattern for a proposed
word is retrieved, and the least variable segment is used for a fast scan of
the segmented acoustic input data. The confusion matrix is used to locate
candidate segments. When a candidate is found, the rest of the word is
matched in a middle-outward manner, and a goodness-of-match criterion is
computed. The less variable the segment, the more emphasis it receives in
the computation. Computations that produce a goodness criterion exceed-
ing a threshold qualify the candidate as found. To facilitate this matching
procedure, CWIPER may readjust the trial time-segmentation performed by
the acoustic processor. This procedure grossly resembles Vicens’s mapping.

Segmentation

Our acoustic-segmentation philosophy for the initial version of PLC-VDMS
tends to place segment boundaries at points of transition. This is contrasted
to the “transeme” approach [3], in which the boundaries are generally placed
at steady-state points. (Although the transeme approach has produced some
of the best results to date for continuous recognition, it is rejected for the
present because of the unusual, nondirectional requirements of PLC and
CWIPER and because of the complexity of an already formidable imple-
mentation task.) Because CWIPER is searching on least variable segments,
it is necessary that steady-state phenomena be easily located.

In later versions of the system, both types of segmentation will be per-
formed. Proposed words will be given not only with time constraints but
with direct left and/or right neighbors when tentatively known. This will
allow extended use of recognition and transition rules for adjacent items.

8



We realize that some such boundary-condition analyzer must eventually be
included if the system is to obtain reasonable results. Hopefully, this ap-
proach will allow much of the present knowledge of acoustic processing to be
included in a meaningful way to improve overall performance.

Conclusion

Speech-understanding systems modeled on directional natural-language pro-
cessors do offer significant hopes of success. By replacing directional pars-
ing strategies by nondirectional strategies, and by making descriptive meta-
languages function as active predictors of hypotheses verified by low-level
acoustic processors, we believe that a system that will understand continu-
ous speech within a limited contextual domain is feasible in the next two to
three years.

References

[1] A. Newell et al., “Speech-understanding systems: Final report of a study
group,” Carnegie-Mellon Univ., Pittsburgh, Pa., Final Rep., May 1971.

[2] P. Vicens, “Aspects of speech recognition by computer,” Stanford Univ.,
Stanford, Calif., AI Memo 85 (C5127), 1969.

[3] “The use of dynamic segments in the automatic recognition of continuous
speech,” IBM Corp., Rep. RADC-TR-70-22, May 1970.

[4] C. Kellogg et al., “CONVERSE: Current status and plans,” presented
at the Ass. Comput. Mach. Symp. Inform. Retrieval, Univ. Maryland,
College Park, Apr. 1971.

[5] T. Winograd, “Procedures as a representation for data in a computer
program for understanding natural language,” Ph.D dissertation, Project
MAC TR-84, Feb. 1971.

[6] S. P. Hyde, “Automatic Speech Recognition Literature Survey and Dis-
cussion,” Post Office Res. Dep., Dallis Hill, London NW2, England, GOP
Telecommunications Headquarters Res. Rep. 65, Sept. 1968.

9



[7] D. H. Klatt and K. N. Stevens, “Strategies for recognition of spoken
sentences from visual examinations of spectrograms,” Bolt Beranek and
Newman, Inc., Cambridge, Mass., BBN Rep. 2154, June 1971.

10


