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Abstract

This paper presents a stereo algorithm for obtaining disparity maps with explicitly
detected occlusion. To produce smooth and detailed disparity maps, two assumptions that were
originally proposed by Marr and Poggio are adopted: uniqueness and continuity. That is, the dis-
parity maps have unique values and are continuous almost everywhere. A volumetric approach is
taken to utilize these assumptions. A 3D array of match likelihood values is constructed with each
value corresponding to a pixel in an image and a disparity relative to another image. An iterative
algorithm updates the match likelihood values by diffusing support among neighboring values
and inhibiting others. After the values have converged, the region of occlusion is explicitly
detected.

To demonstrate the effectiveness of the algorithm we present the processing results from
synthetic and real image pairs, with comparison to results by other methods. The resulting dispar-
ity maps are smooth and detailed with occlusions detected. Disparity values in areas of repetitive
texture are also found correctly.
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1. Introduction

Stereo vision can produce a dense disparity map. The resultant disparity map should be
smooth and detailed; continuous and even surfaces should produce a region of smooth disparity
values with their boundary precisely delineated, while small surface elements should be detected
as separately distinguishable regions. Though obviously desirable, it is not easy for a stereo algo-
rithm to satisfy these two requirements at the same time. Algorithms that can produce a smooth
disparity map tend to miss the details and those that can produce a detailed map tend to be noisy.

For area-based stereo methods [8], [12], [22], [5], [2], [7], which match neighboring pixel
values within a window between images, the selection of an appropriate window size is critical to
achieving a smooth and detailed disparity map. The optimal choice of window size depends on
the local amount of variation in texture and disparity [14], [2], [4], [15], [7]. In general, a smaller
window is desirable to avoid unwanted smoothing. In areas of low texture, however, a larger win-
dow is needed so that the window contains intensity variation enough to achieve reliable match-
ing. On the other hand, when the disparity varies within the window (i.e., the corresponding
surface is not fronto-parallel), intensity values within the window may not correspond due to pro-
jective distortion.  In addition to unwanted smoothing in the resultant disparity map, this fact cre-
ates the phenomena of so-called fattening and shrinkage of a surface. That is, a surface with high
intensity variation extends into neighboring surfaces with less variation across occluding bound-
aries.

Many attempts have been made to remedy this serious problem in window-based stereo
methods. One earlier method is to warp the window according to the estimated orientation of the
surface to reduce the effect of projective distortion [17]. A more recent and sophisticated method
is an adaptive window method [7]. The window size and shape are iteratively changed based on
the local variation of the intensity and current depth estimates. While these methods showed
improved results, the first method does not deal with the difficulty at the occluding boundary, and
the second method is extremely computationally expensive. A typical method to deal with occlu-
sion is bi-directional matching. For example, in the paper by Fua [4] two disparity maps are cre-
ated relative to each image: one for left to right and another for right to left. Matches which are
consistent between the two disparity maps are kept. Inconsistent matches create holes, which are
filled in using interpolation.

The fundamental problem of these stereo methods is that they make decisions very locally;
they do not take into account the fact that a match at one point constrains others due to the stereo
and scene geometry. One constraint commonly used by feature-based stereo methods is edge con-
sistency [16], [9].  That is, all matches along a continuous edge must be consistent.  While con-
straining matches using edge consistency improves upon local feature-based methods [1], [19],
they produce only sparse depth maps.  The work by Marr and Poggio [10] is one of the first to
apply global constraints or assumptions while producing a dense depth map.  Two assumptions
about stereo were stated explicitly: uniqueness and continuity of a disparity map. That is, the dis-
parity maps have unique values and are continuous almost everywhere. They devised a simple
cooperative algorithm for diffusing support among disparity estimates to take advantage of the
two assumptions.  They demonstrated the algorithm on synthetic random-dot images.  Due to
memory and processing constraints, similar methods using real images have been left largely
unexplored.  Recently, Scharstein and Szelski [20] proposed a Bayesian model of stereo match-
ing. In creating continuity within the disparity map, support among disparity estimates is non-lin-
early diffused.  The derived method has results similar to that of adaptive window methods.
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In this paper we present an volumetric iterative stereo algorithm using global constraints
to find a dense depth map.  The uniqueness and continuity assumptions by Marr and Poggio are
adopted. A 3D set of match likelihood values is constructed with each value corresponding to a
pixel in the reference image and a disparity relative to another image. An iterative update function
generates continuous and unique values by diffusing support among neighboring match likelihood
values and by inhibiting values along similar lines of sight. Initial match likelihood values, possi-
bly obtained by pixel-wise correlation, are used to retain details during each iteration. After the
match likelihood values have converged, occluded areas are explicitly detected.

