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A class of subgrid stred$GS models for large-eddy simulatioi.ES) is presented based on the

idea of structure-based Reynolds-stress closure. The subgrid structure of the turbulence is assumed
to consist of stretched vortices whose orientations are determined by the resolved velocity field. An
equation which relates the subgrid stress to the structure orientation and the subgrid kinetic energy,
together with an assumed Kolmogorov energy spectrum for the subgrid vortices, gives a closed
coupling of the SGS model dynamics to the filtered Navier—Stokes equations for the resolved flow
quantities. The subgrid energy is calculated directly by use of a local balance between the total
dissipation and the sum of the resolved-scale dissipation and production by the resolved scales.
Simple one- and two-vortex models are proposed and tested in which the subgrid vortex orientations
are either fixed by the local resolved velocity gradients, or rotate in response to the evolution of the
gradient field. These models are not of the eddy viscosity type. LES calculations with the present
models are described for 38ecaying turbulence and also for forced® 2®x turbulence at Taylor
Reynolds number®, in the rangeR, =30 (fully resolved to R,=«. The models give good
agreement with experiment for decaying turbulence and produce negligible SGS dissipation for
forced turbulence in the limit of fully resolved flow. @997 American Institute of Physics.
[S1070-663(197)02008-4
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Despite the availability of large-scale scientific ] : ) ) (N @
computing, direct numerical simulatiofDNS) of the
Navier—Stokes equations at Reynolds numbers typical otvhere
engineering application continues to remain beyond the ~ ~
reach of either present day facilities or those likely to  Tij=UuiUj+u;U;+u;uj, ()
be developed in the foreseeable future. This is because the _—— o~ ~
range of scales that must be resolved in DNS increases Lij=U;U;—U;U;. (4)

very rapidly with increasing Reynolds number. The LES oo

: ! X ij is the subgrid stress tensor ahg is the Leonard
approach to this problem is to compute the detailed spacgyesg tensor. Theu, are the subgrid scale stresses which

and time dependence of the flow only at scales larger thaQy .|| henceforth be denoted by . Equations(1) and(2) are
some cutoff while modeling the effects on the retained scalefjareq equations over a discretized region of space ™

of the transport of momentum and energy of the “fine” yonntes the filtering operation defined using a kernel
scales below the cutoff. The approach seems to be based ®tx—x') such that

two related assumptions, first that the lafgetained scales
are strongly coupled to the outer flow and the body geometry
(boundary conditionsproducing the turbulence, and second,
that the “fine” scales exhibit a quasi-universal characterI principle L can be evaluated givel; andG.2 For the

with only weak dependence on the large scales. The task

then remains of constructing subgrid models which are base%omb'n?t'on of-a IS harp;] C;Kgf ipe_ctr:alhfllter and a pseludo—
in some sense on a physically realistic description of the fingPectra numerica r.ne.t od, both with the same spect_ra cut-
scales. off, L;j=0. Since this is the method used preseritly, will

Consider the large eddy simulation of the Navier—Stoked0t be discussed further. Evaluation of cross terms in the
equations on a grid with a typical cell size afk and time expression foiT;; appears to require detailed knowledge of

stepAt. Let Uj(x,t) represent the resolveupergrid ve- u; which LES seeks to avoid. We will presently lump the

locity field and letP be th ved field. P three terms of3) together througf;; = 7;; . This is not com-
ocity field and letP(x,t) be the reso \{e pressure fie o ut pletely satisfactory but will be shown to produce a physically
U;(x,t)=U;(x,t) +u;(x,t), where U; is the full velocity

- Zat) - ) sensible class of models. A further complication concerns the
field andu; the subgrid field. The filtered LES equations for o,estion of filtering in time. At large Reynolds numbers Egs.
an incompressible fluid are

(1)—(4) appear to have little physical meaning on time-scales
of the order ¢/€)¥. Time-wise integration of1)—(4) is

Ui(x,t)=f G(x—x")U;(x',t) dx’. (5)

¥ usually done with time-stept, > (v/€)?, which implies a
Q:O (1) filter. This is important for our physical interpretation of the
X present model.
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The most popular subgrid stre6SGS models used to In what follows we give a description of the subgrid vortex
date utilize the the Smagorinsky realization of the eddy-orientation and an expression for the subgrid stresses. When
viscosity idea. The subgrid stresses are writteh as combined with schemes for relating the vortex orientation

~~ and the subgrid turbulent energy to the resolved scales, a

Tii 36 Tkk™ _2(C§)2|S| Sij» ®  closed system of LES equations results.
where S;; = (dU; /dx;+dU;/9x;)/2 is the resolved rate-of- Since the main problem of SGS modeling for LES is to
strain tensor|§|2=2S;S;, andC is a dimensionless num- represent the averaged effect of the small scales on the dy-
ber called the Smagorinsky coefficient.is some character- namics of the resolved scales, there is less need for a detailed
istic length scale, i.e., the scale below whi@) represents subgrid vorticity distribution than is required by calculation
the effect of the averaged motion of the neglected scale€f the fine scale properties themselves. Hence we use a
Values ofC in the range 0.1-0.2 have been used. A diffi-Simple, effectively axisymmetric model of a typical subgrid
Cu'ty with assumin@ to be constant is that the eddy VisScos- structure. PS showed that, under certain aSSUmptionS, in the
ity overwhelms the molecular viscosity in regions of laminarsense of a random superposition of fields, the ensemble-
flow. In the “dynamic model,** this problem is handled by averaged subgrid stresses of the vortex collection can be ex-
use of a procedure based on evaluating the Leonard stresg¥§ssed in terms of the subgrid energy:k., as
at various filter scales, together with certain kinematical -
identities to develop techniques for computi@@x,t) as the 7ij Zf E(k) dk (EpiZpgEq;). @
LES computation proceeds. These and other developments in ke
LES modeling are reviewed by Reynofdand Lesieur. where

