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A voting method for stereo
egomotion estimation

Hugo Silva1, Alexandre Bernardino2 and Eduardo Silva1

Abstract

The development of vision-based navigation systems for mobile robotics applications in outdoor scenarios is a very

challenging problem due to frequent changes in contrast and illumination, image blur, pixel noise, lack of image

texture, low image overlap and other effects that lead to ambiguity in the interpretation of motion from image data.
To mitigate the problems arising from multiple possible interpretations of the data in outdoor stereo egomotion,

we present a fully probabilistic method denoted as probabilistic stereo egomotion transform. Our method is capable

of computing 6-degree of freedom motion parameters solely based on probabilistic correspondences without the

need to track or commit key point matches between two consecutive frames. The use of probabilistic corre-

spondence methods allows to maintain several match hypothesis for each point, which is an advantage when

ambiguous matches occur (which is the rule in image feature correspondence problems), because no commitment is

made before analysing all image information. Experimental validation is performed in simulated and real outdoor

scenarios in the presence of image noise and image blur. Comparison with other current state-of-the-art visual
motion estimation method is also provided. Our method is capable of significant reduction of estimation errors

mainly in harsh conditions of noise and blur.
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Introduction

In this article, we focus on the inference of robot self-

motion (egomotion) based on visual observations of the

environment. Although egomotion can be estimated with-

out visual information using sensors such as inertial mea-

surement units (IMUs) or global positioning systems

(GPSs), the use of visual information plays an important

role specially in MU/GPS denied environments, for exam-

ple, crowded urban areas or other environments where

there are challenging imaging conditions such as aerial and

underwater scenarios. In Figure 1, we present some exam-

ples of mobile robotic platforms equipped with vision sen-

sors, spanning applications in land, sea, air and underwater

(courtesy of INESC TEC).

Egomotion estimation from outdoors imagery is

extremely challenging due to multiple factors that generate

blur, ambiguities and low signal-to-noise ratio in images. In

land robots, camera vibration produces significant motion
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blur. In sea and underwater robots, repetitive image patterns

and low texture generate serious matching ambiguities. In all

cases, low lighting conditions, shadows and other illumina-

tion artefacts lead to unfavourable signal-to-noise ratios. It is

thus essential to develop robust algorithms capable of miti-

gating some of the aforementioned effects.

This article is an extension of the work by Silva et al.1

where we have introduced the probabilistic stereo egomotion

transform (PSET), a fully probabilistic algorithm for the com-

putation of image motion from stereo vision systems that

provides better estimates than alternative approaches. This

article provides a deeper explanation, analysis and perfor-

mance evaluation of PSET. In particular, it focuses on PSET

advantages in images with severe amounts of noise and blur

that often characterize outdoors operating conditions.

The article outline is as follows: in the following sec-

tion, the related work is presented. We then make a brief

introduction to the probabilistic egomotion estimation

problem and an outline of the rationale of the method.

Afterwards, we present in detail the steps of the probabil-

istic stereo egomotion approach, and the obtained results in

both synthetic and real image data sets with emphasis in the

results obtained under extreme image conditions (presence

of image noise and blur). In the final section, we present the

conclusions and future work.

Related work

In robotics applications, egomotion estimation is directly

linked to visual odometry (VO) applications as described

by Scaramuzza.2 The use of VO methods for estimating

robot motion has been a subject of research by the robotics

community in recent years. One way of performing VO is

by determining instantaneous camera displacement on con-

secutive frames and integrating over time the estimated

linear and angular velocities. The need to develop such

applications urged from the increase use of mobile robots

on modern world tasks in different application scenarios.

Robots need to extend their perception capabilities to be

able to navigate in complex scenarios where typical inertial

navigation system information cannot be used, for exam-

ple, urban areas or underwater GPS-denied environments.

Visual motion perception is achieved by measuring

image point displacement on consecutive frames. In mono-

cular egomotion estimation, there is translation scale ambi-

guity, that is, in the absence of other sources of information,

only the linear velocity direction can be measured in a

reliable manner. Whenever a calibrated stereo setup is

used, the full angular and translational velocity components

can be extracted, which is denoted by stereo VO.

Most of the work on stereo VO methods started by

Maimone et al.3 and Maimone et al.4 on the famous Mars

Rover Project. The proposed method was able to deter-

mine all 6-degree of freedom (DOF) of the rover (x, y, z,

roll, pitch and yaw) by tracking 2D image key points

between stereo image pairs and obtain their 3D coordi-

nates by triangulation. Concerning the way image motion

information is obtained, the method employs a key point

detector using5,6 corner detector combined with a grid

scheme to sample key points over the image. After 3D

point position is triangulated using stereo correspondence,

a fixed number of points is used within an RANSAC7

framework to obtain an initial motion estimation using least

squares. Subsequently, a maximum likelihood estimation

(batch estimation) procedure uses the rotation matrix and

translation vector obtained by least squares as well as the

‘inlier’ points to produce a more accurate motion estimation.

The stereo VO method implemented in the Mars Rover

Project was inspired by Olson et al.8 At the time, VO meth-

ods appear as replacements for wheel odometry dead reck-

oning methods to overcome long distance limitations. To

avoid large drift in robot position over time, Olson method

combined a primitive form of stereo egomotion estimation

procedure also used by Maimone et al.3 with absolute

orientation (AO) sensor information.