To demonstrate the effectiveness of the algorithm we provide data from several synthetic
and real scenes.  The resulting disparity maps are smooth and detailed with occlusions detected.
Also, disparity values in areas of repetitive texture are found correctly.  A comparison with multi-
baseline and multi-baseline with adaptive window methods is made.

2. A Volumetric Iterative Stereo Algorithm

Marr and Poggio [10] presented two basic assumptions for a stereo vision algorithm. The
first assumption states that at most a single unique match exists for each pixel; that is, each pixel
corresponds to a single surface point. When using intensity values for matching this uniqueness
assumption may be violated if surfaces are not opaque. A classic example is a pixel receiving con-
tribution from both a fish and a fish bowl. The second assumption states that disparity values are
generally continuous, i.e. smooth within a local neighborhood. In most scenes surfaces are rela-
tively smooth and discontinuities occur only at object boundaries.

We propose a volumetric [10], [3], [11], [20], [21] approach to utilize these two assump-
tions. Given a pair of stereo images, we construct a 3D voxel space with dimensions row, column
and disparity. Assuming (without loss of generality) that the images have been rectified, each
voxel (r, c, d) projects to the pixel (r, c) in the left image and to the pixel (r, c+d) in the right
image. Within each voxel, the estimated likelihood value of a match between the pixels is held.

The uniqueness assumption implies there can only exist one match within a set of voxels
which project to the same pixel in an image. As illustrated in figure 1 by dark voxels, letP(r, c, d)
denote the set of voxels which overlap voxel (r, c, d) when projected to an image. That is, each
voxel inP(r, c, d) projects to pixel (r, c) in the left image or to pixel (r, c+d) in the right image.

Left Camera Right Camera

Figure 1; Illustration of the inhibitory and averaging relations between voxels for a 2D slice of the 3D voxel
space with the row number held constant.

Inhibition Area,P(r, c, d)

Support Area,Q(r, c, d)

Current Voxel (r, c, d)

Disparity

Column (r,c) (r,c+d)
..
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The continuity assumption implies neighboring voxels have consistent match likelihood
values. Marr and Poggio proposed iteratively averaging their values to increase consistency. When
averaging neighboring match likelihood values we need a concept of local support. The local sup-
port for a voxel determines which and to what extent neighboring voxels should contribute to
averaging. Ideally, the local support should include all and only those neighboring voxels which
correspond to a correct match if the current voxel corresponds to a correct match. Since the cor-
rect match is not known beforehand, some assumption is required on deciding the extent of the
local support. Marr and Poggio, for example, used voxels having equal disparity values for aver-
aging - that is, their local support area spans a 2D area (d=const.) in ther-c-d space. This 2D local
support corresponds to the parallel plane assumption. However, sloping and more general surfaces
require using a 3D area for local support. Many 3D local support assumptions have been proposed
[6], [18], [19], [7].

Let Ln(r, c, d) denote the match likelihood value assigned to voxel (r, c, d) at iterationn,
andSn(r, c, d) to be the sum of all match likelihood values within a 3D local supportQ.