In what follows, we develop in Sec. Il, the main features
of the present SGS models and show how coupling to the
equations for the filtered quantities is achieved. The incorpo-
ration of the present models into a LES code is described in ] ] ]
Sec. Il A while Sec. Il B and Sec. Il C give details of the 1S the subgrid energyE(K) is the subgrid energy spectrum,
calculation of decaying turbulence and forced box turbulenc&ij S the rotation matrix for transformation from vortex-
respectively. An energy/dissipation evolution model for thefix€d to Iaborallt?ry axeg;; is a diagonal tensor with diago-
subgrid vortices is discussed briefly in Sec. IV, as an alterN@l elementd(33,0), (EiZyqEq)) is @ moment of the prob-

native to the present method based on local balance arg@Pllity density function(pdf) P(«,8) of the Euler anglese
ments. and B describing the orientation of the subgrid vortex axis

relative to laboratory axesee PS equatiof?) and(8)), and
k. is a cutoff wavenumber. The ensemble average over Euler
angles is defined as

KELCE(k) dk 8

Il. A VORTEX-BASED SUBGRID STRESS MODEL
A. Subgrid stresses and vortex orientation

1 T (27

We propose a structural model of the subgrid vorticity ~ (f(Eij))= yp fo fo f(Eij)P(a,B)sin @ da dB. (9)
based on a stretched-vortex representation of the subgrid
scales. Structure-based models designed for turbulence coiiRS give several derivations ¢f). The simplest asserts that
putation were discussed by Reyndidmd specific models in the frame of reference fixed in a vortex, with the “3”
have been proposed by Pullin and Saffmdrenceforth PS, direction, or vortex axis, aligned with the vorticity, the en-
aimed at SGS modeling for LES, and by Reynolds andergy associated with the vorticity must be equipartitioned in
Kassino&’ in the context of one-point closure. The generalthe two directions normal to this axis. The internal and un-
approach may be characterizedstsicture-based Reynolds known vorticity distribution need not be axisymmetric.
stress closurePresently we implement and further develop Equation(7) holds for an arbitrary internal vorticity distribu-
the stretched-vortex subgrid model of PS. Here the subgrition in an individual structure following averaging over spin
vorticity consists of a superposition of vorticity fields or anglesy about the vortex axis, whepis assumed uniformly
“structures,” each with the property that the vorticity is uni- distributed in G<y<2#. Equation(7) is nevertheless opera-
directional, with no explicit dependence on the vorticity tionally equivalent to an axisymmetric subgrid vortex. We
magnitude on the coordinate parallel to the vorticity. Somgustify this by arguing that at sufficiently large Reynolds
support for this structure is provided by the observed tennumber and for sufficiently smal,, the subgrid vortex dy-
dency, in several numerical simulatiots=? for alignment  namics may be assumed to be evolving on a time scale which
between the vorticity vector and the eigenvector corresponds fast compared tat, , the integration time step fail)—
ing to the algebraically intermediate principal rate-of-strain,(4). In At_ either some degree of subgrid dynamic axisym-
thus suggesting a small-scale structure which is nearly “twoimetrization can be expected, or, alternatively owing to its
dimensional,” stretched by strain which is rather weakerself-induced motion about its axis, some azimuthal averag-
than the small-scale vorticity. Special cases are the Burgersing, equivalent to a sampling of the space of state spin
Townsend vorteX and the Lundgrelt stretched-spiral vor- angles, will occur, thus giving a tendency to equipartition.
tex, both of which have been applied to calculation of fine-We remark that7) has a similar structure to the “dimen-
scale turbulence propertié3*® The success of the stretched- sionality tensor” of Reynold&.
vortex models of the fine scales, while mixed, does suggest Calculation of7;; from (7) requires bottK and the dis-
that they may form the basis of a viable SGS model for LEStribution of structure orientations. PS proposed that the sub-
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grid vortex structures are convected and rotated by the ranent. The third model attempts to couple the vortex orienta-
solved field. The equation describing the evolution oftion to the evolution of the resolved rate-of-strain tensor.
P(a,B) is then

P ~ JP 1 9 ~

1. Model 1a: Alignment with &5 and €,

—+4U, —+——— (U, sinaP) This model, proposed by PS, is based on the idea that the
gt “lox; sina da subgrid structures respond on a fast time scale to the super-
9 - grid strain. Let the eigenvectors &; be'e;, &, ande;,
+ P ﬁ(UBP)zo, (100  corresponding to eigenvalues;<A,<\j3, such that\;

" _ +N,+A3=0. It is assumed that a fraction of the local sub-
whereU, and U, are the projections of the resolved field grid structures tend to become aligned W'&gLand the re-
r;dU; /9x; onto the unit sphere. The third and fourth terms of mainder align with the intermediate eigenvectgr The ori-
(10) give the contribution to the rate of change RBffrom  entation pdf is a two-vortex model given by
rotation bydU; /dx; . The use of10) is justified by heuristic P(e)=Ap(d8)+(1-N)p(d8,), (15)
appeal to the ideas of rapid distortion theory in the context of
the present structural model. In the cells, individual vorticesVhere
feel the local strain provided by the resolved field and rotate A3
in response. In the PS model, the subgrid energy was deter- A= |)\|—+)\ (16)
mined by assuming thaE(k) had a locally Kolmogorov _ _2 3 _ _
form. The local dissipatior was calculated by relating it to With equipartition of subgrid energy among the vortices,
the sum of the local production plus the local dissipation in7ij is given by
the rggolved f|elq. This model, .Wlth appropriate pounqary Tij=[7\(5ij—Eaigsj)+(1—K)(5ij _§2i~e'2])]
conditions forP, gives closure. It is not of the eddy-viscosity
type. % f E(k) dk. (17)
K