The taxonomy adopted by the robotics and computer

vision community classifies stereo VO methods into two

categories based on either feature detection scheme or pose

estimation procedure. The most utilized methods for pose

estimation are 3D AO methods and perspective-n-point

(PnP) methods.

The AO method consists of 3D points triangulation for

every stereo pair and then motion estimation is solved using

point alignment algorithms, for example, procrustesmethod,9

the AO using unit quaternions method by Horn,10 iterative-

closest-point method11 or the one utilized by Milella and

Siegwart12 for estimating motion of an all-terrain rover.

In the study by Alismail et al.,13 a benchmark study is

performed to evaluate both AO and PnP techniques for

robot pose estimation using stereo VO methods. The

authors concluded that PnP methods perform better than

AO methods due to stereo triangulation uncertainty, espe-

cially in the presence of small stereo rig baselines.

The influential work of Nister et al.14was one of the first

PnP method implementations. It utilized the perspective-

Figure 1. INESC-TEC mobile robotics platforms on land, sea and
air application scenarios. All robotic platforms are equipped with
one or more visual sensors to perform visual navigation or other
complementary tasks.
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three-point method (P3P) developed by Haralick et al.15

combined with an outlier rejection scheme (RANSAC).

Despite the fact of having instantaneous 3D information

from a stereo camera setup, the authors use a P3P method

instead of a more easily implementable AO method. The

authors concluded that P3P pose estimation deals better

with depth estimation ambiguity, which corroborates the

conclusions drawn by Alismail et al.13

In a similar line of work, and in order to avoid having a

great dependency of feature matching and tracking

algorithms, Kai and Dellaert16 tested both three-point and

one-point stereo VO implementations using a quadrifocal

setting within an RANSAC framework. Later on, Ni et al.17

decouple the rotation and translation estimation into two

different estimation problems. The method starts with the

computation of a stereo putative matching, followed by a

classification of features based on their disparity. After-

wards, distant points are used to compute the rotation using

a two-point RANSAC method. The underlying idea is to

reduce the problem of the rotation estimation to the mono-

cular case. The closer points with a disparity above a given

threshold are used together with the estimated rotation to

compute the one-point RANSAC translation.

Recent efforts on stereo VO are being driven by novel

intelligent vehicles and by automotive industry applica-

tions. One example is the work developed by Kitt et al.18

The proposed method is available as an open-source VO

library named LIBVISO. The stereo egomotion estimation

approach is based on image triples and online estimation of

the trifocal tensor.19 It uses rectified stereo image

sequences and outputs a 6D vector with linear and angular

velocity estimation using an iterative extended Kalman fil-

ter. Comport et al.20 also developed a stereo VO method

based on the quadrifocal tensor.19

Other recent developments on VO have been achieved

by the extensive research conducted at the Autonomous

System Laboratory of ETH Zurich University.21–25 The

work developed by Scaramuzza and Fraundorfer26 and

Scaramuzza et al.21 takes advantages of motion constraints

(planar motion) to reduce model complexity and allow a

much faster estimation. Also, since the camera is installed

on a non-holonomic wheeled vehicle, motion complexity

can be further reduced to a single-point correspondence.

More recently, the work of Kneip et al.27 introduced a novel

parameterization for the P3P PnP. The method differs from

standard algebraic solutions for the P3P estimation prob-

lem15 by computing the aligning transformation directly in

a single stage without the intermediate derivation of the

points in the camera frame. This pose estimation method

combined with key point detectors28–30 and with IMU

information was used to estimate monocular VO22 and

stereo VO by Voigt et al.23 In the study by He et al.,31 a

visual-inertial egomotion estimation method is used to esti-

mate an arbitrary body motion in indoor environment.

Vision is used to estimate the camera motion from a

sequence of feature correspondence using bundle adjust-

ment while the inertial estimation outputs the orientation

using adaptive-gain orientation filter.

Most of the previously mentioned state-of-the-art algo-

rithms use deterministic methods to find matches between

images and then compute the motion. Our approach, on the

contrary, takes full advantage of not defining the corre-

spondence at an early stage but keep multiple correspon-

dence hypothesis that together will contribute to a more

accurate egomotion estimation, especially when image

conditions contain many ambiguous and unreliable corre-

spondences due to non-ideal imaging conditions.

Probabilistic monocular egomotion

estimation

The seminal work of Domke and Aloimonos32 has intro-

duced the notion of probabilistic correspondence in the con-

text of the single camera egomotion estimation problem. The

authors introduced the term probabilistic (which is actually a

belief) to code the distance between Gabor filters using an

exponential transformation. In this setting, it is possible to

compute the angular velocity of the vehicle and the direction

of the linear velocity (5-DOF) overall, but it is not possible to

determine the amplitude (scale) of the linear velocity.

In this section, we briefly describe Domke and Aloimo-

nos’32 approach and introduce the notation required for the

remaining sections.

