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ABSTRACT

The Volume of Fluid (VOF) method is a simple and robust technique for simulating

free surface flows with large deformations and intersecting free surfaces. Earlier

implementations used Laplace's equation for the normal stress boundary condition at the

interface between the liquid and vapor phases. We have expanded the interfacial

boundary conditions to include the viscous component of the normal stress in the liquid

phase and, in a limited manner, to allow the pressure in the vapor phase to vary. Included

are sample computations that show the accuracy of added third order accurate

differencing schemes for the convective terms in the Navier-Stokes equations (NSE), the

viscous terms in the normal stress at the interface, and the solution of potential flow in the

vapor phase coupled with the solution of the NSE in the liquid phase. With these

modifications we show that the VOF method can accurately predict the instability of a

thin viscous sheet flowing through a stagnant vapor phase.
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I. INTRODUCTION

Current techniques for computational analysis of free surface flows include primarily

Lagrangian and Eulerian approaches. In this article we discuss the advantages and

disadvantages of both viewpoints. Furthermore, we present an Eulerian approach with

advantages in a broad class of free surface flow problems with large surface

deformations. Finally, we present results of several test problems which show the

possible accuracy with these refinements.

In the Lagrangian approach, the computational mesh is allowed to deform with the

surface. This has the distinct advantage of allowing an edge of the computational domain

to coincide with the location of the interface, improving the accuracy and simplifying the

numerical implementation of the interfacial boundary conditions. Unfortunately,

Lagrangian techniques have the disadvantage that, for flows with large surface

deformation, the mesh can become distorted or entangled, leading to loss of numerical

accuracy and stability [1]. Hirt et al. [2] present an example of a purely Lagrangian

approach where the vertices of the computational grid move freely with the local fluid

velocity.

In an effort to overcome the grid distortion problem, free Lagrangian approaches have

been developed [3,4,5,6]. In these methods, the conserved properties are associated with

points that are free to move with fluid. The computational grid is reconstructed at each

time step by choosing the nearest neighbors, and the mass and momentum are transferred

using the resulting computational grid.

An alternative to the free Lagrangian approach for overcoming the problem of grid

distortion is to allow periodic rezoning of the computational grid. This process maintains

the integrity of the computational grid while allowing the interface to continue to be

represented by the edge of the computational domain. The rezoning process has the side



-3-

effect of introducing numerical diffusion as the information is transferred from the old

computational grid to the new one. Examples of numerical techniques using rezoning

techniques can be found in Hirt et al. [7], Amsden et al. [8], Addesio et al. [9], and Bach

and Hassager [10].

In the Eulerian approach, the computational mesh generally remains fixed or is

allowed to move in a prescribed manner, while the fluid moves relative to the mesh.

Typically, this is accomplished by either introducing some means of tracking interface

location [11,12,13,14] or by tracking the location of the fluid itself, referred to as volume

tracking [15,16].

The interface tracking methods allow a more accurate representation of the interface,

but are generally difficult to extend to three dimensions and complex intersecting flows

(e.g., wave breaking) [1]. The volume tracking techniques use localized reconstruction

algorithms to identify the interface location and shape. Examples of reconstruction

techniques include those used in the volume of fluid (VOF) family of methods [16,17]

and the simple line interface calculation (SLIC) [18].

Recently, a modification to the VOF approach has been developed which yields a

more accurate representation of the surface tension component of the interfacial boundary

condition [19,20,21]. In this approach, termed the continuum surface force (CSF), the

surface tension force is spread over a region near the interface with dimensions on the

order of the cell spacing. The resulting force is then incorporated as an additional body

force in the solution of the flow equations.

Regardless of the method used to track the location of the interface, the equations to

be solved for isothermal, incompressible flow are the continuity equation,

V. v =0, (1)

and the Navier-Stokes equation (NSE),
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aV 1
-- +vVv=g- -VP + vV2 v, (2)
At p

where v is the velocity vector, g is a body force vector, P is the pressure, p is the density,

and v is the kinematic viscosity. These equations are solved, subject to boundary

conditions at the edges of the computational domain, along interior obstacles, and at the

interface between the liquid and vapor phases.