To obtain a smooth and detailed disparity map an iterative function is used to refine the
match likelihood values. The initial valuesL0(r, c, d) can be computed from images for example,
by using intensity correlation. The update function should enforce the uniqueness assumption
within the inhibition setP(r, c, d) and increase continuity usingSn(r, c, d). We propose that the
update function be proportional to the following:

Note the following properties of this function: Neighboring match likelihood values are
averaged to create consistency. Inhibition, resulting from normalizing the sums over the inhibition
areaP(r, c, d), creates a unique high valued voxel within the set. Normalization also restricts the
range ofLn(r, c, d) to lie between 0 and 1. The rate of convergence is controled byα (α > 1).

However, averaging the match likelihood values in each iteration may result in over-
smoothing and thus a loss of details. To maintain details we propose restricting the match likeli-
hood values by their initial values; in this way, since the initial match likelihood values are based
on intensity correlation, only the voxels which project to pixels with similar intensities can have
high values. Therefore, we may multiply (2) by the initial valuesL0(r, c, d).

Using (3) we can achieve our goal of producing a smooth and detailed depth map.
While our method is similar to Marr and Poggio’s, it does differ for two important points.
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The first is we use a 3D local support when averaging voxels.  Real images have sloping dispari-
ties so the local support must cover a 3D area.  Secondly, Marr and Poggio used discrete values
for their match likelihood values.  Our method uses continuous values, allowing for interpolation
between disparity estimates.

We will now discuss two additional properties that equation (3) provides us: one is explicit
identification of the areas of occlusion within the images, and the other is elimination of mis-
matches due to repetitive textures.

3.  Explicit Detection of Occluded Areas

Occlusion is a critical and difficult phenomena for stereo algorithms [13]. With any rea-
sonably complex scene there exists occluded pixels with no correct match. Unfortunately most
stereo algorithms do not consider this important case explicitly, and therefore they produce gross
errors in areas of occlusion or find disparity values similar to the foreground or background. Our
method, in contrast, can explicitly detect occlusion by examining the magnitude of the converged
match likelihood values.

Since no correct match exists in areas of occlusion, all match likelihood values corre-
sponding to occluded pixels should be small. Consider a pixelp in the left image, whose correct
corresponding point is not visible in the right image. For a voxelv along the line of sight ofp,
there are two cases that occur for its projectionq on the right image. The first case, depicted in fig-
ure 2(a), is whenq’s correct corresponding point is visible in the left image. Then there exists a
voxelv’ which corresponds to the correct match between a pixelp’ in the left image andq. Since
voxelsv andv’ both project to pixelq, their match likelihood values will inhibit each other due to
the uniqueness assumption. Generally, the correct voxelv’ will have a higher match likelihood
value, causing the value for voxelv to decrease. The second case, depicted in figure 2(b), is a
more difficult case. This occurs whenq’s true corresponding voxel is occluded in the left image.
Since neitherp norq has a correct match, the likelihood value of a match betweenp andq will
receive no inhibition from voxels corresponding to correct matches. Thus false matches could
have high likelihood values if occluded areas between images happen to have similar intensities.
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Provided occluded areas between images do not have similar intensities, all match likeli-
hood values corresponding to occluded pixels will be small. Therefore, after the match likelihood
values have converged, we can determine if a pixel is an occluded pixel by summing the values of
its voxels along its line of sight. If the sum of the match likelihood values is below a threshold the
pixel is labeled as occluded.

To illustrate this method of detecting occlusion we have created a pair of random dot ste-
reo images shown in figure 3(a). The correct disparity map is shown in figure 3(b) with occluded
pixels to the right of the upper block and to the left of the lower block. At iterationn=0, the
occluded areas have smaller likelihood values since no correct matches exist. Figure 3(c) shows as
the iterations proceed the match likelihood values of the occluded areas decrease due to inhibition
from the correct matches. After four iterations the match likelihood values have converged and the
occluded areas are detected as shown in figure 3(d).

pp’ q
Left
Image

Right
Image

(a)

qp
Left
Image

Right
Image

Occluded Surface

Non-occluded Surface

Correct Match

False Match

(b)