Probabilistic correspondence

Given two images taken at different times, Ik and Ikþ1, the

probabilistic correspondence between a point s 2 R2 in

image Ik and point q 2 R2 in image Ikþ1 is defined as a

belief image

�sðqÞ ¼ matchðs; qjIk ; Ikþ1Þ (1)

The belief image �sðqÞ contains in each pixel q a value

between 0 and 1 expressing similarity of appearance

between local neighbourhoods around s in Ik and q in

Ikþ1. In the study by Domke and Aloimonos,32 the match

function was implemented by the correlation of a Gabor

filter bank response in the two points. In our work, we use

the zero-mean normalized cross-correlation function

(ZNCC)

ZNCCðs;qÞ ¼

X

d2W
Ikðsþ dÞ � �I k½ � Ikþ1ðqþ dÞ � �Ikþ1½ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

d2W
½Ikðsþ dÞ � �Ik �

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

d2W
½Ikþ1ðqþ dÞ � �Ikþ1�

2
q (2)
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where W � R2 denotes a 2D window centred at the origin

whose size defines the neighbourhood of analysis around

points s and q, and �Ik and �Ikþ1 are the mean values of those

patches. In practice, we use a fast recursive implementation

of the ZNCC developed by Huang et al.33 The probabilistic

correspondence is then computed as

�sðqÞ ¼
ZNCCðs; qÞ þ 1

2
(3)

So that, it maps to the range 0–1.

Probabilistic motion

Motion hypotheses are defined as a set of incremental rota-

tion matrices R and translation directions t̂ ¼ t
ktk. The like-

lihood of a particular motion hypothesis ðR; t̂Þ is evaluated
by analysing the probabilistic correspondences �sðqÞ along
epipolar lines.32 A correspondence q for point s must sat-

isfy the epipolar constraint denoted by

~sTE~q ¼ 0 (4)

where ~s and ~q are homogeneous representations of s and q,

respectively, and E is the essential matrix,19 a 3� 3 matrix

of rank 2- and 5-DOFs that encodes rigid camera motion

E ¼ R½̂t�� (5)

where ½̂t�� is the skew symmetric matrix

½̂t�� ¼

0 �t̂z t̂y

t̂z 0 �t̂x

�t̂y t̂x 0

2

6

4

3

7

5
(6)

In order to obtain an estimate of the essential matrix ðEÞ
from the probabilistic correspondences, Domke and Aloi-

monos32 propose a maximum likelihood search on a prob-

ability distribution over the 5D space of essential matrices.

Initially, likelihood values are measured on a grid where

each dimension is divided into 10 bins, thus leading to 105

hypotheses Ei.

For each point s in image Ik , the likelihood of a motion

hypothesis ðEiÞ is proportional to the belief of the best

probabilistic correspondence along the epipolar constraint

in Ikþ1, generated by the essential matrix

�ðEijsÞ / max
ð~qÞTEi~s¼0

�sðqÞ (7)

If one assumes statistical independence between the

measurements obtained at each point s, the overall likeli-

hood of a motion hypothesis is proportional to the product

of the likelihoods for all points

�ðEiÞ /
Y

s

�ðEijsÞ (8)

In Figure 2, an illustration of these steps is presented.

Finally, having computed all the motion hypotheses, an

optimization method34 is used to refine the motion estimate

around the highest scoring samples Ei. The Nelder–Mead

simplexmethod is a local searchmethod for problems whose

derivatives are not known. The method was already applied

by Domke and Aloimonos32 to search for the local maxima

of likelihood around the top-ranked motion hypotheses

E�
i ¼ arg max

EiþdE
�ðEi þ dEÞ (9)

where dE is perturbations to the initial solution Ei com-

puted by the Nelder–Mead optimization procedure.

Then, the output of the algorithm is the solution with the

highest likelihood as defined

E� ¼ argmaxE�
i
�ðE�

i Þ (10)

Probabilistic stereo egomotion estimation

Now we extend the notion of probabilistic correspondence

and probabilistic egomotion estimation to the stereo case.

This allow us to compute the whole 3D motion information

in a probabilistic way. Let us consider images ILk , I
L
kþ1, I

R
k

and IRkþ1, where superscripts L and R denote, respectively,

the left and right images of the stereo pair. Probabilistic

matches of a point s in ILk are now computed not only for

points q in ILkþ1 but also for points r in I
R
k and p in IRkþ1 (see

Figures 3 and 4)

�sðrÞ ¼
ZNCCðs; rÞ þ 1

2
; �sðpÞ ¼

ZNCCðs; pÞ þ 1

2

(11)

For the sake of computational efficiency, analysis can be

limited to subregions of the images given prior knowledge

about the geometry of the stereo system or bounds of the

motion given by other sensors like IMU’s. In particular, for

Figure 2. Left: a point s in image Ik generates epipolar lines ei in
image Ikþ1 corresponding to motion hypotheses represented by
the epipolar matrices Ei, see equation (4). Centre: at each point
s, motion hypothesis Ei are evaluated by computing the highest
probabilistic correspondence at points qi along epipolar line ei,
see equation (7). Right: the overall motion likelihood is com-
puted by collecting the information from all considered points,
see equation (8).
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each point s, coordinates r can be limited to a band around

the epipolar lines according to the fixed stereo setup epi-

polar geometry, as illustrated in Figure 3.

The geometry of stereo egomotion

In this section, we describe the geometry of the stereo

egomotion problem, that is, will analyse how world points

project in the four images acquired from the stereo setup in

two consecutive instants of time according to its motion.

This analysis is required to derive the expressions to com-

pute the translational motion amplitude.