The interfacial boundary conditions are derived from velocity and stress balances at

the interface and continuity of velocity. We begin the definition of the stress balances by

defining a localized auxiliary function for the location of the interface,

H(x, y) y - (x) = 0. (3)

The surface normal, n = (n, ny), is computed from gradient of H(x,y), which leads to

the unit normal vector:

nx=1 + l)2 n = ( + 1)-=(/2, (4)

where rl' = ar/ax. The unit tangential, t = (t, ty), vector may then be computed from

the orthogonality condition

t. = (^T12 + I)-"/2 t = 1t(11-2 + 1),/2. (5)

Finally, the surface curvature, K, is given by,

K= "(, + 1)-3/2. (6)

With these definitions in mind and the assumption of an inviscid vapor phase, the

boundary conditions at the interface arising from the normal and tangential stress

balances are

Pe - n-t n = P, -ok (7)

and t-, -n=0, (8)

respectively, where subscripts e and v refer to the liquid and vapor phases, respectively, a

is the surface tension, and
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T=(avi + (9)

is the stress tensor. The remaining boundary condition at the interface is due to continuity

of normal velocity given by

v t .n=vv n. (10)

Since the vapor phase is assumed to be inviscid, continuity of the tangential component

of velocity cannot be imposed.

In our work, we have chosen to use one of the volume tracking techniques to retain

the advantages of simplicity in treating flows with large deformations and folding free

surfaces. In order to increase the range of problems which can be accurately studied with

this technique, we have extended the SOLA-VOF method to include the viscous terms in

the interfacial boundary condition and, in a limited manner, allowed flow of the vapor

phase. As we will show below, the consideration of the vapor phase flow and variations

in pressure are critically important for stability analysis.

The VOF method is derived from the first generally successful volume tracking free

surface program, the Marker and Cell (MAC) method [15]. The MAC method tracks the

location of the fluid within a fixed Eulerian mesh through the use of massless marker

particles. These particles are convected through the computational domain at the end of

each time step using the interpolated local fluid velocity. The free surface is constructed

from the cells partially filled with marker particles and having neighboring empty cells.

In the MAC method, the normal stress boundary condition at the interface is simplified to

Pe =Pv (11)

This simplified boundary condition, applied at the cell center rather than at the actual

interface location, greatly reduced the accuracy of the computational technique.



-6-

The MAC method has evolved into the VOF technique, which can be looked upon as

the limit when the number of marker particles becomes infinite. Thus, the liquid is

tracked by a step function, F, representing the fraction of each computational cell

occupied by liquid. Transport of F through the computational mesh is governed by the F-

convection equation,

aF
= v VF, (12)

at

which ensures that the amount of each phase is conserved.

The interface between the phases is determined on a cellwise basis from local F

values. Cells with F = 1 are liquid cells, cells with F = 0 are vapor cells, and cells with

intermediate values of F are free surface cells. Once the free surface cells have been

identified, the location and shape of the interface within the free surface cells may be

reconstructed from gradients of the F function.

The original VOF implementation, SOLA-VOF [17], included the effects of surface

tension yielding Laplace's formula

Pt = P,-oK (13)

as the free surface boundary condition. In addition, the SOLA-VOF technique

incorporates an interpolation scheme for applying the boundary condition at the free

surface location rather than at the center of the computational cell. Improvements in

algorithms for computing surface curvature and methods for treating obstacles within the

computational domain were incorporated into the subsequent NASA-VOF2D [22]

program. Extension to three dimensions for cylindrical coordinates led to the NASA-

VOF3D [23] program. However, all three of these programs neglect the viscous

component of the liquid normal stress in the liquid phase at the interface and assume that

the pressure in the vapor phase remains constant. These assumptions impose severe
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limitations on the applicability of this method to free surface problems where viscous

stresses are important.

In the study of free surface flows such as the die-swell problem, inclusion of the

viscous terms in the interfacial boundary condition is vital [13,14]. Therefore,

implementations which neglect these components are unable to accurately solve this

problem. In addition, in the study of the stability of thin liquid films, the viscous terms at

the interface and variations in the vapor phase pressure along the interface are the primary

factors inducing instability and wave formation [24].

For these reasons, we extend the VOF technique to allow inclusion of the viscous

terms in the liquid phase at the interface to allow variation of the pressure in the vapor

phase and greatly extend the applicability of the VOF method to free surface problems.

We will outline the various solution algorithms, followed by numerical treatment of the

static contact line and implementation of viscous components at the interface. Next, the

numerical solution of the vapor phase flow, coupled with the liquid phase solution, will

be presented, followed by a comprehensive examination of the technique's accuracy.