B. Vortex orientation models ‘

We tried to solve(10) using an ellipsoidal model for 2. Model 1b: Alignment with  &; and the resolved
P(a,B). This was unsuccessful as it was found that the elVorticity vector, &
lipsoid rapidly evolved into a “cigar” irrespective of its ini- Model 1a will be later shown to contain no backscatter,
tial conditions. This is consistent with the analysis ofi.e., the subgrid structures are subject only to stretching. In
Cocké’ and later Orsza$f who showed that for homoge- order to allow for backscatter we propose the model
neous isotropic turbulence the length of a material line al- P(e)= oa) 4 (1— e 18
ways increases on the average with time. This led us to the (&)= up(des) (1= p)p(ele”), (18
natural choice of delta-function pdf models. Presently we  7;=[u(§j —"égfée,j)+(1—u)
describe an approach based on modehg, 3) by product .
deltal function; or a linear combination of products of delta X (8 _eiﬂ’ejf")]f E(k) dk, (19)
functions. Typically we have ke

A where (1—pu) is the fraction of structures aligned with the
—<— Sa—0)8(B—)=p(ee), (1D resolved vorticity, with directiore{’=%;/|@|, where@ is
the resolved vorticity. This model is arbitrary but can be
where 6(x,t), ¢(x,t) is the specific orientation, and where shown to include backscatter. As partial justification we note
the unit vectore ande’ are defined respectively by that we should expect complete alignment wihin the
e,=sina cosB, e,=sinasinB, e;=cosa, DNS limit. We have performed calculations with
(12 ©#=0,0.5,1.0.

Pla,p)=

sin

ej=sinf cos¢, ej)=sindsing, ej=cosh. (13) 3. Model 2: Rotation by A N,-j

We have introduced the notatign(e/e’) for convenience. ~ Thelocal alignment modelsake no use of10). A re-
While, this almost certainly oversimplifies the subgrid vortex@lizable model intermediate in complexity betwe@6) and
dynamics, the spirit of LES is to obtain the averaged effecfodels 1a and b can be obtained by substitutibg) into
of subgrid motions on resolved scales, and it is hoped thatl® and using(13) to yield

(11) will suffice for this purpose. e _ _
It then follows from(11) that Eq.(7) can be written as - =e/A;j—elerelAyj, (20)
Tij:((si,-—ei“ej”)J E(k) dk. (14  where
ke ~
~ dU;
We now describe some specific orientation models used A;;= (97' (21
i

presently. The first two align the vortices with directions
defined by the local resolved strain rates. We refer to these as the resolved velocity-gradient tensor; see the Appendix for
local alignment modelsThey are simple and easy to imple- an alternative derivation. In practice, owing to the need for
Phys. Fluids, Vol. 9, No. 8, August 1997 A. Misra and D. I. Pullin 2445
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dealiasing arising in the implementation of spectral methodssangeE(k) would be important if one were trying to predict
it is more convenient to work with the equation for a vectorthe distribution of the dissipation across the subgrid scales,
defined byl;=Q(x,t)e/ . If Q(x,t) is chosen such thadt is  but the spirit of LES is to get the averaged effects, without

a solenoidal field, Eq(20) can be written as having to compute all the subgrid details, and we expect a
P simple model to be sufficient for this purpose. We remark
(7_'['_ o (|jGi):0_ (220  that(24) can be viewed as introducing a cutoff parameter

kn=J, where we have choseh=1. Finally, it might be

It is straightforward to show that the axis of a straight com-objected tha(24) is inconsistent with the effective axisym-
pact vortex, with an arbitrary internal vorticity distribution, metric vortex structure. We again emphasize the PS kine-
when embedded in a time-dependent outer strain field, wilmatic derivation of(7) is for an arbitrary internal vorticity
rotate according to Eq20). We remark that in obtaining distribution when the average over uniformly distributed spin
(22 we have omitted convection of the subgrid vortices byangles is allowed.

the resolved field. This is somewhat unsatisfactory but is Using(24) in (14) the subgrid stresses may be expressed
done owing to the ill-posedness produced by convection. A&S

alternative is to introduce a model damping mechanism, 3 Ll
hich ish t id 2700 oi30a 23 o _ N
which we wish to avoid. Ti| = 20 € (1= (kem) )| &; o ken<1,
C m'm
(25)
C. Subgrid energy and dissipation =0, ken>1.
Closure of all the aforementioned models requireswhen Eq.(25) is substituted in Eq(23) one obtains
knowledge of the subgrid enerdy. Our present method of )
evaluatingK invokes a local balance between the total dis- = V’éi’éi _ 3% 31— (k.7)??)
sipation and the sum of the resolved-scale dissipation and the I 2kER ¢
production of turbulent kinetic energy by the interaction be- L]
tween the resolved rate-of-strain tensor and the subgrid Xgij i~ L) kep<1,
stresses. An alternative approach base&ene-type equa- Il m (26)

tions for the subgrid vortices is discussed in Sec. IV but is 2,833 km>1
not implemented presently. =2vS5;S;,  ken>1,
We develop the local balance arguments forribt@ation  which, upon using the transformation
mode] they can bemutatis mutandiscarried out for the 3\ 114
alignment models 1a and 1b, respectively. It is assumed that  _ kc77=kc(—) , (27)
the difference between the total local dissipatienand the €
resolved-scale viscous dissipation is in balance with the Iocaéives
supergrid energy productioBgy, SO that

