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A class of subgrid stress~SGS! models for large-eddy simulation~LES! is presented based on the
idea of structure-based Reynolds-stress closure. The subgrid structure of the turbulence is assumed
to consist of stretched vortices whose orientations are determined by the resolved velocity field. An
equation which relates the subgrid stress to the structure orientation and the subgrid kinetic energy,
together with an assumed Kolmogorov energy spectrum for the subgrid vortices, gives a closed
coupling of the SGS model dynamics to the filtered Navier–Stokes equations for the resolved flow
quantities. The subgrid energy is calculated directly by use of a local balance between the total
dissipation and the sum of the resolved-scale dissipation and production by the resolved scales.
Simple one- and two-vortex models are proposed and tested in which the subgrid vortex orientations
are either fixed by the local resolved velocity gradients, or rotate in response to the evolution of the
gradient field. These models are not of the eddy viscosity type. LES calculations with the present
models are described for 323 decaying turbulence and also for forced 323 box turbulence at Taylor
Reynolds numbersRl in the rangeRl.30 ~fully resolved! to Rl5`. The models give good
agreement with experiment for decaying turbulence and produce negligible SGS dissipation for
forced turbulence in the limit of fully resolved flow. ©1997 American Institute of Physics.
@S1070-6631~97!02008-4#
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I. INTRODUCTION

Despite the availability of large-scale scientifi
computing, direct numerical simulation~DNS! of the
Navier–Stokes equations at Reynolds numbers typica
engineering application continues to remain beyond
reach of either present day facilities or those likely
be developed in the foreseeable future. This is because
range of scales that must be resolved in DNS increa
very rapidly with increasing Reynolds number. The LE
approach to this problem is to compute the detailed sp
and time dependence of the flow only at scales larger t
some cutoff while modeling the effects on the retained sca
of the transport of momentum and energy of the ‘‘fine
scales below the cutoff. The approach seems to be base
two related assumptions, first that the large~retained! scales
are strongly coupled to the outer flow and the body geom
~boundary conditions! producing the turbulence, and secon
that the ‘‘fine’’ scales exhibit a quasi-universal charac
with only weak dependence on the large scales. The
then remains of constructing subgrid models which are ba
in some sense on a physically realistic description of the
scales.

Consider the large eddy simulation of the Navier–Sto
equations on a grid with a typical cell size ofDx and time
stepDt. Let Ũ i(x,t) represent the resolved~supergrid! ve-
locity field and letP̃(x,t) be the resolved pressure field. P
Ui(x,t)5Ũ i(x,t)1ui(x,t), where Ui is the full velocity
field andui the subgrid field. The filtered LES equations f
an incompressible fluid are

]Ũ i

]xi
50, ~1!
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]Ũ i

]t
1

]

]xj
~Ũ i Ũ j !52

] P̃

]xi
2

]Ti j
]xj

2
]Li j
]xj

1n
]2Ũ i

]xj]xj
,

~2!

where

Ti j5uiŨ j̃1ujŨ ĩ1uiuj̃ , ~3!

Li j5Ũ i Ũ j̃2Ũ i Ũ j . ~4!

HereTi j is the subgrid stress tensor andLi j is the Leonard
stress tensor. Theuiuj̃ are the subgrid scale stresses whi
shall henceforth be denoted byt i j . Equations~1! and~2! are
filtered equations over a discretized region of space; ‘‘˜ ’’
denotes the filtering operation defined using a ker
G(x2x8) such that

Ũ i~x,t !5E G~x2x8!Ui~x8,t ! dx8. ~5!

In principleLi j can be evaluated givenŨ i andG.
1,2 For the

combination of a sharp cutoff spectral filter and a pseu
spectral numerical method, both with the same spectral
off, Li j50. Since this is the method used presently,Li j will
not be discussed further. Evaluation of cross terms in
expression forTi j appears to require detailed knowledge
ui which LES seeks to avoid. We will presently lump th
three terms of~3! together throughTi j5t i j . This is not com-
pletely satisfactory but will be shown to produce a physica
sensible class of models. A further complication concerns
question of filtering in time. At large Reynolds numbers Eq
~1!–~4! appear to have little physical meaning on time-sca
of the order (n/e)1/2. Time-wise integration of~1!–~4! is
usually done with time-stepDtL@(n/e)1/2, which implies a
filter. This is important for our physical interpretation of th
present model.
2443/$10.00 © 1997 American Institute of Physics
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The most popular subgrid stress~SGS! models used to
date utilize the the Smagorinsky realization of the ed
viscosity idea. The subgrid stresses are written as3

t i j2
1
3d i j tkk522~CD!2uS̃uS̃i j , ~6!

where S̃i j5(]Ũ i /]xj1]Ũ j /]xi)/2 is the resolved rate-of
strain tensor,uS̃u252S̃i j S̃i j , andC is a dimensionless num
ber called the Smagorinsky coefficient.D is some character
istic length scale, i.e., the scale below which~5! represents
the effect of the averaged motion of the neglected sca
Values ofC in the range 0.1–0.2 have been used. A di
culty with assumingC to be constant is that the eddy visco
ity overwhelms the molecular viscosity in regions of lamin
flow. In the ‘‘dynamic model,’’4,5 this problem is handled by
use of a procedure based on evaluating the Leonard stre
at various filter scales, together with certain kinemati
identities to develop techniques for computingC(x,t) as the
LES computation proceeds. These and other developmen
LES modeling are reviewed by Reynolds6 and Lesieur.7

In what follows, we develop in Sec. II, the main featur
of the present SGS models and show how coupling to
equations for the filtered quantities is achieved. The incor
ration of the present models into a LES code is describe
Sec. III A while Sec. III B and Sec. III C give details of th
calculation of decaying turbulence and forced box turbule
respectively. An energy/dissipation evolution model for t
subgrid vortices is discussed briefly in Sec. IV, as an al
native to the present method based on local balance a
ments.