We solve the lid-driven cavity to examine the accuracy of the solution of the Navier-

Stokes equations. The die-swell problem is solved to test the implementation of the

viscous stresses at the interface. Finally, we solve for the stability of a liquid sheet and

compare the results with those of linear stability analysis. We accurately compute the

growth rate of waves in a thin liquid sheet in agreement with predictions from linear

stability analysis. The above test problems are solved to demonstrate that, despite

popular perception, this method can be very accurate and reliable when the complete

interfacial condition is considered.
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II. NUMERICAL TECHNIQUE

We begin the description of the numerical technique with a brief outline of the

solution algorithm employed in the SOLA family of programs. This is followed by a

description of the additions we have made to improve the accuracy and extend the

capabilities of our program, IPST-VOF3D. Specifically, we highlight more accurate

methods for differencing the convective terms in the NSE, modifications needed to treat a

static contact point on an interior obstacle, inclusion of the viscous terms in the liquid at

the interface, and solution of the potential flow equations in the vapor phase to yield the

pressure in the vapor phase.

A. SOLA Solution Algorithm

In the SOLA family of programs, the velocity and pressure fields are solved on a

staggered grid (figure 1). In this representation, vector quantities are stored on cell faces,

and scalar quantities at the cell centers.

Here, we briefly describe the numerical method used to solve the NSE in the SOLA

family of programs. Generally, this can be described by defining an explicit guess,

n" =vn +8t[g- VP +vV2vn-v .Vv ], (14)
P

for the new velocity field, where the superscript refers to the time step. Except as

described below for the convective terms, the specifics of the finite difference

representations used can be found in Refs. [22], [23], and [25]. The velocity field after

the time step can then be written as the explicit guess plus a correction term due to the

pressure change across the time step,
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v' = V- '8 t V(tSPn+1) (15)

P

Since mass must be conserved at all times, we may substitute (15) into (1) yielding

5tv V.[V(Pn+')]= V V. ", (16)
P

where V is the volume of the computational cell, needed to ensure a symmetric system of

equations [22]. The Poisson equation for pressure, (16), yields a sparse, symmetric linear

system of equations that can be solved using a variety of numerical methods such as the

successive over-relaxation (SOR) or Conjugate Residual (CR) methods [23]. With the

new pressure field available, the updated velocity field is then computed from (15).

The F-convection equation, (12), is solved using donor-acceptor differencing [23] to

assist in maintaining a sharp interface between the liquid and the vapor phases. Once the

new fluid configuration has been obtained, it is possible to reconstruct the localized

interface configuration needed for computation of surface tension force [23]. Again, the

details of this process are presented elsewhere [22,23,25].

B. Differencing of the Convective Term

As we will show below, as the Reynolds number increases, the accuracy of the finite

difference representation of the convective terms in the NSE limits the accuracy of the

entire solution. Therefore, in addition to the standard differencing for the convective

terms present in the SOLA programs, we apply and evaluate three third order accurate

differencing options: Quadratic Upstream Interpolation for Convective Kinematics

(QUICK) [26,27], third order accurate upwind differencing (THIRD) [28,25], and the

method of Kawamura and Kuwahara (KANDK) [29,25].

As an example, we define the constant grid formulas for the convective term

involving the x-component of velocity in the x-direction,
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au(U ) . (17)

Analogous formulas have been developed for the remaining terms and, except as noted,

for grids with variable cell spacing. Presentation of these formulas and their derivations

can be found in Ref. [25].

The first technique, used in the SOLA family of programs, consists of a linear

combination of first order accurate upwind differencing and second order accurate central

differencing. This leads to the constant grid formulas

(uaU) =ui/2 [( +a)ui+3/2 -2aui+,/2 -(1-a)Ui,/2] ui+1/ 2 >0 (18a)

X 1ui+/2 2A x

and xu ) = 2^x [(l1- a)ui+3/2 + 2aoui+,/ 2 - (1-+ a)Ui-/ 2 ] Ui+/2 <0, (18b)
\ dax i+1/2 2 AX

where Ax is the cell spacing and a controls the fraction of central differencing. Setting

a = 1 yields first order accurate upwind differencing and setting a = 0 yields second order

accurate central differencing. Numerical stability considerations limit the fraction of

central differencing [23].