L N B I, 1— S, X4+ 3.7,S,X43(1— X213 =0, X<1, -
S e KS”( %~ m) ' 1-8,X4=0, X>1,
(23 o
Closure is obtained by assuming a Kolmogorov form of ' ee L
E(k) with a viscous cutoff ~ 2SS,
E(K)= 7% %8, ko<k<p? ST 9
<0 ’ C ’ (24)
=0, k>7n"1, aA= (&Ll )
. 5 14 S=Sj iz, (30
where. 7, is the Kolmogorov prefactor ang= (v°/€)™"" is cV

the local Kolmogorov length. We remark that for stretched

yortex models of the fine scal@(k) depgnd.s only on the root. It will later be demonstrated thé28) can have multiple
internal structure of the vorticity and is independent of . . . _ a5 A

P(e);>*there is no assumption of isotropy and therefore nosqlutlons forX in certain regions o6, — S space, but these
inconsistency in combining a Kolmogorov spectrum with lo- Will be seen to t_)e well rgmo_ved f_rom realizable valuesj of
cal anisotropy. Alternatives to the sharp dissipation cutoff ofS1+ Sz- The required solution is defined as that on a continu-
(24) would be to assume that each subgrid vortex is of the?us branch from the positive solution correspondingSjo
Lundgren spiral vortex form, and to repla¢24) with the =~ =0. WhenS;<1 this can be shown to satisi>1, which
Lundgren spectrum, or to use an exponential cutoff neafrom (25) gives zero subgrid stresses, while ®y>1 this
kn=1 as suggested by DN%and experiment’ The sharp branch givesK<1 always. Hence in practice the first (&8)
cutoff is chosen presently for simplicity; at large Reynoldsis solved only whers;>1; otherwise the SGS model turns
numbers the energy integral converges absolutely wBén off, or, equivalently, we seK=1. This corresponds to lo-

is used andv—0. At low Reynolds number, the model sub- cally fully resolved flow.

grid stresses are subdominant to the resolved viscous stresses For the defined branch, dominant balance arguments can

(see PS, Appendix B The actual form of the dissipation be used to show that in the limit af—0

It can be shown that f(fB1>O (28) always has a positive real
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2108 [ ~ JURRY
=0, $,>0. (32

Equation(28) is our basic result for calculating the dissipa-
tion, from which the subgrid stresses follow frd26). Pres-
ently we use(28) in two different implementations. In the

lll. FORCED AND DECAYING ISOTROPIC
TURBULENCE

A. Numerical method

We consider an incompressible fluid in a cubical box of
length 27. We solve(1) and(2) with and without a forcing
term, coupled with22) (for the rotation mode| using peri-
odic boundary conditions in all three directions. In Fourier
space(1) and(2) may be combined to givésubscriptk has

first, % is specified as a parameter and is held fixed for thebeen dropped

simulation. This is thefixed . %, scheme. In the second
implementation, 7, is calculated dynamically as follows;

label the points in physical space at which the resolved field

is calculated by indexn=1,... M, where, for exampleM
=N? for an N® spectral method. Next, writ€28) at each
point of the resolved flow in physical space as

H(S1m= 1A~ Sy X3 Z0SemXn (1= X5%)
+H(1-S; ) (1-Xp=0, m=1,..M, (33
where H(...) denotes the Heaviside functionX,

=ko(v® €)', €m being the local dissipation at poimb,
andS, ,, S, are (29 and(30) evaluated at pointn.

Now let E(k) be the energy spectrum of the resolved

field at some specified wavenumberk, k<k.. Assume
that E(k) conforms to(24),

E(K) =% )2k 53 (39)

—

— — k20 + 2 [~ (ik;U;U)) — ik Tim) + F11, (38)

whereZ7” is the projection operator on the space of solenoidal
fields, defined as

P= 6 — m (39
T ij k2 .
In k-space(22) is
a, =
E—ijljUFO. (40)

A Fourier—Galerkin pseudo-spectral method is used with
“3/2 de-aliasing rule” for the nonlinear terms both in the
momentum and subgrid equations, that is 32 Fourier modes
in each direction are advanced in time; the computation of
the nonlinear terms where done using 48 modes, the extra 16
modes used for padding. A second-order explicit Runge—

where(e) is the instantaneous volume-averaged dissipationg ita scheme is used for time advancement.

which can be expressed as

M 31,4
1 - vK¢ - ~—
(=3 2 H(Sim—1) Sz +H(1-Sm 208§,
- m

(39

Equation(34) forces continuity of the resolved and subgrid
energy spectra &=k, which in practice is chosen near to,
but somewhat less thak,. Eliminating (e) from (34) and
(35) gives

C M

F 1 A 1 A A

7 3y 2 H(Siun=1) 57 +H(1=S;0) Sy =0,
m=1 m

-ZJ O
(36)
where
E 3/27(' 52

IE:
3K

37)

WhenM, k¢, k, E, v, andS,,, S;, are given,(33) and
(36) areM + 1 nonlinear equations fo,, (m=1,... M) and
5. Once theX,, are known, thes,, can be calculated and
the subgrid stresses follow frof25) applied at each point.
We refer to this as theoupled 72, scheme. The methods by
which thefixed .72, and thecoupled.7Z, schemes are incor-

porated into a LES code are described in the next section.

Phys. Fluids, Vol. 9, No. 8, August 1997

The rotation model is incorporated into the LES code as
follows; equationq1), (2), (14), and(22) are solved simul-

taneously for the field&); andl;. At a given time-stegor
intermediate time-stgpthe |; are obtained from the Fourier
coefficientsl; which allows construction of the rotation ma-
trix E;j(x) and hence the contractior® and S,. For the
fixed 72, scheme, in whichZ, is a specified parameter, Eq.
(28) is solved forX,, individually at each of 32points using
Newton—Raphson, whence(x) follows from (27) and
7ij(X) from (25). This is transformed back to Fourier space
and fed into the momentum equation. In tbeupled.”
scheme, the scalar solution (8) is replaced by simulta-
neous solution o0f33) and (36), which gives both7Z, and

the dissipation field. We note that the Jacobian of the
coupled nonlinear system is diagonal with single sidebands,
thus the linear equations which result from application of the
Newton—Raphson method can be solved directly in order
M =32 operations.