II. A VORTEX-BASED SUBGRID STRESS MODEL

A. Subgrid stresses and vortex orientation

We propose a structural model of the subgrid vortic
based on a stretched-vortex representation of the sub
scales. Structure-based models designed for turbulence
putation were discussed by Reynolds8 and specific models
have been proposed by Pullin and Saffman,9 henceforth PS,
aimed at SGS modeling for LES, and by Reynolds a
Kassinos10 in the context of one-point closure. The gene
approach may be characterized asstructure-based Reynold
stress closure. Presently we implement and further devel
the stretched-vortex subgrid model of PS. Here the sub
vorticity consists of a superposition of vorticity fields o
‘‘structures,’’ each with the property that the vorticity is un
directional, with no explicit dependence on the vortic
magnitude on the coordinate parallel to the vorticity. So
support for this structure is provided by the observed t
dency, in several numerical simulations,11,12 for alignment
between the vorticity vector and the eigenvector correspo
ing to the algebraically intermediate principal rate-of-stra
thus suggesting a small-scale structure which is nearly ‘‘tw
dimensional,’’ stretched by strain which is rather weak
than the small-scale vorticity. Special cases are the Burge
Townsend vortex13 and the Lundgren14 stretched-spiral vor-
tex, both of which have been applied to calculation of fin
scale turbulence properties.15,16The success of the stretche
vortex models of the fine scales, while mixed, does sugg
that they may form the basis of a viable SGS model for LE
2444 Phys. Fluids, Vol. 9, No. 8, August 1997

Downloaded¬16¬Dec¬2005¬to¬131.215.225.9.¬Redistribution¬subject¬
-

s.
-

r

ses
l

in

e
-
in

e

r-
u-

rid
m-

d
l

id

e
-

d-
,
-
r
s–

-

st
.

In what follows we give a description of the subgrid vorte
orientation and an expression for the subgrid stresses. W
combined with schemes for relating the vortex orientat
and the subgrid turbulent energy to the resolved scale
closed system of LES equations results.

Since the main problem of SGS modeling for LES is
represent the averaged effect of the small scales on the
namics of the resolved scales, there is less need for a det
subgrid vorticity distribution than is required by calculatio
of the fine scale properties themselves. Hence we us
simple, effectively axisymmetric model of a typical subgr
structure. PS showed that, under certain assumptions, in
sense of a random superposition of fields, the ensem
averaged subgrid stresses of the vortex collection can be
pressed in terms of the subgrid energy,k.kc , as

t i j52E
kc

`

E~k! dk ^EpiZpqEq j&, ~7!

where

K[E
kc

`

E~k! dk ~8!

is the subgrid energy,E(k) is the subgrid energy spectrum
Ei j is the rotation matrix for transformation from vortex
fixed to laboratory axes,Zi j is a diagonal tensor with diago
nal elements~12,

1
2,0!, ^EpiZpqEq j& is a moment of the prob-

ability density function~pdf! P(a,b) of the Euler anglesa
andb describing the orientation of the subgrid vortex ax
relative to laboratory axes~see PS equation~7! and~8!!, and
kc is a cutoff wavenumber. The ensemble average over E
angles is defined as

^ f ~Ei j !&5
1

4p E
0

pE
0

2p

f ~Ei j !P~a,b!sin a da db. ~9!

PS give several derivations of~7!. The simplest asserts tha
in the frame of reference fixed in a vortex, with the ‘‘3
direction, or vortex axis, aligned with the vorticity, the e
ergy associated with the vorticity must be equipartitioned
the two directions normal to this axis. The internal and u
known vorticity distribution need not be axisymmetri
Equation~7! holds for an arbitrary internal vorticity distribu
tion in an individual structure following averaging over sp
anglesg about the vortex axis, wheng is assumed uniformly
distributed in 0<g<2p. Equation~7! is nevertheless opera
tionally equivalent to an axisymmetric subgrid vortex. W
justify this by arguing that at sufficiently large Reynold
number and for sufficiently smallkc , the subgrid vortex dy-
namics may be assumed to be evolving on a time scale w
is fast compared toDtL , the integration time step for~1!–
~4!. In DtL either some degree of subgrid dynamic axisy
metrization can be expected, or, alternatively owing to
self-induced motion about its axis, some azimuthal aver
ing, equivalent to a sampling of the space of state s
angles, will occur, thus giving a tendency to equipartitio
We remark that~7! has a similar structure to the ‘‘dimen
sionality tensor’’ of Reynolds.8

Calculation oft i j from ~7! requires bothK and the dis-
tribution of structure orientations. PS proposed that the s
A. Misra and D. I. Pullin
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grid vortex structures are convected and rotated by the
solved field. The equation describing the evolution
P(a,b) is then

]P

]t
1Ũ j

]P

]xj
1

1

sin a

]

]a
~Ũa sin aP!

1
1

sin a

]

]b
~ŨbP!50, ~10!

where Ũa and Ũb are the projections of the resolved fie
r j]Ũ i /]xj onto the unit sphere. The third and fourth terms
~10! give the contribution to the rate of change ofP from
rotation by]Ũ i /]xj . The use of~10! is justified by heuristic
appeal to the ideas of rapid distortion theory in the contex
the present structural model. In the cells, individual vortic
feel the local strain provided by the resolved field and rot
in response. In the PS model, the subgrid energy was d
mined by assuming thatE(k) had a locally Kolmogorov
form. The local dissipatione was calculated by relating it to
the sum of the local production plus the local dissipation
the resolved field. This model, with appropriate bound
conditions forP, gives closure. It is not of the eddy-viscosi
type.

B. Vortex orientation models

We tried to solve~10! using an ellipsoidal model fo
P(a,b). This was unsuccessful as it was found that the
lipsoid rapidly evolved into a ‘‘cigar’’ irrespective of its ini
tial conditions. This is consistent with the analysis
Cocke17 and later Orszag,18 who showed that for homoge
neous isotropic turbulence the length of a material line
ways increases on the average with time. This led us to
natural choice of delta-function pdf models. Presently
describe an approach based on modelingP(a,b) by product
delta functions or a linear combination of products of de
functions. Typically we have

P~a,b!5
4p

sin a
d~a2u!d~b2f![`~euev!, ~11!

whereu(x,t), f(x,t) is the specific orientation, and wher
the unit vectorse andev are defined respectively by

e15sin a cosb, e25sin a sin b, e35cosa,
~12!

e1
v5sin u cosf, e2

v5sin u sin f, e3
v5cosu. ~13!

We have introduced the notatioǹ(euev) for convenience.
While, this almost certainly oversimplifies the subgrid vort
dynamics, the spirit of LES is to obtain the averaged eff
of subgrid motions on resolved scales, and it is hoped
~11! will suffice for this purpose.