Let us consider the 4 � 4 rototranslations TR
L and M kþ1

k

that describe, respectively, the rigid transformation

between the left and right cameras of the stereo setup and

the transformation describing the motion of the left camera

from time k to k þ 1 as described by

TR
L ¼

R calib t calib

0 1

� �

M kþ1
k ¼

R t

0 1

� �

(12)

We factorize the translational motion t in its direction t̂

and amplitude �

t ¼ �t̂ (13)

The rotational motion R and translation direction t̂ can

be computed by Silva et al.35 The computation of � is thus

the main objective at this stage.

Let us consider an arbitrary 3D point X ¼ ðXx;Xy;XzÞ
T

expressed in the left camera reference frame at time k.

Considering normalized intrinsic parameters (unit focal

distance f ¼ 1, zero central point cx ¼ cy ¼ 0, no skew),

the homogeneous coordinates of the projection of X in the

four images are given by

~s ¼ X

~r ¼ R calibXþ t calib

~q ¼ RXþ �t̂

~p ¼ R calibRXþ �R calib t̂þ t calib

8

>

>

>

<

>

>

>

:

(14)

To illustrate the solution, let us consider the particular

case of parallel stereo. This will allow us to obtain the form

of the solution with simple equations but does not compro-

mise generality because the procedure to obtain the solution

in the non-parallel case is analogous. In parallel stereo, the

cameras are displaced laterally with no rotation. The rotation

component is 3 � 3 identity ðR calib ¼ I3�3Þ and the transla-

tion vector is an offset (baseline b) along the x coordinate,

t calib ¼ ðb; 0; 0ÞT . Solving the first two equations, in coordi-
nates, we obtain solutions for s ¼ ðsx; syÞ

T
and r ¼ ðrx; ryÞ

T

s ¼
Xx

Xz

;
Xy

Xz

� �T

r ¼
Xx þ b

Xz

;
Xy

Xz

� �T

(15)

Introducing the disparity d as d ¼ rx � sx, we have d ¼ b
Xz

and we can reconstruct the 3D coordinates of point X as

function of image coordinates r and s and baseline value b

X ¼
sxb

d

syb

d

b

d

� �T

¼ ~s
b

d
(16)

Replacing equation (16) in the last two equations of

equation (14), we obtain

~q ¼ R~s
b

d
þ �t̂

~p ¼ R~s
b

d
þ �t̂þ t calib

8

>

>

>

>

<

>

>

>

>

:

(17)

Figure 3. ZNCC matching used to compute the PSET transform.
ZNCC: zero-mean normalized cross-correlation function; PSET:
probabilistic stereo egomotion transform.

Figure 4. Example of probabilistic correspondence images (�sðrÞ,
�sðqÞ, and �sðpÞ) obtained by ZNCC matching of a given point s
from ILk in images, IRk , I

L
kþ1, and IRkþ1, respectively. The �sðrÞ cor-

respondence can be limited to a band, since the epipolar geometry
is known by stereo calibration. ZNCC: zero-mean normalized
cross-correlation function.
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Let us write R in its constituent rows R ¼ ½r1; r2; r3�
T

and t̂ in coordinates t̂ ¼ ðt̂x; t̂y; t̂zÞ. Computing the coordi-

nates of p ¼ ðpx; pyÞ and q ¼ ðqx; qyÞ, we get

qx ¼
rT1~sbþ �t̂xd

rT3~sbþ �t̂zd
(18)

qy ¼
rT2~sbþ �t̂xd

rT3~sbþ �t̂zd
(19)

px ¼
ðrT1~sþ dÞbþ �t̂xd

rT3~sbþ �t̂zd
(20)

py ¼
rT2~sbþ �t̂xd

rT3~sbþ �t̂zd
(21)

Solving for � each of the previous equations, we get four

possible solutions

�ð1Þ ¼
ðrT1 � qxr

T
3 Þ~s

qx t̂z � t̂x

b

d
(22)

�ð2Þ ¼
ðrT2 � qyr

T
3 Þ~s

qy t̂z � t̂y

b

d
(23)

�ð3Þ ¼
ðrT1 � pxr

T
3 Þ~s

px t̂z � t̂x

b

d
(24)

�ð4Þ ¼
ðrT2 � pyr

T
3 Þ~s

py t̂z � t̂y

b

d
(25)

Solutions exist whenever disparity d is not null, that is,

the corresponding 3D point is not at infinity. The other

potential singular case is

qx t̂z � t̂x ¼ 0

qy t̂z � t̂y ¼ 0

px t̂z � t̂x ¼ 0

py t̂z � t̂y ¼ 0

8

>

>

>

<

>

>

>

:

(26)

This corresponds to the case when q and p are simulta-

neously aligned with the translation direction. However, for

finite fields of view, this only happens when q ¼ p which

again corresponds to zero disparity. If, for a certain com-

bination of points r; s; p; q, all denominators are low (due to

very low disparity or close to degenerate motion), that

combination is not used for the estimation. In our imple-

mentation, we empirically set a predetermined minimal

value for the disparity d, d � dmin. If all disparities are

very small, then all observed points are very far and it is

impossible to determine the linear velocity scale factor.

Therefore, because our method uses all available image

information, if at least one point has enough disparity, we

will have a solution for �. In practice, to prevent numerical

errors, we choose the solution with the largest denominator.

One special case to take into account is when the trans-

lational component of motion is zero. When this happens,

the value of t̂ computed by the monocular egomotion

estimation process is arbitrary but non null, so does not

bring any singularity to the problem. The computation of

� can be made with the same expressions as before and

should result in values very close to zero.