Thelocal alignmentmodels operate similarly but do not
require solution of(22) sinceS; and S, can be calculated
directly from resolved flow variables. Some extra computa-
tion is involved is solving the scalar equation in each cell to
obtain the eigenstates &f; . We used the initial approxima-
tion X=S; ", S,<0, and, from dominant balance
=2.0, S,>0. This itself can be avoided {81) is used, but
this was found to produce a somewhat overly dissipative
model in the DNS limit; see discussion below. A choice of

A. Misra and D. I. Pullin 2447
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FIG. 1. Decay of the resolve@) and the subgridb) energy. Solid line—C%% [ 1a], dashed line—C% [ 1b;0.5|, dot—dashed line—C%# [ 2], and dotted
line—no model. The symbols are data from Ref. 21.

Jo=1.5is used as an initial guess for flows wkh>80; U..=10® cm/s, and the spacing of the turbulence generating
for lower Reynolds number one needs to lower this initialmesh isMy=5.08 cm. The size of the computational box,
guess to obtain convergence. L=11IM,, was chosen to contain roughly four integral

The results presented in Sec. lll B are obtained using thecales. The times at the three stations were measured in
coupled.”Z, scheme. Thdixed .77, scheme gives almost terms of U.t/M,. The initial Taylor Reynolds number is
identical results with the appropriate value @f, chosen. In R, =80. In order to compare the resolved and the subgrid
Sec. lll C we present results from all the models in forcedpart of the turbulent energy produced by the computation,
turbulence. Thefixed .72, scheme will be referred to by the measured spectra have been integrated over the relevant
F-7[...] and thecoupled 72, scheme by C#[...]. The  scale ranges. The results of this processing of the Comte-
bracketed information indicates the model number, i.e., 1aBellot and Corrsin data was supplied to us by staff at the
1b, or 2. For example, E# [ 1a] would refer tomodel 1a  Center for Turbulence Resear(@TR).

with .7 held fixed while C7Z[1b;0.5 would refer to Figure Xa) shows the decay of the resolved energy with
model 1bwith ©=0.5 using thecoupled.”Z;, scheme. time for all three models. The dotted line is the result of

running the simulation with the model switched off. It is
B. Decaying turbulence evident that the models play an important role in providing

We study decaying isotropic turbulence in order to Com_dISSIpatlon of kinetic energy. The decay of the subgrid en-

its to th . ¢ of Comte-Bellot dergy with time is shown in Fig. (b). Note that the subgrid
pare our results o the experiment ot Lomte-bellot an energy is obtained from the model without the solution of

in21
Corrsin-" They measured the energy spectrum at thre%dditional field equations. Since the subgrid energy is de-

fo docaying isottopi turbulence by invoking he Taylor ap.1Ved fom knowledge of the resolved fied and the chosen
ST . . d . subgrid energy spectrum, it cannot be independently initial-
proximation. We mimic their experiment by studying turbu- ized to the match the experimental value. Figurés and
lence in a cubical box with periodic boundary conditions. |n2(b) compare the resolved enerav s ectra. with the measure-
a frame of reference moving with the mean flow speed, pare the res gy sp i
ments at the initial time and then at the two later instances.
x dx’ The initial spectrum is generated to match the experimental
fo m (4D data, while the later two curves are the spectra calculated
from the three models. Figurdd) gives the area under the
where x is the downstream distance from the grid andcyrve of Figs. 2a) and 2b) at the three time instances, over
U(x) is the mean flow velocity over the cross section of thethe resolved range of scales. While all models give good
tunnel. We have nondimensionalized the experimental datagreement with the data for the decay of the resolved energy,
by the following characteristic velocity, length and time C- 7 ,[1a] and C-7%,[ 1b;0.5 seem to give a slightly better
scales:U = 3U(7/2, Lg=L/27, and t;e=L et/ Upes. IN resolved-scale spectrum thanZy[ 2]. This may be related
their experiments the velocity fluctuation at the first measurto an observed tendency for the power spectrum of tter
ing station is \/U_62= 22.2 cm/s, the free-stream speed isthe rotation mode{not shown to peak towards the cutoff at
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FIG. 2. Time evolution of spectra in decaying turbulence at three time instances. Solid lin&yfCa] and dashed line—C#,[1b;0.5 (a) and
C-7Zy[2] (b). The symbols are data from Ref. 21. The straight lineskfak, are the calculated subgrid spectra.

k. followed by a rapid decrease to zerolat k.. This ap-
parently results from the nonlinear coupling betweenlthe LES with C-%,[1b] for a range of values of. were per-
and theU; fields, which in the absence of viscous dampingformed and yielded satisfactory results in the sense of agree-
produces a mild cascade towards higher wave numbers andwent of the energy decay with experimept=0 resembled
subsequent buildup nekr k.. The response of the; field

is seen to be a concomitant increaséeitk) near the cutoff.

C-7[1b;0.5, and hovers around 2.5 for the .G5j[ 2].

the rotation model in its behavistis a vis the energy spec-
trum and the value of”Z,. Results in this paper will only be

The interaction between subgrid structures in adjacent cellpresented for the cage=0.5.

occurs only implicitly via the LES equations and the subgrid

The computing time per time-step relative to the Smago-

stress relations. This is apparently too weak to adequatelginsky model with constar® was found to be approximately
damp high wave number growth. Figure 3 shows the value ot.5 for models 1a and 1b and about 3 for th&ation model.

the Kolmogorov prefactor7;, with time. The Kolmogorov  The C-%Z, scheme was marginally more expensive than the
prefactor.7Z, settles to about 1.5 for C#[1a], 1.85 for

3.0

25

2.0

FIG. 3.