It then follows from~11! that Eq.~7! can be written as

t i j5~d i j2ei
vej

v!E
kc

`

E~k! dk. ~14!

We now describe some specific orientation models u
presently. The first two align the vortices with directio
defined by the local resolved strain rates. We refer to thes
local alignment models. They are simple and easy to imple
Phys. Fluids, Vol. 9, No. 8, August 1997
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ment. The third model attempts to couple the vortex orien
tion to the evolution of the resolved rate-of-strain tensor.

1. Model 1a: Alignment with ẽ3 and ẽ2
This model, proposed by PS, is based on the idea tha

subgrid structures respond on a fast time scale to the su
grid strain. Let the eigenvectors ofS̃i j be ẽ1 , ẽ2 , and ẽ3 ,
corresponding to eigenvaluesl1,l2,l3 , such thatl1

1l21l350. It is assumed that a fraction of the local su
grid structures tend to become aligned withẽ3 and the re-
mainder align with the intermediate eigenvectorẽ2 . The ori-
entation pdf is a two-vortex model given by

P~e!5l`~euẽ3!1~12l!`~euẽ2!, ~15!

where

l5
l3

ul2u1l3
. ~16!

With equipartition of subgrid energy among the vortice
t i j is given by

t i j5@l~d i j2ẽ3i ẽ3 j !1~12l!~d i j2ẽ2i ẽ2 j !#

3E
kc

`

E~k! dk. ~17!

2. Model 1b: Alignment with ẽ3 and the resolved
vorticity vector, ṽ

Model 1a will be later shown to contain no backscatt
i.e., the subgrid structures are subject only to stretching
order to allow for backscatter we propose the model

P~e!5m`~euẽ3!1~12m!`~euev!, ~18!

t i j5@m~d i j2ẽ3i ẽ3 j !1~12m!

3~d i j2ei
vej

v!#E
kc

`

E~k! dk, ~19!

where ~12m! is the fraction of structures aligned with th
resolved vorticity, with directionej

v5ṽ j /uṽu, where ṽ is
the resolved vorticity. This model is arbitrary but can
shown to include backscatter. As partial justification we n
that we should expect complete alignment withṽ in the
DNS limit. We have performed calculations wit
m50,0.5,1.0.

3. Model 2: Rotation by A ˜ ij
The local alignment modelsmake no use of~10!. A re-

alizable model intermediate in complexity between~10! and
Models 1a and b can be obtained by substituting~11! into
~10! and using~13! to yield

]ei
v

]t
5ej

vÃi j2ei
vek

vej
vÃk j , ~20!

where

Ãi j[
]Ũ i

]xj
~21!

is the resolved velocity-gradient tensor; see the Appendix
an alternative derivation. In practice, owing to the need
2445A. Misra and D. I. Pullin
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dealiasing arising in the implementation of spectral metho
it is more convenient to work with the equation for a vec
defined byl i5Q(x,t)ei

v . If Q(x,t) is chosen such thatl 1 is
a solenoidal field, Eq.~20! can be written as

] l i
]t

2
]

]xj
~ l j Ũ i !50. ~22!

It is straightforward to show that the axis of a straight co
pact vortex, with an arbitrary internal vorticity distribution
when embedded in a time-dependent outer strain field,
rotate according to Eq.~20!. We remark that in obtaining
~22! we have omitted convection of the subgrid vortices
the resolved field. This is somewhat unsatisfactory bu
done owing to the ill-posedness produced by convection.
alternative is to introduce a model damping mechanis
which we wish to avoid.

C. Subgrid energy and dissipation

Closure of all the aforementioned models requi
knowledge of the subgrid energyK. Our present method o
evaluatingK invokes a local balance between the total d
sipation and the sum of the resolved-scale dissipation and
production of turbulent kinetic energy by the interaction b
tween the resolved rate-of-strain tensor and the sub
stresses. An alternative approach based onK2e-type equa-
tions for the subgrid vortices is discussed in Sec. IV bu
not implemented presently.

We develop the local balance arguments for therotation
model; they can bemutatis mutandiscarried out for the
alignment models 1a and 1b, respectively. It is assumed
the difference between the total local dissipation,e, and the
resolved-scale viscous dissipation is in balance with the lo
supergrid energy production,«sgs, so that

e52nS̃i j S̃i j1«sgs, «sgs[2S̃i j t i j52KS̃i j S d i j2
l i l j
l ml m

D .
~23!

Closure is obtained by assuming a Kolmogorov form
E(k) with a viscous cutoff

E~k!5K 0e
2/3k25/3, kc,k,h21,

~24!
50, k.h21,

whereK 0 is the Kolmogorov prefactor andh5(n3/e)1/4 is
the local Kolmogorov length. We remark that for stretch
vortex models of the fine scalesE(k) depends only on the
internal structure of the vorticity and is independent
P(e);9,14 there is no assumption of isotropy and therefore
inconsistency in combining a Kolmogorov spectrum with
cal anisotropy. Alternatives to the sharp dissipation cutoff
~24! would be to assume that each subgrid vortex is of
Lundgren spiral vortex form, and to replace~24! with the
Lundgren spectrum, or to use an exponential cutoff n
kh51 as suggested by DNS19/and experiment.20 The sharp
cutoff is chosen presently for simplicity; at large Reynol
numbers the energy integral converges absolutely when~24!
is used andn→0. At low Reynolds number, the model su
grid stresses are subdominant to the resolved viscous str
~see PS, Appendix B!. The actual form of the dissipatio
2446 Phys. Fluids, Vol. 9, No. 8, August 1997
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rangeE(k) would be important if one were trying to predic
the distribution of the dissipation across the subgrid sca
but the spirit of LES is to get the averaged effects, witho
having to compute all the subgrid details, and we expec
simple model to be sufficient for this purpose. We rema
that ~24! can be viewed as introducing a cutoff parame
kh5J, where we have chosenJ51. Finally, it might be
objected that~24! is inconsistent with the effective axisym
metric vortex structure. We again emphasize the PS k
matic derivation of~7! is for an arbitrary internal vorticity
distribution when the average over uniformly distributed sp
angles is allowed.

Using ~24! in ~14! the subgrid stresses may be express
as

t i j5
3K 0

2kc
2/3 e2/3„12~kch!2/3…S d i j2

l i l j
l ml m

D , kch,1,

~25!
50, kch.1.