Probabilistic scale estimation

In the previous section, we demonstrated how to estimate

the translation scale factor � from the observation of a

single static point s, if point correspondences r; q and p are

known and disparity is non null. In practice, two major

problems arise: (i) it is hard to determine what are the static

points in the environment given that the cameras are also

moving and (ii) it is very hard to obtain reliable matches

due to the noise and ambiguities present in natural images.

Therefore, using a single point to perform, this estimation is

doomed to failure. We must therefore use multiple points

and apply robust methodologies to discard outliers.

Previously in Silva et al.,35 this was achieved by com-

puting the rigid transformation between point clouds

obtained from stereo reconstruction at times k and k þ 1.

Point correspondences were deterministically assigned by

searching for the best matches along epipolar lines in space

(from camera L to camera R) and time (from time k to time

k þ 1).

Instead in this article, we apply the notion of probabil-

istic correspondence to the stereo case. Instead of commit-

ting matches in space and time, we create a probabilistic

observation model for possible matches

Pmatchðs; r; p; qÞ ¼ �sðrÞ�sðqÞ�sðpÞ (27)

where we assume statistical independence in the measure-

ments obtained in the pairwise probabilistic correspon-

dence functions �sð�Þ. An example is shown in Figure 5

for the �sðrÞ case.
From the pairwise probabilistic correspondence, we

obtain all possible combination of corresponding matches.

Then, because each four-tuple ðs; r; p; qÞwill correspond to
a given hypothesis value of �, we create an accumulator of

� hypotheses weighted by Pmatchðs; r; p; qÞ. Searching for

global maxima in the accumulator will provide a robust

(most agreed) value for �.

PSET accumulator

For computing the accumulator, we assume E has been

computed by the previously described methods and the

system calibration is known.

First, a large set of points sj; j ¼ 1 � � � J is selected in

image ILk . Selection can be random, uniform or based on

key points, for example, Harris corner6 or scale-invariant

features.28

Point-wise computations. For each point sj, the epipolar

lines E calib ¼ ~sTj S (being S given by stereo calibration) and

Esq ¼ ~sTj E are sampled at Lj points r
lj
j ; lj ¼ 1 � � � Lj and Mj

points q
mj

j ; mj ¼ 1 � � �Mj, in images IRk and ILkþ1,

6 International Journal of Advanced Robotic Systems



respectively. Again sample point selection can be uni-

form along the epipolar lines or based on match quality.

In our implementation, we compute local maxima over

the epipolar lines. For each triple ðsj; r
lj
j ; q

mj

j Þ, the geo-

metric solution of p becomes uniquely determined and is

denoted as p
ljmj

j .

After all probabilistic correspondences have been com-

puted for a point sj, we create a 2D table Hjðlj;mjÞ to store

disparity, likelihood and � values. Each entry ðlj;mjÞ of

tableHj corresponds to a tuple ðsj; r
lj
j ; q

mj

j ; p
ljmj

j Þ from which

it is computed the disparity value d
lj
j , the scale value �

ljmj

j

determined by equations (24) and (25), and the match like-

lihood (27) l
ljmj

j

l
ljmj

j ¼ �sj r
lj
j

� �

�sj q
mj

j

� �

�sj p
ljmj

j

� �

(28)

Finally, for a particular sj, we compute the global maxi-

mum of l
j
ljmj

, which will indicate the best match hypothesis

l�j ;m
�
j

� �

¼ argmaxlj;mj
l
j
ljmj

(29)

From this best match, we retrieve fromHj, the solution �

voted by this point

�j ¼ �
l�j m

�
j

j (30)

and associated likelihood

lj ¼ l
l�j m

�
j

j (31)

Thus, each point sj votes for a certain motion scale factor

�j, according to the confidence lj collected from the prob-

abilistic correspondences in the other images. As a side

product, we also get the best disparity hypothesis at that

point

dj ¼ d
l�j
j (32)

Image-wise computations. In the previous section, we

described how each point sj votes for a translation ampli-

tude �j with weight lj. We collect all these values in sets

A ¼ f�jg and L ¼ fljg, j ¼ 1 � � � J and use a kernel

smoothing method for estimating the highest density of �

votes,36 as described by

f̂ hð�Þ ¼
1

jh

X

j

i¼1

K
lið�i � �Þ

h

� �

(33)

being K a Gaussian kernel function, and h the interval

bandwidth.

Dealing with calibration errors

A common source of errors in a stereo setup is the uncer-

tainty in the calibration parameters. Both intrinsic and

extrinsic parameter errors will deviate the epipolar lines

from their nominal values and influence the computed cor-

respondence probability values. To minimize these effects,

we modify the correspondence probability function when

evaluating sample points such that a neighbourhood of the

point is analysed, instead of using only the exact coordinate

of the sample point

�0sðqÞ ¼ max
q02NðqÞ

�sðq
0Þ exp

ðq� q0Þ2

2s2

" #

(34)

where NðqÞ denotes a neighbourhood of the sample point q

which, in our experiments, is defined as a 7� 7 window.