50 100 150

time

Time variation of the Kolmogorov prefactat?,, in decaying

turbulence. solid line—C# [ 1a], dashed line—C% [ 1b;0.5, and dot—
dashed line—C% [ 2].
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F-7%, scheme.

C. Forced turbulence

Forcing is achieved by exciting low wave numbers such
that the total energy injection rate is constant in tihe
certain selected number of Fourier modes are chosen from a
wave number shellk|=k,. The Fourier coefficient of the
forcing term is then written as

I AV
f=— —— 42)

N =
|UE|

for all modes in the specified shell. The above choicé,of
ensures that the energy injection raef,-U,, is a constant
and equal tas. We have choseky=2, N=20 (a box of side

2 grid units centered around the origin with the center modes
and the origin left oytand 6=0.1 for all the runs. The LES
simulations with forcing were performed over a range of
R, . The simulations run stably and eventually reach steady
state when statistics are collected. Figu@ 4hows a plot of
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FIG. 4. (e5g9/(€) versusR, (a) andk.y versusR, (b). Solid line—F-7%, schememodels 1a, 1b, and 2 are indistinguishaptiashed line—C7#, scheme
(models 1a, 1b, and 2 are indistinguishapnd dot—dashed line—Smagorinsky model witk 0.17.

<Ssgs>/<€>, the ratio of the average subgrid dissipation to thepresent class can be constructed using vortex alignment with
total average dissipation in the box versRs. The three the eigenvector corresponding o, and (31) to evaluate
curves shown are for the Smagorinsky model, fiked. %,  €sgs At R,=90 this model performed similarly to model 1a
models and theoupled.”Z, models. For models incorporat- for both decaying and homogeneous turbulence and was only
ing the C-%, scheme for forced turbulence, the computedmarginally slower than Smagorinsky. It was found, like
values of %, (not shown showed arR, dependence that Smagorinsky, to be too dissipative in the DNS limit, and so
was somewhat model dependent. For each modglin-  is not discussed in detail.

ceased with increasing, from near zero at the DNS limit The pdf of SGS in filtered DNS fields for both box
and reached a plateau for valuesRf greater than about turbulencé” and nonhomogeneous flofflshave typically
100. These asymptotic, lardg values were 1.3, 1.5, and 2.0 shown some 30% backscatter. It follows fr¢#8) that back-

for C-Z[1al, C-Z[1b;0.5, and C:%,[2], respec- scatter, defined by,<0, occurs wheneves,>0 while
tively, which we note are somewhat lower than the valuess,<0 gives cascade. A straightforward calculation using
shown in Fig. 3; this appears to be & effect. For the (23) shows that SGS dissipation can be written as

F-.7% calculations, these asymptoti&’, values were used

for all R, . Figure 4a) shows that the C#; models are less ~ il
dissipative in the DNS limit than the B#, models and thus €sgs™ — KSi( 5~ [
are superior in this respect. Figurébftis a plot ofk(7) vs R

R,, where here(n)=(v%(e))¥* (e being the box- ~—5K

averaged total dissipation. In both figures all results for the  — K 43
three models employing the same scheme were graphically =S5k, (43)

indistinguishable. With 32modes fully resolved DNS can ~, . ~ . )
be run at abouR, =25. This was confirmed by turning off WhereSss is the component o§; aligned with the vortex.

the SGS model and comparing computed values for th&leénce backscatter, defined byy<0, occurs wheneves,
skewness and the flatness factors of the longitudinal velocity” 0—the SGS_vortices are being compressed on the
derivatives and one component of the vorticity with the re-average—whileS,<0—the vortices are axially stretched—
sults of Kerf® at the same resolution and similg; . With  gives cascade. Figureses—5(c) show scatter plots o8, vs
the SGS models turned on we fifd(7)=1 at R,=25, S, for the three orientation models obtained from a simula-
indicating near full resolution except in the far viscous rangetion at R,=90. Models incorporating the C#, or the
Figure 4a) shows that the models are subdominant in thisF-.7Z, scheme exhibit similar behaviour. Model 1a has no
DNS limit, providing less than 0.0003 (C#%,) and 0.008 backscattefthis can be demonstrateaihile model 1b(with
(F-2,), of the volume-averaged dissipation. By compari- u=0.5 shows somé~3%) backscatter. Theotation model
son, the Smagorinsky model produces a fraction 0.16 of thehows substantial backscatter, abewt0%, and it is pos-
total dissipation aR, =25. sible that this may be related to its somewhat higher com-
We remark that the simplest possible model of theputed values of’Z;; compared to models 1a and 1b. A simu-
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FIG. 5. Scatter plot ofS, vs S, indicating regions of backscatter.
F-7[1a] (a) shows no backscatter, B[ 1b;0.5 (b) shows some back-
scatter, and F#[ 2] (c) shows about 40% backscatter. TheZ; models
exhibit similar behavior.

lation with C-7Z[1b;0], i.e., full alignment with the
vorticity, show a similar scatterplot to CZ,[ 2]. This sug-
gests a strategy of adjustment pf to obtain backscatter
agreeing with filtered DNS. It is interesting to note that the
all points lie within a bounding parabola. An estimate base
on a locally two-dimensional “maximum stretch” scenario
for S; gives a bounding parabo$1=1683. We find, how-
ever, thatS; = 128§ gives a slightly better boundary and so

this curve is displayed in the figures. The backscatter prop-
erties of the models are also illustrated in Fig. 6 which shows

shows a pdf of the “stretch,” that part of the velocity

gradient-tensor which stretches the subgrid vorticity. The

stretch is suitably normalized by(e)/v. The pdf of the
dissipation log, €/(€) for the three models is displayed in

Fig. 7. The distribution appears to be approximately log-

normal.
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It was remarked earlier th&R8) can exhibit regions of
multiple roots in theS, vs S, plane, posing a potential prob-
lem in obtaining a unique value ef givenS,, S,. This can
be shown to occur only whe8,<0. The boundary of the
region corresponding to multiple-valuednessXgs; ,S;) in
the S;, S, plane always lies well away from populated re-
gions of the scatter-plots of Fig. 5. In fact, wh&p>1, this
boundary is given by,~ —256S,; /(817%), which lies well
below the parabola bounding the scatter plots.