When Eq.~25! is substituted in Eq.~23! one obtains

e52nS̃i j S̃i j2
3K 0

2kc
2/3 e2/3„12~kch!2/3…

3S̃i j S d i j2
l i l j
l ml m

D , kch,1,
~26!

52nS̃i j S̃i j , kch.1,

which, upon using the transformation

X5kch5kcS n3

e D 1/4, ~27!

gives

12Ŝ1X
413K 0Ŝ2X

4/3~12X2/3!50, X,1,
~28!

12Ŝ1X
450, X.1,

where

Ŝ15
2S̃i j S̃i j
kc
4n2

, ~29!

Ŝ25S̃i j
~d i j2 l i l j / l ml m!

2kc
2n

. ~30!

It can be shown that forŜ1.0 ~28! always has a positive rea
root. It will later be demonstrated that~28! can have multiple
solutions forX in certain regions ofŜ12Ŝ2 space, but these
will be seen to be well removed from realizable values
Ŝ1 , Ŝ2 . The required solution is defined as that on a contin
ous branch from the positive solution corresponding toŜ2
50. WhenŜ1,1 this can be shown to satisfyX.1, which
from ~25! gives zero subgrid stresses, while forŜ1.1 this
branch givesX,1 always. Hence in practice the first of~28!
is solved only whenŜ1.1; otherwise the SGS model turn
off, or, equivalently, we setX51. This corresponds to lo
cally fully resolved flow.

For the defined branch, dominant balance arguments
be used to show that in the limit ofn→0
A. Misra and D. I. Pullin
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e5
27K 0

3

8kc
2 X2S̃i j S d i j2

l i l j
l ml m

D C3, Ŝ2,0 ~31!

50, Ŝ2.0. ~32!

Equation~28! is our basic result for calculating the dissip
tion, from which the subgrid stresses follow from~25!. Pres-
ently we use~28! in two different implementations. In the
first,K 0 is specified as a parameter and is held fixed for
simulation. This is thefixed K 0 scheme. In the secon
implementation,K 0 is calculated dynamically as follows
label the points in physical space at which the resolved fi
is calculated by indexm51,...,M , where, for example,M
5N3 for an N3 spectral method. Next, write~28! at each
point of the resolved flow in physical space as

H~Ŝ1,m21!„12Ŝ1,mXm
4 13K 0Ŝ2,mXm

4/3~12Xm
2/3!…

1H~12Ŝ1,m!~12Xm!50, m51,...,M , ~33!

where H(...) denotes the Heaviside function,Xm

5kc(n
3/em)

1/4, em being the local dissipation at pointm,
and Ŝ1,m , Ŝ2,m are ~29! and ~30! evaluated at pointm.

Now let Ẽ( k̃) be the energy spectrum of the resolv
field at some specified wavenumberk5 k̃, k̃,kc . Assume
that Ẽ( k̃) conforms to~24!,

Ẽ~ k̃!5K 0^e&2/3k̃25/3, ~34!

where^e& is the instantaneous volume-averaged dissipat
which can be expressed as

^e&5
1

M (
m51

M

H~Ŝ1,m21!
n3kc

4

Xm
4 1H~12Ŝ1,m!2nS̃i j S̃i j .

~35!

Equation~34! forces continuity of the resolved and subgr
energy spectra atk5 k̃, which in practice is chosen near t
but somewhat less than,kc . Eliminating ^e& from ~34! and
~35! gives

F̂

K 0
3/22

1

M (
m51

M

H~Ŝ1,m21!
1

Xm
4 1H~12Ŝ1,m!Ŝ1,m50,

~36!

where

F̂5
Ẽ 3/2k̃ 5/2

n3kc
4 . ~37!

WhenM , kc , k̃, Ẽ, n, and Ŝ1,m , Ŝ2,m are given,~33! and
~36! areM11 nonlinear equations forXm (m51,...,M ) and
K 0 . Once theXm are known, theem can be calculated an
the subgrid stresses follow from~25! applied at each point
We refer to this as thecoupledK 0 scheme. The methods b
which thefixedK 0 and thecoupledK 0 schemes are incor
porated into a LES code are described in the next sectio
Phys. Fluids, Vol. 9, No. 8, August 1997
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III. FORCED AND DECAYING ISOTROPIC
TURBULENCE

A. Numerical method

We consider an incompressible fluid in a cubical box
length 2p. We solve~1! and ~2! with and without a forcing
term, coupled with~22! ~for the rotation model!, using peri-
odic boundary conditions in all three directions. In Four
space~1! and ~2! may be combined to give~subscriptk has
been dropped!

] Û̃ i

]t
52nk2Û̃ i1P @2~ ik j Ũ i Ũ ĵ !2~ ikmT̂im!1 f̂ i #, ~38!

whereP is the projection operator on the space of solenoi
fields, defined as

P5d i j2
kikj
k2

. ~39!

In k-space~22! is

] l̂ i
]t

2 ik j l j Ũ î50. ~40!

A Fourier–Galerkin pseudo-spectral method is used w
‘‘3/2 de-aliasing rule’’ for the nonlinear terms both in th
momentum and subgrid equations, that is 32 Fourier mo
in each direction are advanced in time; the computation
the nonlinear terms where done using 48 modes, the extr
modes used for padding. A second-order explicit Rung
Kutta scheme is used for time advancement.

The rotation model is incorporated into the LES code
follows; equations~1!, ~2!, ~14!, and ~22! are solved simul-

taneously for the fieldsŨ i and l i . At a given time-step~or
intermediate time-step! the l i are obtained from the Fourie
coefficientsl̂ i which allows construction of the rotation ma
trix Ei j (x) and hence the contractionsŜ1 and Ŝ2 . For the
fixedK 0 scheme, in whichK 0 is a specified parameter, Eq
~28! is solved forXm individually at each of 323 points using
Newton–Raphson, whencee~x! follows from ~27! and
t i j (x) from ~25!. This is transformed back to Fourier spa
and fed into the momentum equation. In thecoupledK 0

scheme, the scalar solution of~28! is replaced by simulta-
neous solution of~33! and ~36!, which gives bothK 0 and
the dissipation field. We note that the Jacobian of
coupled nonlinear system is diagonal with single sideban
thus the linear equations which result from application of
Newton–Raphson method can be solved directly in or
M5323 operations.