Another method used to diminish the uncertainty of the

correspondence probability function when performing

ZNCC is to use subpixel refinement methods, for example,

parabola fitting and Gaussian fitting as presented by

Debella-Gilo and Kaab.37

Figure 5. Probabilistic correspondence �sðrÞ for a point s
along a section of the epipolar line Esr . On the top figure, we
show the probabilistic correspondence values. In red, we
have all points of the distribution (non-normalized). In green,
we show the global maximum. In blue, we show all other
local maxima of �sðrÞ (blue). On the bottom figure, the
sample point s in ILk and the local maxima peaks in IRk are
displayed. Sampling is performed in a neighbourhood of the
points on the epipolar line.
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Velocities estimation

The linear and angular velocities are then estimated, using

the same procedure applied by Silva et al.35 After having

obtained the rotation (R), translation direction (̂t) and trans-

lation scale factor (�), the linear and angular velocities are

computed by

V ¼
�~t

DT
(35)

where DT is the sampling interval

DT ¼ Tkþ1 � Tk (36)

Likewise, the angular velocity is computed by

W ¼
r

DT
(37)

where r ¼ yu, the angle-axis representation of the incre-

mental rotation R, as defined by Craig.38

Kalman filter

In order to achieve a more smooth estimation, we filter the

linear and angular velocities estimates using a Kalman fil-

ter with a constant velocity model. The state transition

model with zero-mean stochastic acceleration is given by

Xk ¼ FXk�1 þ �k (38)

where the state transition matrix is the identity matrix,

F ¼ I6x6, and the stochastic acceleration vector �k is dis-

tributed according to a multivariate zero-mean Gaussian

distribution with covariance matrix Q, �k*N (0,Q).

The observation model considers state observations with

additive noise

Yk ¼ HXk þ �k (39)

where the observation matrix H is identity, H ¼ I6x6, and

the �k measurement noise is zero-mean Gaussian with cov-

ariance R.

We set the covariance matrices Q and R empirically,

according to our experiences, to

Q ¼ diagðq1; � � � ; q6Þ (40)

R ¼ diagðr1; � � � ; r6Þ (41)

where qi¼ 10�3; i ¼ 1; � � � ; 6, r3¼ 10�3 and ri¼ 10�4;

i 6¼ 3.

The r3 differs from the other measurement noises val-

ues, because it corresponds to the translation on the z-axis

which is inherently noisier due to the uncertainty of the tz
estimates in the stereo triangulation step. A brief summary

of the aforementioned PSET method is described in algo-

rithm 1.

Results

In order to evaluate the accuracy of PSET, we performed

evaluation tests with synthetic and real image data. For com-

parison purposes, we used LIBVISO18 as a state-the-art

deterministic egomotion estimation method. The choice was

based on the fact that it is an open source 6DVO library with

a filtering step equivalent to ours (constant velocity model).

Synthetic images results

As a first test for evaluating the egomotion estimation accu-

racy of the PSET method, we utilized a sequence of syn-

thetic stereo images. The sequence was created using a

VRML-based simulator and implemented a quite difficult

scene (see Figure 6) in which the images contain a great

deal of repetitive structure that cause ambiguity in image

point correspondence. The sequence is composed by four

linear tracks (see Figure 7), as we are more interested in

evaluating the performance of the method in the estimation

of the translation scale factor.

We assume a stereo camera pair calibrated setup with a

10-cm baseline, 576 � 380 image resolution, with ZNCC

window Nw ¼ 7. For computational reasons, we used

1000 uniform selected points sj for the dense probabilistic

egomotion estimation and a subgroup of 100 points r
lj
j and

q
lj
j (J ¼ 1000, Lj ¼ 100, Mj ¼ 100, 8j). The experiments

conducted to compute the PSET were performed using an

Intel I5 Dual Core 3.2 GHz which took about 20 s. The

code was written in MATLAB as a proof of concept with-

out any kind of optimization. The processing time is spent

nearly 70% on the 5D estimation part and on the probabil-

istic correspondence step, the voting scheme takes the

remaining 30%.

Algorithm 1. PSET.

Input: Two stereo image pairs ðILk; I
R
kÞ and ðILkþ1; I

R
kþ1Þ, Erig (stereo

calibration)
Output: (Velocities) V , W
Step 1. Use a feature based method to select a set of initial points

or use the all image.
Step 2. Compute the probabilistic correspondences between

images ILk and ILkþ1, �sðqÞ. Equations (1) to (3).
Step 3. Compute probabilistic egomotion, E. Equations (7) to (10).
Step 4. Compute probabilistic correspondences for the stereo

case, ILk and IRk ; I
R
kþ1, �sðrÞ; �sðpÞ equation (11).

Step 5. Obtain the probabilistic observation model Pmatch using
�sðrÞ�sðqÞ�sðpÞ to relate all possible four-tuple ðs; r; q; pÞ
matches equation (27).

Step 6. Create an accumulator array H for each point sj, and
perform pointwise computations for obtaining the translation
scale � and the associated likelihood l for each point,
equations (28) to (31).

Step 7. Compute the imagewise computations and obtain the final
translation scale factor �max using Weighted Kernel density
estimation (33)

Step 8. Estimate Linear and Angular Velocities, V andW . (35) to (37)
Step 9. Constant Velocity Kalman Filtering. Equations (38) and (39)
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In Figure 7, one can observe the generated and the esti-

mated trajectories obtained using PSET and LIBVISO.

From Table 1, we can observe that PSET obtains a more

accurate egomotion estimation, having less root mean

square (RMS) error than LIBVISO in all velocity compo-

nents. This turns out to be more evident in the computation

of the velocity norm over the global motion trajectory,

where PSET results are almost 50% more accurate than the

ones displayed by LIBVISO.