IV. CONCLUDING REMARKS

Stretched-vortex SGS models have been shown to per-
form well for both decaying and forced isotropic turbulence,
over a range oR, . They give the subgrid energy directly
and appear to produce the correct fully resolved flow in the
DNS limit with computational penalty, for the alignment
models, of some 50% in comparison to the standard Smago-
rinsky model. The E5Z, models are simple to implement
and give satisfactory performance. The &y approach al-
lows dynamic calculation ofZ, at the expense of some
extra complexity. All variations of the model tested presently
gave good comparison with data for decaying turbulence.
The stretched-vortex models have been shown to produce
backscatter, but none of the three tested give, in a natural
way, the 30% backscatter seen in filtered DNS of isotropic
turbulence. At the expense of adjustipg the fraction of
subgrid vortices aligned with the resolved vorticity, a two-
vortex alignment model with the right properties could be
constructed but we have not done so presently. We remark
that models incorporating the F#,, scheme are fully con-
structed in physical space and thus are amenable to finite
difference computations with complex flow geometries. The
present CZZ, scheme is implemented in Fourier space, but
this method could be used in physical space by replacing
(34) with its second-order structure function equivalent

(44)

(AU)ZZ f.,%oEZ/sr 2/3’
where (Au)? is a measure of the shell-averag@shysical
space longitudinal velocity difference squared, and where
f=1.31512. This could be applied either globally wif®
replaced by € or locally, withr=A, whereA is the local
node spacing.

One could replace the local balance model of Sec. Il C,
including the assumption of a Kolmogorov energy spectrum,
with transport equations for the subgrid vortex itself. The
elevant equations for the subgrid enelgyand the subgrid
dissipationeggsarising from internal SGS vortex motions can
be obtained from a model of a vortex moving evolving in a
linear background fieldsee the Appendix

DK _
Dr = SiTii~ €sgs
- I
=~ KSj| Gy -] €sos
= S:/%?,K_ €sgs (45
and
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6 between the skewnes%;, or dimensionless triple velocity
derivative, ande(k), which can be written in the form

- 35
412 f ) k*E(k) dk=— 5% Sev V22 (49)

Experiment indicates a value ney= —0.5. Use 0f(48) in

(46) with this value gives closure. It may be objected that
this is still a one-parameter model, but unlike the Kolmog-
orov prefactorS; is a definedmodel independepguantity
characteristic of the dissipation range of turbulence which by
definition, lies outside the range of resolved scales in LES.
Some input from experiment or theory is then justified.

The stretched-vortex ansatz appears able to give a self-
consistent if approximate quantitative description of the de-
tailed fine-scale properties of turbulence and at the same time
provides a basis for the construction of workable SGS mod-
els relating the averaged behavior of the fine scales to the
FIG. 6. The pdf of the “stretch’—e|dU;/dx;o] . Solid line— resolved-flow variables in large-eddy simulation. The imple-
F-Zo[1al, dashed line—F7#[1b;0.5, and dot-dashed line— mentation of aK— eg4sversion of the vortex model, and the
F-Zo[2]. The C-%, models exhibit similar behavior. application of the present class of vortex SGS models to
nonhomogeneous flows including channel and other wall-
bounded shear flows, provide topics for future research.

P{Stretch)

Stretch

De Ll ~ *
0 LS e[ KB Ok 49
kik ke ACKNOWLEDGMENTS

where egsis This work was supported in part by NSF Grant CTS-

_> wkZE K dk 4 9634222. The authors wish to thank Dr. Thomas Lund for
€sgs— <V K (k) dk. (47) useful discussions and help in the implementation of the de-
caying test. AM benefited from his visit to CTR during the

The first term on the right of46) gives the increase of the 1996 Summer Program and would like to thank Professor
subgrid enstrophy, and hence the dissipation, produced b¥a.iz Moin for useful suggestions.

local vortex stretching provided by the resolved scales, while

the second term gives the effect of viscous diffusion of en-

strophy. These equations can replace the local balance mod@P PENDIX: VORTEX EVOLUTION IN A LINEAR
for the computation oK; the stresses are still given §4). RESOLVED FIELD

The K— esgsare not closed, however, sinégk) appears in Consider a vortex embedded in a background linear ve-
(46). Closure can be obtained by applying a time filter tojocity field, the latter viewed as generated by the velocity
(45) and(46) and using the well-known approximate relation gradients of the local resolved flow. Denote laboratory-fixed
axes byx; and vortex-fixed axes by, ; for clarity we omit
the “prime” superscipt on vortex-fixed guantities. Without