The local alignmentmodels operate similarly but do no
require solution of~22! since Ŝ1 and Ŝ2 can be calculated
directly from resolved flow variables. Some extra compu
tion is involved is solving the scalar equation in each cell
obtain the eigenstates ofS̃i j . We used the initial approxima
tion X5Ŝ1

21/4, Ŝ2,0, and, from dominant balance,X
52.0, Ŝ2.0. This itself can be avoided if~31! is used, but
this was found to produce a somewhat overly dissipat
model in the DNS limit; see discussion below. A choice
2447A. Misra and D. I. Pullin
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FIG. 1. Decay of the resolved~a! and the subgrid~b! energy. Solid line—C-K 0@1a#, dashed line—C-K 0@1b;0.5#, dot—dashed line—C-K 0@2#, and dotted
line—no model. The symbols are data from Ref. 21.
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K 051.5 is used as an initial guess for flows withRl.80;
for lower Reynolds number one needs to lower this init
guess to obtain convergence.

The results presented in Sec. III B are obtained using
coupledK 0 scheme. ThefixedK 0 scheme gives almos
identical results with the appropriate value ofK 0 chosen. In
Sec. III C we present results from all the models in forc
turbulence. ThefixedK 0 scheme will be referred to by
F-K 0@ ...# and thecoupledK 0 scheme by C-K 0@ ...#. The
bracketed information indicates the model number, i.e.,
1b, or 2. For example, F-K 0@1a# would refer tomodel 1a
with K 0 held fixed while C-K 0@1b;0.5# would refer to
model 1bwith m50.5 using thecoupledK 0 scheme.

B. Decaying turbulence

We study decaying isotropic turbulence in order to co
pare our results to the experiment of Comte-Bellot a
Corrsin.21 They measured the energy spectrum at th
downstream locations in grid turbulence. One can relate
to decaying isotropic turbulence by invoking the Taylor a
proximation. We mimic their experiment by studying turb
lence in a cubical box with periodic boundary conditions.
a frame of reference moving with the mean flow speed,

t5E
0

x dx8

Ū~x8!
, ~41!

where x is the downstream distance from the grid a
Ū(x) is the mean flow velocity over the cross section of t
tunnel. We have nondimensionalized the experimental d
by the following characteristic velocity, length and tim
scales:U ref5A3U08

2/2, L ref5L/2p, and t ref5L ref /U ref . In
their experiments the velocity fluctuation at the first meas
ing station isAU08

2522.2 cm/s, the free-stream speed
2448 Phys. Fluids, Vol. 9, No. 8, August 1997
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U`5103 cm/s, and the spacing of the turbulence generat
mesh isMg55.08 cm. The size of the computational bo
L511Mg , was chosen to contain roughly four integr
scales. The times at the three stations were measure
terms ofU`t/Mg . The initial Taylor Reynolds number is
Rl.80. In order to compare the resolved and the subg
part of the turbulent energy produced by the computati
the measured spectra have been integrated over the rele
scale ranges. The results of this processing of the Com
Bellot and Corrsin data was supplied to us by staff at
Center for Turbulence Research~CTR!.

Figure 1~a! shows the decay of the resolved energy w
time for all three models. The dotted line is the result
running the simulation with the model switched off. It
evident that the models play an important role in providi
dissipation of kinetic energy. The decay of the subgrid e
ergy with time is shown in Fig. 1~b!. Note that the subgrid
energy is obtained from the model without the solution
additional field equations. Since the subgrid energy is
rived from knowledge of the resolved field and the chos
subgrid energy spectrum, it cannot be independently init
ized to the match the experimental value. Figures 2~a! and
2~b! compare the resolved energy spectra with the meas
ments at the initial time and then at the two later instanc
The initial spectrum is generated to match the experime
data, while the later two curves are the spectra calcula
from the three models. Figure 1~a! gives the area under th
curve of Figs. 2~a! and 2~b! at the three time instances, ove
the resolved range of scales. While all models give go
agreement with the data for the decay of the resolved ene
C-K 0@1a# and C-K 0@1b;0.5# seem to give a slightly bette
resolved-scale spectrum than C-K 0@2#. This may be related
to an observed tendency for the power spectrum of thel i for
the rotation model~not shown! to peak towards the cutoff a
A. Misra and D. I. Pullin
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FIG. 2. Time evolution of spectra in decaying turbulence at three time instances. Solid line—C-K 0@1a# and dashed line—C-K 0@1b;0.5# ~a! and
C-K 0@2# ~b!. The symbols are data from Ref. 21. The straight lines fork.kc are the calculated subgrid spectra.
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kc followed by a rapid decrease to zero atk5kc . This ap-
parently results from the nonlinear coupling between thel i
and theŨ i fields, which in the absence of viscous dampi
produces a mild cascade towards higher wave numbers a
subsequent buildup neark5kc . The response of theŨ i field
is seen to be a concomitant increase inE(k) near the cutoff.
The interaction between subgrid structures in adjacent c
occurs only implicitly via the LES equations and the subg
stress relations. This is apparently too weak to adequa
damp high wave number growth. Figure 3 shows the valu
the Kolmogorov prefactor,K 0 , with time. The Kolmogorov
prefactorK 0 settles to about 1.5 for C-K 0@1a#, 1.85 for

FIG. 3. Time variation of the Kolmogorov prefactor,K 0 , in decaying
turbulence. solid line—C-K 0@1a#, dashed line—C-K 0@1b;0.5#, and dot–
dashed line—C-K 0@2#.
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C-K 0@1b;0.5#, and hovers around 2.5 for the C-K 0@2#.
LES with C-K 0@1b# for a range of values ofm were per-
formed and yielded satisfactory results in the sense of ag
ment of the energy decay with experiment;m50 resembled
the rotation model in its behaviorvis à vis the energy spec-
trum and the value ofK 0 . Results in this paper will only be
presented for the casem50.5.

The computing time per time-step relative to the Sma
rinsky model with constantC was found to be approximatel
1.5 for models 1a and 1b and about 3 for therotationmodel.
The C-K 0 scheme was marginally more expensive than
F-K 0 scheme.