Figure 2;(a) Ifq is not occluded there is a correct match withp’ which will inhibit the false match withp; (b) If
q is occluded it is possible for a false match to occur withp.

v

v’

v
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4. Summary of Algorithm

The summary of the volumetric iterative algorithm is as follows:

1. Set initial match likelihood valuesL0 using intensity correlation, appendix A.
2. Update match likelihood valuesLn using (3).
3. Repeat step 2 until the match likelihood values converge.
4. For each pixel, find the voxel with the maximum match likelihood value.
5. Threshold the sum of the match likelihood values to detect occlusion
    within the image.

The running time for steps 1 through 5 is on the order ofN2*D* I*C, whereN2 is the size
of the image,D is the number of disparity voxels for each row and column,I is the number of iter-

ations andC is the number of cameras.   The amount of memory needed is on the order ofN2*D.

n=0 n=1

n=2 n=4

(c)

(d)

(a)

Figure 3;(a) Left and right random dot stereo images, 50% density; (b) Correct disparity map, where
black regions are occluded; (c) Sum of match likelihood values for each pixel atn iteration; (d) Com-
puted disparity map; black regions are identified as occluded.

(b)
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5.  Finding Correct Matches with Repetitive Textures

Repetitive textures lead to a unique difficulty in stereo matching. They may result in mul-
tiple voxels with high match likelihood values for a pixel in a repetitive texture. It is difficult, if
not impossible, to locally determine which voxel corresponds to the correct match when using a
small number of images.

Consider the projection of a four post picket fence shown in figure 4(a). If each post of the
picket fence is identical to the others, there will be four voxels with high match likelihood values
for each post. We can group the neighboring high valued voxels into potential surfaces. Each
potential surface has a consistent interpretation of the scene, i.e. each post in the left image is
mapped to a unique post in the right image or interpreted as occluded.

What happens to the match likelihood values as the number of iterations increase? During
each iteration the match likelihood valueLn(r, c, d) varies based on itsSn(r, c, d) value and the
number of high valued voxels inhibiting it relative to others inP(r, c, d). The match likelihood
values of voxels 1 and 16 will decrease because they have fewer neighboring voxels with high val-
ues, and thus lowerSn values. As the values of voxels 1 and 16 are inhibited, the match likelihood
values on the edge of the other potential surfaces will increase or decrease based on the size of
their potential surfaces. Voxel 7 within the larger potential surface has only four inhibiting voxels,
2, 4, 11 and 14, as compared to the voxels, such as 11, within the smaller potential surfaces having
five. Then during an iteration the match likelihood values of the less inhibited voxel 7 will
increase while the values of voxels 2, 4, 11 and 14 decrease. Similarly, as iterations proceed, the
remaining high valued voxels within the smaller potential surfaces will decrease due to inhibition
fromthelargerpotentialsurface.Afterenoughiterationsthesmallerpotentialsurfaceswillberemoved.

Of course, an interesting question is whether the larger potential surface is correct. As
illustrated in figure 4(a), if the object with the repetitive texture is not occluded, the largest poten-
tial surface is correct. Intuitively this makes sense with the four post picket fence. However, the
largest surface is not always the correct surface. As shown in figure 4(b) it is possible for a false
surface to be the largest surface when it is occluded. As discussed in [23], this case is rare and its
occurrence can be further minimized if smaller baselines are used.