1.0 . .
: loss of generality these two axis systems may be chosen to
I o be coincident at timg¢=0. The fluid velocity in the fixed
08 ’ frame isq; and the vorticity is§;= & dqi/Ix;, while in

vortex-fixed axes these arg and {;=gjjdv/dr;, respec-
. tively, wheree;;, used with a triple subscript here denotes
the alternating tensor. The vortex rotates with angular veloc-
ity Q;(t) with respect to the; in a way to be described. The
[ /i R background field is
04 i \ _ ~ ~ ~
i i = Ay (1)X;=S;; (1) X+ Qi (1) X; (A1)
I ’ whereS; (t) is the symmetric an@;; (t) = %s”kgk(t) the an-
o2r i tisymmetric part ofA;;(t), and&;(t) is the background vor-
0 ticity. The time dependencies of all these quantities, which
N . L differ in laboratory- and in vortex-fixed axes, will be sup-
2 -1 0 1 2 pressed unless required. In particular we note that the back-
log dissipation ground strain tenso;;(t) and vorticity £,(t) are not inde-
FIG. 7. The pdf of the log, e/(<). Solid line—C-7y[1al, dashed line— pendent, since the latter is subj'ect .to stretchlrlg and F|It|ng by
C-7,[1b;0.5, and dot—dashed line—GZ,[2]. The F-7, models ex-  <j(t). Let ui(r,t) be the velocity field associated with the
hibit similar behavior. vortex alone, in vortex fixed axes, ang be the correspond-

pdf of log dissipation
o
[er}
T
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ing vorticity, w;= & du,/dr; . The full velocity and vortic-
ity in the vortex-fixed(rotating axes are then

GrD=6-2Q+w;, (A2)
vi(r,t)= AIJ i~ ity (A3)
The components aof; are
Uy =Agl 1+ (Aot Q3)F o+ (Agg— Q)13
Vo= Up=(Ag— Qa)F 1+ Agal o+ (Aggt Q1) 3, (A4)

v3—U3=(Ag1t Qo)r1+(Az—Qq)rs+Asss.

In vortex-fixed axes, the momentum and vorticity equatlons[?_

may be written, respectively, as

*

S e )+ v D 2 Q= e + bV

— (vi+e&iQiry+v; — + 2, Qivge=——+vViv;,

ot i ijk2&jt k J&rj ijks=jlk ﬁri i
(A5)

I~  ~ il ~ wi

5(51"‘290“‘01' E:(§j+29j) a_rj+VVri§i, (A6)

l

where P* =P+%eri2 and P is the pressure. Continuity is
&vi/8ri=0

At t=0 we specify thatw;=wi(r,,r,,0) [hence u;
=U;(r1,r,,0)] and r?w;—0 asri+rs—ow. Thus there is
initially no dependence on the; coordinate, which is
viewed as the “axis” of the vortex, and the vorticity is com-
pact in the cross-sectional plane,{r,). It follows from

element of unit length aligned with the vortex axis, due to
the linear field alone; it provides a derivation of EQO).

The vortex axis remains rectilinear and the internal structure
of the vortex is two-dimensional in the sense of dependence
only on (r{,r»), but allows axial flow.

To obtain the enstrophy equation we simplify to the spe-
cial case where there is no background vortdts: 0. This
may be a reasonable model for a strong vortey>|&|.

We also putw;=w,=0 att=0, from which it follows from
the vorticity equation that this will be true for dlt>0. The
w3 vorticity equation is then

E " (9\II3 07 3 " 23 " (?\Pg (9(1)3
110 1 ary | ar, 1201 Szzrz ary | ar,
= Ssws+ vV ws. (A10)

Now multiply (A10) by ws, integrate over therg—r,)
plane, and use the well-known results, valid for the vortex
flow, vwsViws=2v[gk'E(K)dk and ege=vws, where
E(k) is the shell-summed energy spectrum and where the
overbar refers to an integral over the vortex cross section.
This gives, after some algebra,

ZJmk4
0

Finally, we account for the stretching or compression of the
vortex by833 and for an average over all possible spin angles

&esgs ~

= Sugecqs 4y E(k) dk. (A11)

(A4—AB) and the initial conditions that the absence of de-of the vortex structure about tirg axis. Denoting the vortex

pendence oMz, i.e., ;= wi(r1,r,,t) andu;=u;(ry,ro,t),
will be preserved in the evolution provided; = —A,; and
Q,=A,3. The componenf); is arbitrary and a convenient
choice is Q3;=—A;,. Introduction of a vector potential
Wi(rq,rs,t), such that

AL B S A7
Ui_sijka_rj1 Tr 20 ei= VR (A7)
then allows(A4) to be written in the form
~ oA L
012511r1+72,
74\ L
Vo= ZS12r1+522r2_7 (A8)
—_ - _ ovr, ¥,
03:2813r1+2823r2+833r3+___.
arq ar,

When (A8) and (A2) are used in(A6), the resulting equa-
tions together with the third ofA7) give closed equations
for wi(rq1,r,,t). Similarly, closed equations far(rq,r,,t)
may be obtained fronfA5).

It is straightforward that the above choice f6Y, is
equivalent to rotation of the; axis according to

0€;
ot

= eJA” — € eke]-Ak]- , (Ag)
wheree;(t)=e} (text usaggare the direction cosines of the

r5 axis relative to the laboratory axgx0)=(0,0,1]. This is

length at time byl (t), we write for some quantity

I(t) (= (= (27
f f f f drldl‘zd'y,
—ooJ —0J0

=22
|
|(t)=|(0)eXF< f0833(t’)dt’),

(Al12)

where the double overbar denotes integration over
[equivalent to multiplying byt (t)] and the vortex cross sec-
tion, division by the volume.2 of a large box containing a
vortex and an average over all possible spin angjes
0<vy=<2m. Differentiating the first of(A12) with respect to
t and using the second ¢A12) then gives

|(t) 2@
2wL3f_ f_ f f drldrzd’y

(A13)

When the first of(A12) is applied to(All) ( f=e49 and
(A13) is used for the unsteady term it is found that

2|

Il
nl

@
—hn

de
Sgs 23336395 412 k4 dk,

(A14)

and we note that the double overbar has been suppressed for
E(k). Omitting the double overbar on the other terms gives
Eq. (46).

An energy equation for the internal vortex motions may
be obtained along similar lines, starting wi#5). Care must
be taken to account for the contribution from the pressure at

just the rotation that would be experienced by a material linenfinity in ther, —r, plane and the time variation &;(t) in
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