C. Forced turbulence

Forcing is achieved by exciting low wave numbers su
that the total energy injection rate is constant in time.22 A
certain selected number of Fourier modes are chosen fro
wave number shelluku5k0 . The Fourier coefficient of the
forcing term is then written as

f̂k5
d

N

Ũ
ˆ
k*

uŨˆk
2u

~42!

for all modes in the specified shell. The above choice of̂k
ensures that the energy injection rate,( f̂k–Ũ

ˆ
k , is a constant

and equal tod. We have chosenk052,N520 ~a box of side
2 grid units centered around the origin with the center mo
and the origin left out! andd50.1 for all the runs. The LES
simulations with forcing were performed over a range
Rl . The simulations run stably and eventually reach ste
state when statistics are collected. Figure 4~a! shows a plot of
2449A. Misra and D. I. Pullin
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FIG. 4. ^«sgs&/^e& versusRl ~a! andkch versusRl ~b!. Solid line—F-K 0 scheme~models 1a, 1b, and 2 are indistinguishable!, dashed line—C-K 0 scheme
~models 1a, 1b, and 2 are indistinguishable!, and dot–dashed line—Smagorinsky model withC50.17.
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^«sgs&/^e&, the ratio of the average subgrid dissipation to t
total average dissipation in the box versusRl . The three
curves shown are for the Smagorinsky model, thefixedK 0

models and thecoupledK 0 models. For models incorpora
ing the C-K 0 scheme for forced turbulence, the comput
values ofK 0 ~not shown! showed anRl dependence tha
was somewhat model dependent. For each modelK 0 in-
ceased with increasingRl from near zero at the DNS limi
and reached a plateau for values ofRl greater than abou
100. These asymptotic, largeRl values were 1.3, 1.5, and 2.
for C-K 0@1a#, C-K 0@1b;0.5#, and C-K 0@2#, respec-
tively, which we note are somewhat lower than the valu
shown in Fig. 3; this appears to be anRl effect. For the
F-K 0 calculations, these asymptoticK 0 values were used
for all Rl . Figure 4~a! shows that the C-K 0 models are less
dissipative in the DNS limit than the F-K 0 models and thus
are superior in this respect. Figure 4~b! is a plot ofkc^h& vs
Rl , where here ^h&5(n3/^e&)1/4, ^e& being the box-
averaged total dissipation. In both figures all results for
three models employing the same scheme were graphic
indistinguishable. With 323 modes fully resolved DNS can
be run at aboutRl.25. This was confirmed by turning of
the SGS model and comparing computed values for
skewness and the flatness factors of the longitudinal velo
derivatives and one component of the vorticity with the
sults of Kerr23 at the same resolution and similarRl . With
the SGS models turned on we findkc^h&51 at Rl.25,
indicating near full resolution except in the far viscous ran
Figure 4~a! shows that the models are subdominant in t
DNS limit, providing less than 0.0003 (C-K 0) and 0.008
(F-K 0), of the volume-averaged dissipation. By compa
son, the Smagorinsky model produces a fraction 0.16 of
total dissipation atRl.25.

We remark that the simplest possible model of t
2450 Phys. Fluids, Vol. 9, No. 8, August 1997
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present class can be constructed using vortex alignment
the eigenvector corresponding tol3 and ~31! to evaluate
«sgs. At Rl.90 this model performed similarly to model 1
for both decaying and homogeneous turbulence and was
marginally slower than Smagorinsky. It was found, lik
Smagorinsky, to be too dissipative in the DNS limit, and
is not discussed in detail.

The pdf of SGS in filtered DNS fields for both bo
turbulence22 and nonhomogeneous flows24 have typically
shown some 30% backscatter. It follows from~23! that back-
scatter, defined by«sgs,0, occurs wheneverŜ2.0 while
Ŝ2,0 gives cascade. A straightforward calculation usi
~23! shows that SGS dissipation can be written as

«sgs52KS̃i j S d i j2
l i l j
l ml m

D
;2Ŝ2K

5S̄338 K, ~43!

where S̃338 is the component ofS̃i j aligned with the vortex.
Hence backscatter, defined by«sgs,0, occurs wheneverŜ2
.0—the SGS vortices are being compressed on
average—whileŜ2,0—the vortices are axially stretched—
gives cascade. Figures 5~a!–5~c! show scatter plots ofŜ1 vs
Ŝ2 for the three orientation models obtained from a simu
tion at Rl.90. Models incorporating the C-K 0 or the
F-K 0 scheme exhibit similar behaviour. Model 1a has
backscatter~this can be demonstrated! while model 1b~with
m50.5! shows some~;3%! backscatter. Therotation model
shows substantial backscatter, about;40%, and it is pos-
sible that this may be related to its somewhat higher co
puted values ofK 0 compared to models 1a and 1b. A sim
A. Misra and D. I. Pullin
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lation with C-K 0@1b;0#, i.e., full alignment with the
vorticity, show a similar scatterplot to C-K 0@2#. This sug-
gests a strategy of adjustment ofm to obtain backscatte
agreeing with filtered DNS. It is interesting to note that t
all points lie within a bounding parabola. An estimate bas
on a locally two-dimensional ‘‘maximum stretch’’ scenar
for Ŝi j gives a bounding parabolaŜ1516Ŝ2

2. We find, how-
ever, thatŜ1512Ŝ2

2 gives a slightly better boundary and s
this curve is displayed in the figures. The backscatter pr
erties of the models are also illustrated in Fig. 6 which sho
shows a pdf of the ‘‘stretch,’’ that part of the velocit
gradient-tensor which stretches the subgrid vorticity. T
stretch is suitably normalized byA^e&/n. The pdf of the
dissipation log10 e/^e& for the three models is displayed i
Fig. 7. The distribution appears to be approximately lo
normal.

FIG. 5. Scatter plot ofŜ1 vs Ŝ2 indicating regions of backscatter
F-K 0@1a# ~a! shows no backscatter, F-K 0@1b;0.5# ~b! shows some back-
scatter, and F-K 0@2# ~c! shows about 40% backscatter. The C-K 0 models
exhibit similar behavior.
Phys. Fluids, Vol. 9, No. 8, August 1997
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It was remarked earlier that~28! can exhibit regions of
multiple roots in theŜ2 vs Ŝ1 plane, posing a potential prob
lem in obtaining a unique value ofe, givenŜ1 , Ŝ2 . This can
be shown to occur only whenŜ2,0. The boundary of the
region corresponding to multiple-valuedness ofX(Ŝ1 ,Ŝ2) in
the Ŝ1 , Ŝ2 plane always lies well away from populated r
gions of the scatter-plots of Fig. 5. In fact, whenŜ1@1, this
boundary is given byŜ2'2256Ŝ1 /(81K 0), which lies well
below the parabola bounding the scatter plots.