In this experiment, we focused on the evaluation of

translational motion estimation, since the angular velocity

case was already demonstrated by Silva et al.35

In Figure 8, we can observe a box plot of the instanta-

neous linear velocity error distribution during the sequence.

It is clear better performance of PSET both in terms of the

mean, median and variance of the error. Figure 9 shows the

same information discriminated by coordinate axis where

the same tendency is observed, especially for the X and Z

components.

Real image sequences

The evaluation of PSET in real images was performed

using KITTI data set39 composed of stereo image

sequences. The KITTI data set uses a car-vehicle robot in

different road scenarios (urban street, countryside and high-

ways) providing stereo image sequences in colour or grey-

scale format at 10 fps, 1.4-MP image resolution (1334 �
391) with IMU/GPS (OXTS RT 3003) information to act as

external validation. In the study by Silva et al.,35 PSET and

LIBVISO were already compared using that data set.

Results show that PSET outperforms LIBVISO in both

linear and angular velocity estimation. In this work, we

perform novel experiments with added Gaussian noise and

image blur. Not only we want to evaluate the egomotion

estimation accuracy in normal conditions but also with

unfavourable image characteristics, typical of outdoor sce-

narios. The main argument we want to validate is that

probabilistic methods, although requiring additional com-

putations, can be more effective in robotic scenarios where

Figure 7. Generated and estimated trajectories in the synthetic
image experiment.

Table 1. Comparison of the standard mean squared error
between PSET and LIBVISO.

Vx m/frame Vy m/frame Vz m/frame jjVjj m/frame

LIBVISO 0.000690 0.000456 0.0011 0.0022
PSET 0.000336 0.000420 0.000487 0.0012

PSET: probabilistic stereo egomotion transform.

PSET LIBVISO

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

× 10−3

Methods

Error Statistics for ||V|| estimates between k and k+1

M
ed

ia
n 

an
d 

S
ta

nd
ar

d 
D

ev
ia

ti
on

 (
m

)

Figure 8. Error distribution jjVjj obtained by PSET and LIBVISO.
On each box, the central mark is the median, the edges of the box
are the 25th and 75th percentiles, the whiskers extend to the
most extreme data points not considered outliers, and outliers
are plotted individually. PSET: probabilistic stereo egomotion
transform.

Figure 6. Synthetic images stereo pairs for translation scale
motion estimation
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Figure 9. Error distribution of estimated linear velocities obtained by PSET and LIBVISO in all three axes (Vx ; Vy; Vz). PSET: probabilistic
stereo egomotion transform.

Figure 10. Original image from KITTI data set drive 2011-09-26-0091, and corrupted versions with white Gaussian noise of variance
0.001, 0.002 and 0.005 in an image grey level range between 0 and 255.
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image conditions are far from ideal and deterministic ego-

motion estimation methods tend to fail.

Experiment with addedGaussian noise. In principle, prob-

abilistic egomotion estimation methods are less sensible to

image noise than their deterministic counterparts. In outdoor

mobile robotic scenarios, images are frequently corrupteddue

to factors such as sensor noise, bad scene illumination, high-

lights, specular reflections and other optical artefacts. In order

to validate probabilistic methods as more robust to image

noise than deterministic methods, a set of experimental trials

was performed. The experimental procedure consisted on

adding white Gaussian noise to all the images (346 stereo

pairs) in the KITTI stereo image data set sequence (drive

2011-09-26-0091),39 since it is a scene that contains high

contrast images and shadows and comparing egomotion esti-

mation accuracy of both PSET and LIBVISO methods.

In Figure 10, we show an example of an image of the

KITTI data set and the corresponding corrupted images

with different values of Gaussian noise. Table 2 shows

results for PSET and LIBVISO with three different noise

powers: 0.001, 0.002 and 0.005 variance in grey level units

in the 0–255 range.

Table 2. RMS for PSET and LIBVISO under different values of image Gaussian noise.

Gaussian noise
0� 1� (0.001) 2� (0.002) 5� (0.005)

Egomotion jjVjj jjWjj jjVjj jjWjj jjVjj jjWjj jjVjj jjWjj

PSET 0.4170 0.9400 0.4436 0.9400 0.4556 0.9400 0.4899 0.9405
LIBVISO 0.4444 0.9605 0.5210 1.0068 0.5535 1.0600 0.6332 1.2712
Improvement 	6% 	2% 	15% 	7% 	18% 	12% 	23% 	26%

RMS: root mean square; PSET: probabilistic stereo egomotion transform.
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Figure 11. Error distribution of the magnitude of linear velocity computed by PSET and LIBVISO, images corrupted with Gaussian
noise with variance 0.001, 0.002, 0.005, denoted, respectively, 1�, 2�, 5�. PSET: probabilistic stereo egomotion transform.
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We measure accuracy as the RMS error between the

estimates and the IMU/GPS information. Quantitative

results are shown in Table 2 and Figures 11 and 12.

The obtained results show higher accuracy of the PSET

method under all values of added Gaussian noise com-

pared to LIBVISO. Furthermore, as the noise power

grows, the PSET method shows bigger improvements.

For the largest noise power tested, PSET reduces the
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Figure 12. Error distribution of the magnitude of angular velocities computed by PSET and LIBVISO images corrupted with Gaussian
noise with variance 0.001, 0.002, 0.005, denoted, respectively, 1�, 2�, 5�. PSET: probabilistic stereo egomotion transform.