The first of the three third order accurate differencing schemes is based on the

QUICK differencing technique which uses quadratic upstream interpolation to compute

the value of the convected variable at each face of a control volume [26]. These

interpolated values are then used to form a centered finite difference formula. We have

combined simplified forms of QUICK interpolation formulas [27] to yield the finite

difference formulas

u )
x = (3ui3/2+3ui/ 2 -7ui_-/2 + U3/ 2 ) Ui+1/ 2 >0 (19a)

X xJi+l/2 8AX

and = ui +l/ 2^ (-ui+5/2 + 7ui+3/2-3ui+,/2 -3ui_,/2) ui+/2 <0 (19b)

for our implementati+/2 of the QUICK differencing.

for our implementation of the QUICK differencing.
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The second of the third order accurate differencing techniques, THIRD, was derived

for constant grids by Agarwal [28]. This technique again uses upstream differencing for

stability, but is derived in a different manner [25]. The finite difference formulas for

constant grid spacing are

(U i+/2 = (2Ui+3/ u,2 + -36i+/2 -6i/2 -+/2 > 0 (20a)
d ax i+/ 2 6AX

and u =ai/ 2 (-ui+/2 +6ui+3/2 - 13ui+,/2 ui_2 ) Uir/2 <0. (20b)
ax\ i+/2 6Ax

The final third order accurate technique, termed KANDK, is a differencing scheme

developed by Kawamura and Kuwahara [29]. They used an alternative approach to

derive a third order accurate scheme, beginning with a second order accurate upwind

scheme and eliminating the term leading to the third order error. The constant grid

formulas for KANDK are

u au =i-2 (U+5 /2 -2ui+3 /2 +9ui+1/2 -10u, 1 /2 +2u-3/2) u,+,/2 >0 (21
x ui+/2 6 Ax

and (u ) =ui+/2 (-2u+/ 2 +10ui+3/2-9ui+1/2+2ui/2-ui-3/2) ui+1/2 <0. (21
a Oxi+/2 6Ax

A variable grid derivation in the manner used by Kawamura and Kuwahara is not

possible. We have modified and extended this third order accurate differencing scheme

for variable grids. The derivation is presented in the appendix and other details are

reported elsewhere [25].

a)

b)

C. Treatment of a Static Contact Line

Many free surface problems have a contact point or line which join the liquid, vapor,

and solid phases. A static contact is the intersection between vapor, liquid, and solid

phases where the point of contact is fixed, but the contact angle can vary. The variation
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in the contact angle is part of the solution and often has significant effect on the free

surface shape. An example is the die-swell problem described below.

In previous studies [16,22,23], the dynamic contact lines are treated by modifying the

surface tension component of the interfacial boundary condition in the cell adjacent to the

wall. The contact angle is specified in the program input, and the contact line determined

from the local fluid configuration. The surface force is then computed from the contact

angle and the surface tension. In case of a static contact line, we compute the contact

angle from the local fluid configuration and then apply the surface force in the same

manner as these previous studies [16,22,23].

D. Viscous Component of Interfacial Boundary Condition

As mentioned above, the previous VOF techniques use a simplified boundary

condition, Eq. (13), for the normal stress balance. To eliminate the assumption that the

viscous terms in the interfacial boundary condition are negligible, we have included an

option for computing the viscous forces. The local unit vector normal to the interface is

computed in the manner used in [23] during surface tension computations. Once the

coordinate axis most nearly normal to the interface has been determined, a local height

function analogous to (3) is computed and the unit surface normal is obtained from (4).

Next, the components of the viscous stress tensor, (9), are computed using the

provisional velocities, vt, where only velocities within the liquid phase are included in

the finite difference formulas. For example, with reference to Figure 2, the components

of the viscous stress tensor, assuming constant grid spacing, are computed as:

tx = 2 Ui+l/2,j Ui-/Zj, (22a)
Ax
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= 2i Vj+/2 Vij-1/2 (22b)

and- u -- X--- (22c)and Ty =T l= (U i+/2J + Ui-/2J -Ui+l/2'j-I -Ui+/2j- + Vi+,J+/ 2 - i-1lj-/2 ) (22c)2Ay 2Ax

With the viscous stress tensor and the unit normal vector available, the viscous

component of the interfacial boundary condition is computed from n t, ·n.

E. Potential Flow in the Vapor Phase

As stated above, for stability problems such as flow of a thin liquid sheet, allowing

the pressure in the vapor phase to vary is vital. We have implemented a method for

solving the potential flow equation in the vapor phase which is coupled to the full NSE in

the liquid phase through the interfacial conditions. This allows computation of the

pressure in the vapor phase as a function of time and position.