IV. CONCLUDING REMARKS

Stretched-vortex SGS models have been shown to
form well for both decaying and forced isotropic turbulenc
over a range ofRl . They give the subgrid energy directl
and appear to produce the correct fully resolved flow in
DNS limit with computational penalty, for the alignmen
models, of some 50% in comparison to the standard Sma
rinsky model. The F-K 0 models are simple to implemen
and give satisfactory performance. The C-K 0 approach al-
lows dynamic calculation ofK 0 at the expense of som
extra complexity. All variations of the model tested presen
gave good comparison with data for decaying turbulen
The stretched-vortex models have been shown to prod
backscatter, but none of the three tested give, in a nat
way, the 30% backscatter seen in filtered DNS of isotro
turbulence. At the expense of adjustingm, the fraction of
subgrid vortices aligned with the resolved vorticity, a tw
vortex alignment model with the right properties could
constructed but we have not done so presently. We rem
that models incorporating the F-K 0 scheme are fully con-
structed in physical space and thus are amenable to fi
difference computations with complex flow geometries. T
present C-K 0 scheme is implemented in Fourier space, b
this method could be used in physical space by replac
~34! with its second-order structure function equivalent

~Du!25 fK 0e
2/3r 2/3, ~44!

where (Du)2 is a measure of the shell-averaged~physical
space! longitudinal velocity difference squared, and whe
f51.31512. This could be applied either globally withe2/3

replaced bŷ e2/3& or locally, with r5D, whereD is the local
node spacing.

One could replace the local balance model of Sec. II
including the assumption of a Kolmogorov energy spectru
with transport equations for the subgrid vortex itself. T
relevant equations for the subgrid energyK and the subgrid
dissipationesgsarising from internal SGS vortex motions ca
be obtained from a model of a vortex moving evolving in
linear background field~see the Appendix!

DK

Dt
52S̃i j t i j2esgs

52KS̃i j S d i j2
l i l j
l ml m

D2esgs

5S̃338 K2esgs ~45!

and
2451A. Misra and D. I. Pullin
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52
l i l j
l kl k

S̃i j esgs24n2E
kc

`

k4E~k! dk, ~46!

whereesgs is

esgs[2nE
kc

`

k2E~k! dk. ~47!

The first term on the right of~46! gives the increase of th
subgrid enstrophy, and hence the dissipation, produced
local vortex stretching provided by the resolved scales, w
the second term gives the effect of viscous diffusion of
strophy. These equations can replace the local balance m
for the computation ofK; the stresses are still given by~14!.
TheK2esgs are not closed, however, sinceE(k) appears in
~46!. Closure can be obtained by applying a time filter
~45! and~46! and using the well-known approximate relatio

FIG. 6. The pdf of the ‘‘stretch’’—v i8]Ũ i /]xjv j8 . Solid line—
F-K 0@1a#, dashed line—F-K 0@1b;0.5#, and dot–dashed line—
F-K 0@2#. The C-K 0 models exhibit similar behavior.

FIG. 7. The pdf of the log10 e/^e&. Solid line—C-K 0@1a#, dashed line—
C-K 0@1b;0.5#, and dot–dashed line—C-K 0@2#. The F-K 0 models ex-
hibit similar behavior.
2452 Phys. Fluids, Vol. 9, No. 8, August 1997
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between the skewnessS3 , or dimensionless triple velocity
derivative, andE(k), which can be written in the form

4n2E
kc

`

k4E~k! dk52
35

~15!3/2
S3n

21/2esgs
3/2. ~48!

Experiment indicates a value nearS3520.5. Use of~48! in
~46! with this value gives closure. It may be objected th
this is still a one-parameter model, but unlike the Kolmo
orov prefactor,S3 is a defined~model independent! quantity
characteristic of the dissipation range of turbulence which
definition, lies outside the range of resolved scales in LE
Some input from experiment or theory is then justified.

The stretched-vortex ansatz appears able to give a
consistent if approximate quantitative description of the
tailed fine-scale properties of turbulence and at the same
provides a basis for the construction of workable SGS m
els relating the averaged behavior of the fine scales to
resolved-flow variables in large-eddy simulation. The imp
mentation of aK2esgs version of the vortex model, and th
application of the present class of vortex SGS models
nonhomogeneous flows including channel and other w
bounded shear flows, provide topics for future research.
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APPENDIX: VORTEX EVOLUTION IN A LINEAR
RESOLVED FIELD

Consider a vortex embedded in a background linear
locity field, the latter viewed as generated by the veloc
gradients of the local resolved flow. Denote laboratory-fix
axes byxi and vortex-fixed axes byr i ; for clarity we omit
the ‘‘prime’’ superscipt on vortex-fixed quantities. Withou
loss of generality these two axis systems may be chose
be coincident at timet50. The fluid velocity in the fixed
frame is qi and the vorticity isj i5« i jk]qk/]xj , while in
vortex-fixed axes these arev i and z i5« i jk]vk /]r j , respec-
tively, where« i jk used with a triple subscript here denot
the alternating tensor. The vortex rotates with angular vel
ity V i(t) with respect to thexi in a way to be described. Th
background field is

q̃i5Ãi j ~ t !xj[S̃i j ~ t !xj1Q̃i j ~ t !xj , ~A1!

whereS̃i j (t) is the symmetric andQ̃i j (t)5
1
2« i jk j̃k(t) the an-

tisymmetric part ofÃi j (t), and j̃ i(t) is the background vor-
ticity. The time dependencies of all these quantities, wh
differ in laboratory- and in vortex-fixed axes, will be sup
pressed unless required. In particular we note that the b
ground strain tensorS̃i j (t) and vorticity j̃k(t) are not inde-
pendent, since the latter is subject to stretching and tilting
S̃i j (t). Let ui(r ,t) be the velocity field associated with th
vortex alone, in vortex fixed axes, andv i be the correspond
A. Misra and D. I. Pullin

to¬AIP¬license¬or¬copyright,¬see¬http://pof.aip.org/pof/copyright.jsp



n

s

-

e

t
l

e

lin

to

ure
nce

e-

tex

the
ion.

the
les

-

d for
es

ay

at
ing vorticity, v i5« i jk]uk /]r j . The full velocity and vortic-
ity in the vortex-fixed~rotating! axes are then

z i~r ,t !5 j̃ i22V i1v i , ~A2!

v i~r ,t !5Ãi j r j2« i jkV j r k1ui . ~A3!