Figure 5 demonstrates how well the algorithm can deal with the locally ambiguous stereo
matching problem with repetitive texture. The synthetic example scene is a slanted roof, figure
5(a), with a repetitive texture with random noise. Figure 5(b) shows the left and right images. Fig-
ure 5(c) shows the results obtained by using simple window correlation with a fixed small (3x3)
and large (15x15) window. The results for both have many mismatches. Figure 5(d) shows the
progression of our volumetric algorithm. At iteration 0, we observe that the disparity possesses
many mismatches. As the iterations proceed the false potential surface is inhibited and the mis-
matches are removed. The final disparity map, shown in figure 5(e), is smooth and possesses only
a few mismatches.
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False Surface
Correct Surface

Figure 4; (a) When the surface with a repetitive texture is not occluded the largest potential surface is the
correct surface; (b) When the surface with the repetitive texture is occluded the largest potential surface may
not be the correct surface.
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Figure 3:  Results using synthetic data;  (a) Oblique and front view of true disparity map;  (b)  Synthetic
left and right images;  (c) Oblique and front view of disparity map using small window(3x3) and large
window(15x15); (d) Disparity maps for volumetric method after iterationn; (e) Oblique and front view of
disparity map using volumetric method.

n=0 n=1 n=2 n=4

n=8 n=10 n=15

(a)
(b)

(c)

(d)

(e)

3 x 3

15 x 15
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6. Experimental Results with Real Images

To demonstrate the effectiveness of our algorithm we have applied it to several real
images. The input images are rectified and normalized when necessary. The initial match likeli-
hood values are computed using a sigmoid function of sums of absolute differences, appendix A.
For all images, unless stated otherwise, the number of iterations is 10 withα set to 2. We use a 3D
local support with a fixed width, height and depth (7x7x3) in (3). Linear interpolation between
disparity estimates is also done to achieve higher accuracy. The threshold for detecting occlusion
is set constant for all image sets at 0.1. The running time of the algorithm on an Indigo 2ex for
256x256 images and 80 disparity estimates is about 20 seconds per iteration.

Figure 6 presents the stereo image pair of the “Coal Mine” scene and the processing
results. The multi-baseline [15] method and the adaptive window [7] method are applied to the
stereo for comparison. The multi-baseline result (Figure 6 (f)) that uses three input images is
clearly the noisiest of the three. The result of the adaptive window approach (Figure 6 (g)) is
smooth in general, but a few errors remain, especially around the small building next to the tower
in the center of the image and the slanted roof in the upper corner of the scene is overly smoothed.
The result of the volumetric approach (Figure 6 (e)) is smooth while recovering several details at
the same time. The slanted roof of the lower building and the water tower on the roof top are
clearly visible. Depth discontinuities around the small building next to the tower are preserved.

The second scene is a “model town,” figure 7. The results using multi-baseline and multi-
baseline with adaptive window are also given. The same number of images were used for each
approach as in the coal scene. The multi-baseline approach has several spikes and is generally
noisy. The adaptive window method produced smooth results, especially on the faces of buildings,
but details on the lower center building are lost. We observe, however, it behaves poorly in areas
of changing disparity, such as the ground in the lower portion of the image. There is also a errone-
ous spike of disparity in the middle of the image. The volumetric approach is precise with no
gross errors. Details are found on the face of the lower center building and the ground is correctly
captured. The volumetric method also produces no errors in the presence of the repetitive back-
ground texture in the upper part of the image. Due to the repetitive texture 15 iterations were
needed instead of 10. If only two images were used with a non-iterative area-based method the
background would produce many mismatches [15].

Figure 8  shows results from a pair of aerial images of the Pentagon. Both of the two
bridges to the right of the image are found. Details on the Pentagon’s roof are visible. Also notice-
able are correctly detected occlusions within the Pentagon’s roof and to its right. Occlusions are
also detected to the lower right of the Pentagon in areas which vehicles moved between the two
images.

Figure 9 is a SRI lab scene. The thin white tape running up the center of the image is
largely, though not all, captured. The plants are also found, but the occluded wall between the
plant’s leaves is incorrectly matched. A specular reflection on the lower table causes disparity val-
ues to be warped.