With the assumptions that the vapor phase is inviscid, and the flow in the vapor phase

is irrotational, the vapor phase may be modeled using potential flow,

V2 0V =0, (23)

where Xv is the vapor phase potential. The pressure and velocities in the vapor phase are

defined as

Pv =-Pv a (24)

and v, = V v,. (25)

Therefore, in the vapor phase, we must solve Laplace's equation on a region with curved

boundaries having Neuman boundary conditions. This is accomplished using standard

second order accurate finite difference formulas for (23) in the bulk of the vapor phase

and adjacent to straight boundaries. At the interface between the two fluids, a more

complex treatment is required.
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We have implemented a modified form of a second order accurate method for solving

Poisson's equation in a region with curved boundaries having mixed boundary

conditions. Bramble and Hubbard [30] define a second order accurate operator,

3 3

n(o = Io a0 - ai ,i , (26)
i=l i=l

for the normal derivative using three points within the region of interest, where 6,,) is

the normal derivative of 0o at the surface point of interest, O; are three points within the

vapor phase, and the coefficients, a i, are determined from solution of the system of

equations:

Yl Y2 Y3 a, 1

X, X2 X, a a2] 0 , (27)

- y2 X2 - 2 3 - y32 a3 0

where yi and x i are the distances from surface point of interest to the points ( i in the

normal and tangential directions, respectively. In addition, Bramble and Hubbard [30]

present criteria which ensure that the operator yields a diagonally dominant system of

equations.

The boundary condition for the vapor phase potential at the interface is conservation

of the normal velocity, (10). Thus, the boundary operator is equal to the velocity normal

velocity in the liquid phase plus a small correction arising from the derivation,

8A = vy + a- 9aixjy, (28)
x i:=1

where vy is the normal velocity at the interface and av, /ax is the tangential derivative of

the normal velocity at the interface [30]. The value of the vapor phase potential at the

interface, needed to solve Laplace's equation, can be obtained by combining (27) and (28)

and rearranging to yield

_ _ _
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vY +_ I aix5Yi +, ai i

o= -* (29)

Xai
i=l

As stated above, since we have assumed the vapor phase to be inviscid, no restrictions are

placed on the tangential velocity at the interface.

Incorporation of the liquid phase viscous terms and variations in the vapor phase

pressure in the interfacial boundary condition, yield the following solution procedure.

First, compute the surface curvature from the local liquid configuration. Next, compute

the surface normal velocity from the change in surface position and solve (23) for the

vapor phase potential. Third, compute the vapor phase pressure from (24). Then,

compute the explicit guess for the liquid phase velocity field from (14). Fifth, compute

the interfacial liquid phase stress from (9). Sixth, compute the pressure on the liquid side

of the interface from (13). Next, solve the Poisson pressure equation, (16), to yield the

new liquid phase pressure field. Then, update the liquid phase velocity field using (15).

Finally, solve (12) to yield the new fluid configuration.

This procedure may be repeated until the desired time is reached. The second and

third steps have been added to allow for variations in the vapor phase pressure, while the

fifth step is required for inclusion of the vapor phase viscous terms in the interfacial

conditions.

III. NUMERICAL RESULTS

In this section we present results from three sample problems chosen to demonstrate

the accuracy of each of the major extensions to the VOF family of programs. First, we

present results for flow in a lid-driven cavity which demonstrates the accuracy of the

convective term differencing schemes. Then, we give examples of the die-swell

I
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phenomenon where the liquid phase viscous component of the interfacial boundary

condition is important. Finally, we present results from study of the stability of a thin

liquid sheet flowing through an inviscid vapor phase.

A. Flow in a Lid Driven Cavity

The lid-driven cavity (LDC) problem is commonly used for testing numerical

solutions of the NSE. We have chosen to use a square cavity (Fig. 3), at Re = HV/v =

1000 and having an aspect ratio = H/W = 1, to test the accuracy of SOLA differencing

with a = 0.5 and the three third order accurate techniques described above.

Two computational grids were used for each differencing scheme, the first having 40

equally spaced cells in each direction and the second having cell spacings one half the

mean spacing adjacent to the walls and twice the mean spacing in the center of the cavity.

Results of these eight simulations, with the results of Ghia et al. [31] included for

comparison, are presented in figure 4 for the horizontal component of velocity along the

vertical centerline, AB, and in figure 5 for the vertical component of velocity along the

horizontal centerline, CD.

The accuracy in predicting the local extrema in figures 4 and 5 for each case as

compared to the results of Ghia et al. [31] are presented in Table I. Using variable grid

spacing, we were able to get within 5% of the result of Ghia et al. while using only 10%

as many computational cells.