The components ofv i are

v12u15Ã11r 11~Ã121V3!r 21~Ã132V2!r 3 ,

v22u25~Ã212V3!r 11Ã22r 21~Ã231V1!r 3 , ~A4!

v32u35~Ã311V2!r 11~Ã322V1!r 31Ã33r 3 .

In vortex-fixed axes, the momentum and vorticity equatio
may be written, respectively, as

]

]t
~v i1« i jkV j r k!1v j

]v i
]r j

12« i jkV jvk5
]P*

]r i
1n¹ r i

2 v i ,

~A5!

]

]t
~ z̃112Ṽi !1v j

]z̃ i
]r j

5~ z̃ j12V j !
]v i
]r j

1n¹ r i
2 z i , ~A6!

whereP*5P1 1
2V

2r i
2 and P is the pressure. Continuity i

]v i /]r i50.
At t50 we specify thatv i5v i(r 1 ,r 2,0) @hence ui

5ui(r 1 ,r 2,0)# and r 2v i→0 as r 1
21r 2

2→`. Thus there is
initially no dependence on ther 3 coordinate, which is
viewed as the ‘‘axis’’ of the vortex, and the vorticity is com
pact in the cross-sectional plane, (r 12r 2). It follows from
~A4–A6! and the initial conditions that the absence of d
pendence onr 3 , i.e.,v i5v i(r 1 ,r 2 ,t) andui5ui(r 1 ,r 2 ,t),
will be preserved in the evolution providedV152Ã23 and
V25Ã13. The componentV3 is arbitrary and a convenien
choice is V352Ã12. Introduction of a vector potentia
C i(r 1 ,r 2 ,t), such that

ui5« i jk
]Ck

]r j
,

]C i

]r i
50, v i52¹ r i

2C i , ~A7!

then allows~A4! to be written in the form

v15S̃11r 11
]C3

]r 2
,

v252S̃12r 11S̃22r 22
]C3

]r 1
, ~A8!

v352S̃13r 112S̃23r 21S̃33r 31
]C2

]r 1
2

]C1

]r 2
.

When ~A8! and ~A2! are used in~A6!, the resulting equa-
tions together with the third of~A7! give closed equations
for v i(r 1 ,r 2 ,t). Similarly, closed equations forui(r 1 ,r 2 ,t)
may be obtained from~A5!.

It is straightforward that the above choice forV i is
equivalent to rotation of ther 3 axis according to

]ei
]t

5ejÃi j2eiekej Ãk j , ~A9!

whereei(t)[ei
v ~text usage! are the direction cosines of th

r 3 axis relative to the laboratory axes@e~0!5~0,0,1!#. This is
just the rotation that would be experienced by a material
Phys. Fluids, Vol. 9, No. 8, August 1997
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element of unit length aligned with the vortex axis, due
the linear field alone; it provides a derivation of Eq.~20!.
The vortex axis remains rectilinear and the internal struct
of the vortex is two-dimensional in the sense of depende
only on (r 1 ,r 2), but allows axial flow.

To obtain the enstrophy equation we simplify to the sp
cial case where there is no background vortcityj ĩ50. This
may be a reasonable model for a strong vortexuv i u@u j̃ i u.
We also putv15v250 at t50, from which it follows from
the vorticity equation that this will be true for allt.0. The
v3 vorticity equation is then

]v3

]t
1S S̃11r 11 ]C3

]r 2
D ]v3

]r 1
1S 2S̃12r 11S̃22r 22

]C3

]r 1
D ]v3

]r 2

5S̃33v31n¹ r i
2v3 . ~A10!

Now multiply ~A10! by v3 , integrate over the (r 12r 2)
plane, and use the well-known results, valid for the vor
flow, nv3¹ r i

2v352n*0
`k4E(k)dk and esgs5nv3

2, where

E(k) is the shell-summed energy spectrum and where
overbar refers to an integral over the vortex cross sect
This gives, after some algebra,

]ēsgs
]t

5S̃33ēsgs24n2E
0

`

k4E~k! dk. ~A11!

Finally, we account for the stretching or compression of
vortex byS̃33 and for an average over all possible spin ang
of the vortex structure about ther 3 axis. Denoting the vortex
length at time byl (t), we write for some quantityf

f%5
l ~ t !

2pL3 E2`

` E
2`

` E
0

2p

f dr1dr2dg,

~A12!

l ~ t !5 l ~0!expS E
0

t

S̃33~ t8!dt8D ,
where the double overbar denotes integration overr 3
@equivalent to multiplying byl (t)# and the vortex cross sec
tion, division by the volumeL3 of a large box containing a
vortex and an average over all possible spin anglesg,
0<g<2p. Differentiating the first of~A12! with respect to
t and using the second of~A12! then gives

] f%

]t
5S̃33 f%1

]

]t S l ~ t !

2pL3E2`

` E
2`

` E
0

2p

f dr1dr2dg D .
~A13!

When the first of~A12! is applied to~A11! ( f[esgs) and
~A13! is used for the unsteady term it is found that

]e% sgs
]t

52S̃33e% sgs24n2E
0

`

k4E~k! dk, ~A14!

and we note that the double overbar has been suppresse
E(k). Omitting the double overbar on the other terms giv
Eq. ~46!.

An energy equation for the internal vortex motions m
be obtained along similar lines, starting with~A5!. Care must
be taken to account for the contribution from the pressure
infinity in the r 12r 2 plane and the time variation ofS̃i j (t) in
2453A. Misra and D. I. Pullin
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the vortex-fixed frame. DefiningK5 1
2(u1

21u
2
) and invoking

equipartitionu1
25u2

2, u1u250 in vortex-fixed axes follow-
ing averaging over spin angle, and using

l ~ t !

2pL3 E0
2p

n~u1¹ r i
2u11u2¹ r i

2u2! dg

522nE
0

`

k2E~k! dk, ~A15!

one obtains, after some algebra,

]K

]t
5S̃33K22nE

0

`

k2E~k! dk. ~A16!
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