Figure 13. Original image from KITTI data set drive 2011-09-26-0091, and corrupted versions with blur 1, 3, 5 pixels standard
deviation denoted as 1�, 2�, 5�.
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error in 23% for the linear velocities and 26% for the

angular velocities.

In Figures 11 and 12, we show the error distribution of the

linear and angular velocity magnitude computed by PSET and

LIBVISO, for all tested error powers. The accuracy in the ego-

motion estimation obtained by PSET is higher, since it displays

lower median error when compared to LIBVISO for all cases.

Experiment with added blur. In outdoor robotics scenar-

ios, the presence of blur is somewhat frequent. The use of

visual egomotion estimation in those scenarios was limited

due to the fact that deterministic egomotion methods tend

to fail in the presence of image blur. One of the reasons that

justifies the use of probabilistic egomotion estimation

methods is precisely the higher robustness exhibited by this

type of approach when compared to deterministic methods

in the presence of image blur. To validate such claim, we

conducted another experiment using both PSET and

LIBVISO in the same KITTI data set sequence (2011-09-

Table 3. RMS error for PSET and LIBVISO under different values of blur.

Image blur
0� 1� (1.0) 3� (3.0) 5� (5.0)

Egomotion jjVjj jjWjj jjVjj jjWjj jjVjj jjWjj jjVjj jjWjj

PSET 0.4170 0.9400 0.4176 0.9400 0.4490 0.9400 0.4820 1.2965
LIBVISO 0.4444 0.9605 0.4475 1.0092 0.5535 1.1163 0.9400 1.9194
Improvement 	6% 	2% 	7% 	7% 	19% 	15% 	48% 	32%

RMS: root mean square; PSET: probabilistic stereo egomotion transform.
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Figure 14. Error distribution of the magnitude of the linear velocities PSET and LIBVISO, images corrupted with a Gaussian blur filter
with 1�, 2�, 5� pixels standard deviation. PSET: probabilistic stereo egomotion transform.
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26-0091), but this time using different values of blur, as

illustrated in Figure 13.

In Table 3, we show the RMS error using PSET and

LIBVISO with different types of blur (1.0) when compared

to IMU/GPS information. The corrupted images were cre-

ated by adding a low-pass Gaussian filter of the image size

with 1�, 3�, 5� standard deviation.

Again results show that PSET is more accurate than LIB-

VISO in the presence of higher quantities of blur. The error

difference between PSET and LIBVISO increases from 7%

for low values of blur (1�) to 48% and 32% in the linear and

angular velocity estimation for high values of blur (5�).

In Figures 14 and 15, we can see the error distributions

of linear and angular velocities both for PSET and LIB-

VISO. Again, PSET exhibits lower median error when

compared to LIBVISO for all values of image blur.

The difference in the obtained accuracy from PSET and

LIBVISO is bigger for the synthetic image scenario than in

real image data sets. This fact maybe due to two causes. First

the ground-truth information used in both experiments is

different. In the synthetic image scenario, we generate the

VRML simulation and therefore the world points have a pre-

cise position that provides a reliable egomotion trajectory

verification. On the contrary for the real image data set, an

IMU/GPS information is used. The IMU/GPS information is

subject to bias and noise, and therefore, it can only be con-

sidered as weak ground truth information. Secondly, the

KITTI sequence does not contain such image repetitive struc-

ture, and therefore, point correspondence ambiguity is lower.

Conclusions and future work

The probabilistic approach for stereo visual egomotion esti-

mation described in this work has proven to be an accurate

method of computing stereo egomotion. The proposed

approach is very robust because no explicit matching or

feature tracking is necessary to compute the vehicle

motion. To the best of our knowledge, this is the first

implementation of a fully dense probabilistic method to

compute stereo egomotion. The results demonstrate that
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Figure 15. Error distribution of the magnitude of the angular velocities PSET and LIBVISO, images corrupted with a Gaussian blur filter
with 1�, 2�, 5� pixels standard deviation. PSET: probabilistic stereo egomotion transform.
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PSET is more accurate than other state-of-the-art 3D ego-

motion estimation methods, significantly improving the

overall accuracy in linear and angular velocity estimation.

We have shown improvements up to 50% in a highly repe-

titive texture synthetic image scenario with ground truth

information and above 20% in real images with large

amounts of blur and noise with respect to IMU/GPS refer-

ence. One of the main advantage of probabilistic egomotion

estimation methods is their higher robustness in difficult

imaging scenarios, for example, in the presence of image

noise or blur. In the experiments, conducted PSET

achieved a better performance than LIBVISO and the

improvement (error difference) between both methods

increased in the presence of higher values of image noise

and blur. Despite the clear advantages over other state-of-

the-art methods, its effectiveness and usefulness in mobile

robotics scenarios requires further improvements on the

computational implementations in order to have real-time

functionality. Given the highly parallel nature of the algo-

rithm, composed of many independent operations, in future

work, we plan to develop a PSET GPU implementation to

achieve real-time performance. Another objective is to pur-

sue further validation of the PSET algorithm in other het-

erogeneous mobile robotics scenarios, especially in aerial

and underwater robotics, where the lack of image texture

combined with high matching ambiguity provides an ideal

scenario for further accessing the robustness of the pro-

posed methodology.
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