Convective terms Grid
differencing scheme Constant Variable

SOLA (a = 0.5) 54.3 % 38.8 %

QUICK 15.4 % 4.8 %
Third order accurate upwind 13.0 % 4.2 %
Kawamura and Kuwahara 12.4 % 6.7 %

Table I. Error for the lid driven cavity problem at Re=1000.
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Any of the third order accurate methods produce markedly superior results to SOLA

differencing for this problem; however, all of the third order cases required longer

computation times. While KANDK yielded the most accurate results for the constant

grid, the accuracy of this method was the worst of the third order accurate techniques for

the variable grid. This difference in ranking is attributed to the inaccuracies present in the

variable grid formulation of Kawamura and Kuwahara's [29] method as outlined in the

appendix.

B. The Cartesian Die-Swell Problem

We have studied the Cartesian die-swell problem (figure 6) both with and without

surface tension to test accuracy of the computation of the liquid phase viscous stress at

the interface. Relatively minor additions were necessary to modify the surface tension

algorithm in [23] to allow computation of the surface curvature for problems in Cartesian

coordinates. Additional modifications in the velocity boundary conditions at the corer

of the die were implemented in a manner analogous to that used by Hill [13,14]. The

details of these changes can be found in Ref. [25].

Results from a die-swell case without surface tension at Re = HV/v = 300 and

Ca-1 = o/Vg = 0, where V is the average inlet velocity. As shown in Figure 7a, the initial

condition consisted of the free surface even with the edge of the die. The initial velocity

profile was parabolic throughout the liquid phase and the liquid phase viscous component

of the interfacial boundary condition was included. Figures 7b, 7c, 7d, and 7e show the

evolution of the solution as a function of time until a steady state solution was obtained.

The predicted die-swell for the case with Re = 300 and Ca-1 = 0 are -15.66%. This is

in good agreement with results from the literature of -15.24% [32] and -15.52% [33].

Results from several solutions using different computational grids are presented in
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Table II. All simulations used an entrance zone within the die of 3.5H and had varying

domain lengths as indicated, and the computation grid was graded with the minimum cell

spacing in each direction adjacent to the static contact line.

Minimum Cell Spacing

0.04H 0.03H 0.02H 0.01H

Domain

Length

20H -14.48% -14.92% -15.20% -15.12%

25H -14.78% -15.08% -15.52% -15.37%

30H -15.05% -15.14% -15.62% -15.53%

35H -15.19% -15.17% -15.66% -15.63%

40H -15.31% -15.21% -15.66% -15.67%

Table II. Results of solutions of the die-swell problem at Re = 300 and Ca-l = 0.

Results of a similar series of solutions obtained for a case with surface tension at Re =

75 and Ca-1 = 2 are presented in Table I. In this case, the accuracy of the solution was

improved by increasing the number of computational cells in the direction perpendicular

to the flow direction and refining the grid in the region adjacent to the corer of the die.

The predicted die swell shows more scatter than the previous case, but remains in

reasonable agreement with the literature results of -11.16% [32], -10.92% [34], and -

10.48% [33].

Minimum Cell Spacing_

I0.0333 0.0278 0.0222 [ 0.0167 I
Y-Direction

Computational
Cells

30 -10.99% -11.61% -11.38% -11.26%
36 *** -11.62% -11.43% -11.53%
45 *** *** -10.91% -11.37%
60 *** *** *** -11.05%

*** combination not possible

Table III. Results of solutions of the die-swell problem at Re = 75 and Ca-1 = 2.

I
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C. Stability of a Two-Dimensional Viscous Liquid Sheet

The final test problem presented results from the study of the stability of a thin liquid

sheet of fluid flowing through an inviscid vapor phase. Figure 8 presents a diagram of the

problem. The variation in the surface position, e, shown in Figure 8 is assumed to be of

the form

E = Eoe °t+ikx (30)

where Eo is the initial amplitude, co = oro + iC,) is the complex growth rate, i = (-1) 2/ 2, and

k is the wavenumber of the disturbance. Study using a linear stability analysis [24] yields

dispersion relations for antisymmetric,

0 = (C, +4co2Z)cl tanh(m)

3z2 I2 +Mp0+ (M)I2--2 (31)
+4mZ2 [m tanh(m)+ (m2 + o ,/Z) /tanh((m2+ o /Z)/2 )] + p)2 + m 3 ,

and axisymmetric,

0 = (Co, + 4w02Z),i coth(m)

+4m 3 Z 2[m coth(m) + (m2+ +0, /z) /2 coth((m2 + C, /Z)' 2 )] + 2 (32)

disturbances. Where C = o=r +iWe/2id, COi = (+iWe/m, - , = Cor(/pta3) - ' 2

co; = oi (a/U )m, a is the initial sheet half-thickness, m=ka is the dimensionless

wavenumber, and Uo is the initial sheet velocity. The remaining parameters are defined

as the Weber number, Wee = ptU2a/o, the Ohnesorge number, Z = Rg (ptao)" 2, the

density ratio, p = Pg/Pe.