The last scene is a SRI sequence of a group of trees shown in figure 10. This sequence pre-
sents difficulty in finding correct disparity estimates due to the high disparity variation within the
scene. Both the results using a small and large baseline stereo pair are detailed with few mis-
matches. The tree and tree stump are clearly visible. In the small baseline example a small group
of leaves in the top right of the image is correctly found. When a large baseline is used, the area to
 the right of the tree is correctly found to be occluded.
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8. Conclusion

The volumetric iterative algorithm for stereo matching is capable of producing smooth and
detailed disparity maps. First proposed by Marr and Poggio [10], two assumptions are made about
the disparity maps: the disparity maps have unique values and are continuous almost everywhere,
which implies objects within the scene are opaque and smooth. A 3D set of match likelihood val-
ues is constructed with each value corresponding to a pixel location in the reference image and a
disparity relative to another image. The iterative algorithm updates the match likelihood values
are updated taking advantage of the two assumptions. To find a unique match, the values of voxels
on the same line of sight inhibit each other. To find a smooth match, the values among the neigh-
boring support region are averaged. Details are maintained during each iteration by restricting the
growth of match likelihood values based on their initial values. Finally, after the values have con-
verged, occlusions are explicitly detected.

As demonstrated by using several synthetic and real image examples, the resulting dispar-
ity map is smooth and detailed. Disparity values in areas of repetitive textures were also found
correctly.
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(a) (b) (c)

(e)

(f) (g)

(d)

Figure 6: Coal Mine Scene; (a) Reference (left) image;  (b) Right image;  (c) Disparity Map, black areas
are detected occlusions; (d) Oblique view of the coal mine model; (e) Isometric plot of the disparity map
using volumetric iterative method with two images;  (f)  Isometric plot of the disparity map using multi-
baseline stereo with three images as presented in [15];  (g) Isometric plot of disparity map using multi-
baseline stereo with adaptive window with three images as presented in [7].
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(a) (b) (c)

(d)

(e)

(f)
(g)

Figure 7: Town Scene; (a) Reference (top) image;  (b) Bottom image;  (c) Disparity Map, black areas are
detected occlusions;  (d) Oblique view of the town model;  (e) Isometric plot of the disparity map using
volumetric iterative method with two images; (f) Isometric plot of the disparity map using multi-baseline
stereo with three images as presented in [15]; (g) Isometric plot of disparity map using multi-baseline ste-
reo with adaptive window with three images as presented in [7].
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Figure 8: Pentagon scene; (a) Reference (left) image; (b) Right image; (c) Disparity map, black areas are
detected occlusions;  (d) Isometric plot of disparity values.

(d)

(b)(a)

(c)

(a) (b)

(c)
(d)

Figure 9: SRI lab scene; (a) Reference (left) image; (b) Right image; (c) Disparity map, black areas are
detected occlusions;  (d) Isometric plot of disparity values.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 10: SRI tree scene; (a) Reference (left) image; (b) Right image for short baseline; (c) Right image
for large baseline; (d) Disparity Map for small baseline; (e) Disparity map for large baseline; (f) Isomet-
ric plot of disparity using small baseline;  (g) Isometric plot of disparity using large baseline.
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Appendix A: Initial Match Likelihood Values
The initial match likelihood values are set to range from 0 to 1. A function which maps

intensity correlation to match likelihood values must possess a couple properties. Areas of low
intensity correlation should be close to 0. Areas with high correlation should gradually approach 1
to allow some smoothing of the data. Linear, sigmond, exponential and locally adjusting functions
were all tested. Of these the sigmoid function produced the best data.

 Let εSAD(r, c, d) be the sums of absolute differences (SAD) within a 3x3 windowW for
pixel (r,c) at disparity d. IfIL(r, c) andIR(r, c) are the intensity values for the left and right images
respectively at pixel (r, c) then:

We set the initial likelihood valueL0(r, c, d) by:

For the examples within this paper, the valuesµ andλ are set equal to the standard variation of all
SAD values.

εSAD r c d, ,( ) I L r r ′+ c c′+,( ) I R r r ′+ c c′ d+ +,( )–
r ′ c′,( ) W∈

∑=

L0 r c d, ,( ) 1

1 e

εSAD r c d, ,( ) λ–( )–

µ
------------------------------------------------

+
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