It is possible to solve the dispersion relations, (31) and (32), for a given Wee, Z and p

to yield the complex growth rate, 6), as a function of the wave number. The real part of

10 is dimensionless growth rate of a disturbance with wavenumber m. Results for a case

Wee=40, Z=0.1, and p=0.1 are shown in Figure 9 for both antisymmetric and

axisymmetric disturbances represented by solid and dashed lines, respectively. The data



- 20-

points plotted on Figure 9 represent our computed results for antisymmetric and

axisymmetric disturbances represented by filled and open circles, respectively.

Solutions at m=l were obtained on a computational domain with 2ita in the primary

direction of flow and 8a perpendicular to the flow. This problem was discretized on a

computational grid with 360 cells constantly spaced cells in the direction of flow and 100

graded cells perpendicular to the primary direction of flow. The grading was done so that

a region of constant cell spacing was maintained adjacent to the interfaces. Problems

with larger wavenumbers used the same computational grid with a shorter computational

domain, keeping the number of computational cells per wave constant.

CONCLUSIONS

We have presented several extensions to the VOF method for tracking the location of

the interface between a liquid and a vapor phase included in the SOLA method for

solving the NSE. These have included more accurate methods for treating the convective

terms in the NSE, a method for treating a static contact line, inclusion of the liquid phase

viscous terms in the interfacial conditions, and the ability to solve for flow in the vapor

phase coupled with the flow in the liquid phase.

These modifications allow the VOF technique to be applied to a wider variety of

problems including the die-swell problem and study of the stability of a thin viscous sheet

flowing through an inviscid vapor phase. We have shown that when the complete

boundary condition at the interface between a viscous liquid and an inviscid liquid are

imposed, the VOF technique coupled with the SOLA algorithm can, in fact, yield

accurate solutions for complex problems.
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APPENDIX: DERIVATION OF VARIABLE GRID

KAWAMURA AND KUWAHARA METHOD

We begin by reviewing the derivation of Kawamura and Kuwahara. This is followed

by an attempt to directly reproduce their derivation scheme for a variable grid. Finally,

we will present our approximation of the variable grid KANDK method. For simplicity

these derivations will be carried out using the points Ui+2, Ui+1, Ui,Ui-1, and Ui- 2 rather than

the points at the cell faces used earlier and the constant grid spacing will be denoted h.

Kawamura and Kuwahara's Derivation

We begin with a second order upwind differencing scheme,

(ut i U^ (i u-4u,^ u*>O (Ala)
0uxu = ~u-(3u i -4u_,- +ui_2) u, >0 (Ala)

and (Alb)and fu ax = 2-h(-ui+2 + 4ui+l - 3ui) ui < 0. (Alb)axl, 2h

These formulas can be combined to yield a single formula independent of the flow

direction

(ua) Ui
( -u i+ 2 +4u+ l -4ui, +U U2)

(A2)

+ li(Ui+2 -4ui+l + 6u -4u,_ l +ui_2 .
4h

From Taylor series expansions, this formula can be rewritten as

ua) u a h 2 a3 u + O(h4 +u h3 a4u + O(h5)] (A3)
u-ax i =xx 2a ax4 (A3)

Thus, the leading error in (Al) or (A2) can be reduced by eliminating the term

h2 a3u (A4)

2 ax 3

Improved accuracy is obtained by replacing the first term in (A3),
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au h2a3u ) (A5)
+b(h40), (A5)

ax 2 3x

with

Ua +O(h4) = -Ui+2 +8u + -8u-, +u 2 (A6)

ox 12h

yielding

(au lau 4. . 4U 5

-uaxI uax +(h] h (A7)

The resulting analogue of (A2) with an error of O(h 4 )is

uai = 1i (-Ui+2 + 8ui+, -- 8ui + Ui2)

(A8)

+ hl (ui+2 -4u,+ +6u, -4u,_, +ui_ 2).
4h

Attempt at Kawamura and Kuwahara's Derivation with Variable Grid

In this section, we follow the steps of Kawamura and Kuwahara's derivation as far as

possible for a variable grid. All derivations will be with respect to the dimensions shown

in figure A1.

For a variable grid, (A1) becomes

( au ( a+2b a+b b >

ax i U, b(a+b)ui ab a(a+b) ui > (A9a)

an au c c+d 2c+d 1and uax u d(c-+d) u i+2 cd ui- c(c+d)UiJ u i <0. (A9b)
Thus , (A2) can be rewritten as

Thus, (A2) can be rewritten as

I
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C( au u; c c+d (2c+d a+2b
U-I - I"+ Ui

axi 2 d(cd) 2 cd ui c(c +d) b(a+b)

a+b b 1U|I c c+dd
--- u, 1 + ui- 2 + u-- - -- i (AlO)

ab - a(a+b) -2 
2 [d(c + d) i+2 cd +0)

( 2c+d a+2b a+b b 1
+ - + IUi j--Ui _ 1+ UH 2.

c(c+d) b(a+b)Ji ab + a(a+b) u- 2 j

In order to continue with Kawamura and Kuwahara's derivation, we begin by defining the

terms in A3.

au( 2 \ b c-b c
au +0¢h2 ) -Ui+' +,- Ui -- u,1 , (Al l)
ax be b(b+c)

a'u /+.4 O(h 4 )[ 6(a+2b-c) (Ui+2 - U

ax3 O(h d(c + d)(b +c + d)(a+ b + c+ d)

6(a+2b-c-d) ( 6(d+2c-b-a) ( -u

cd(a+b+c)(b+c) u ab(b+c+d)(b+c)-

6(d+2c-b) (u 2 - U )] (A12)

a(a+b)(a+b+c)(a+b+ c + d) (A12)

andu +O(h~) 24
a dx d(c + d)(b + c + d)(a + b + c + d)

24 . ) 24 (U -

cd(a + b + c)(b+c) u ab(b + c + d)(b +c)

+ 24 (Ui-2 J (A13)

a(a+b)(a + b + c)(a + b+ c + d)u u (A13)

When (A 1), (A12), and (A13) are substituted into (A3), it does not yield (A2), implying

that the derivation of Kawamura and Kuwahara's method is inaccurate for variable grids.

Approximate Kawamura and Kuwahara Derivation with Variable Grid

We can obtain an approximate form of Kawamura and Kuwahara's technique by

beginning the derivation with (A7). After substituting the variable grid analogue of (A6),

I
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ULa k D-rJ \
uLt -,(Ui+2 - u1 )

d(c+ d)(b+c+dd)(a+ b+c+d 2 + )

b(a + b)(c + d) () c(a + b))(c + d) ( u

cd(a + b + c)(b + c) ab(b + c + d)(b + c)

ht- ( , -L- r4 \

'"- l (Ui-2 -Ui)' (A
a(a+b)(a+b+c)(a+b+c +d)' (

and (A13) into (A7) the resulting approximate formula for Kawamura and Kuwahara's

method on a variable grid becomes

Dalu -bc(a+b) ui +24uuil u

Uax)i d(c + d)(b+c+d)(a+b+c+d) +2 +)

b(a+b)(c+d) u -24ui i

cd(a+b+c)(b+c) ui-

c(a + b))(c + d) u -241ui I

ab(b + c + d)(b + c)ui

hobe ^A\ l. i nAl.] I

+ ULT-r' UJ U;i t ZL.'Ui (U 2 -U )

a(a + b)(a + b + c)(a + b + c + d)

,14)

(A15)
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Figure 1. Schematic of computational grid geometry.

Figure 2. Example fluid configuration for viscous term computation.

Figure 3. Schematic of the lid-driven cavity problem.

Figure 4. Plots of the horizontal component of velocity along the vertical centerline
A Ghia et al. [31], variable grid, and - - - constant grid.

Figure 5. Plots of the vertical component of velocity along the horizontal centerline
A Ghia et al. [31], variable grid, and - - - constant grid.

Figure 6. Schematic of the die-swell problem.

Figure 7. Results from the die-swell problem at Re = 300 and Ca-1 = 0

Figure 8. Schematic of the sheet instability problem.

Figure 9. Non-dimensional growth rate for We =40, Z=0.1, and p =0.1 obtained from

numerical solution of the Li and Tankin's [24] dispersion relations. Open and
closed circles represent results of our computational analysis.

Figure Al. Diagram of variable grid dimensions.
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