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Abstract We define a notion of reducibility for subsets of a second countable T0
topological space based on relatively continuous relations and admissible representa-
tions. This notion of reducibility induces a hierarchy that refines the Baire classes and
the Hausdorff–Kuratowski classes of differences. It coincides withWadge reducibility
on zero dimensional spaces. However in virtually every second countable T0 space,
it yields a hierarchy on Borel sets, namely it is well founded and antichains are of
length at most 2. It thus differs from the Wadge reducibility in many important cases,
for example on the real line R or the Scott Domain Pω.

Keywords Wadge reducibility · Wadge hierarchy · Relatively continuous relation ·
Admissible representation

Mathematics Subject Classification 03E15 · 03D55 · 03F60

1 Introduction

The versatile concept of a topological space has proved valuable in various areas of
mathematics. In many cases of interest, the spaces are second countable, i.e. their
topology admits a countable basis. While separable metrisable spaces are of primary
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660 Y. Pequignot

importance to Analysis [11], topological spaces that do not satisfy the Hausdorff
separation property are central to Algebraic Geometry [6] and to Computer Science
[7]. This paper considers without distinction all second countable spaces which satisfy
the weakest separation property T0, namely every two points which have exactly the
same neighbourhoods are equal.

The very act of defining a topology on a set of objects consists in specifying simple,
easily observable properties: the open sets. We are then interested in understanding
the complexity of the other subsets relatively to the open sets. Already at the turn of
the twentieth century, the French analysts—Baire, Borel and Lebesgue—stratified the
Borel sets of a metric space into a transfinite hierarchy: the Baire classes �0

α , �
0
α and

�0
α . These classes are well-known to exhibit the following pattern:
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Borel sets are thus classified according to the complexity of their definition from
open sets along this transfinite ladder. This classification was further refined by Haus-
dorff, and later by Kuratowski, by identifying what is now called the difference
hierarchies, consisting of the Haudorff-Kuratowski classes Dξ (�

0
α). Since for every

map f : X → X , the preimage function f −1 : P(X) → P(X) is a complete Boolean
homomorphism, it directly follows from their definition that the Baire classes and the
Hausdorff–Kuratowski classes are closed under continuous preimages.1

Wadge in his Ph.D. thesis [25] was the first to investigate the quasiorder (qo) of
continuous reducibility on the subsets of the Baire space ωω: for A, B ⊆ ωω we say
that A is Wadge reducible to B, A ≤W B, if and only if there exists a continuous
f : ωω → ωω such that f −1(B) = A. This quasiorder is remarkable. By considering
suitable infinite games, calledWadgegames, andusing the determinacyof these games,
which follows from Borel determinacy, this quasiorder turns out to be well founded
and to admit antichains of size at most 2 on the Borel sets. As Andretta and Louveau
[1] describe in introduction to [12]: “The Wadge hierarchy is the ultimate analysis of
P(ωω) in terms of topological complexity”.While theBaire classes and theHausdorff–
Kuratowski classes are closed under continuous preimages, and therefore represent
initial segments for ≤W , there are in fact many more initial segments, so that the
Wadge qo refines greatly these classical hierarchies. All these results for the Baire
space easily apply to every Polish zero dimensional space.

However, when the space is not zero dimensional there may be very few continuous
functions. Hertling [8] in his Ph.D. thesis showed that the qo of continuous reducibility
of the Borel subsets of the real line exhibits a more complicated pattern than in the case
of the Baire space. For example, Ikegami [9] showed in his Ph.D. thesis (see also [10])
that the powerset P(ω) partially ordered by inclusion modulo finite (and hence any
partial order of sizeℵ1) embeds in the qo of continuous reducibility of Borel sets of the
real line (cf. Sect. 10). In a more general setting, Schlicht [20] showed that in any non
zero dimensionalmetric space there is an antichain for the qo of continuous reducibility

1 i.e. for every A ⊆ X in the class and every continuous f : X → X the set f −1(A) belongs to the class.
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A Wadge hierarchy for second countable spaces 661

of size continuum consisting of Borel sets. Selivanov ([21] and references there) and
alsoBecher andGrigorieff [2] studied continuous reducibility in nonHausdorff spaces,
where the situation is in general much less satisfactory than in the case of the Baire
space.

In search for a useful notion of hierarchy outside Polish zero dimensional spaces,
Motto Ros et al. [15] consider reductions by discontinuous functions. For example
they obtain that the Borel subsets of the real line are well founded with antichains
of size at most 2 when quasiordered by reducibility via functions f : R → R such
that for every A ∈ �0

3(R) we have f −1(A) ∈ �0
3(R). They leave open the question

whether �0
3 can be replaced by �0

2 in the above statement. Arguably one defect of
this qo is that it does not refine the low level Baire classes, nor does it respect the
Hausdorff hierarchy of the �0

2.
Instead of considering reduction by discontinuous functions, we propose to keep

continuity but release the second concept at stake, namely that of function.
Our approach is based on the simple and fundamental notion of admissible repre-

sentations which is the starting point of the development of computable analysis from
the point of view of Type-2 theory of effectivity [26]. The basic idea is to represent
the points of a topological space X by means of infinite sequences of natural numbers.
Given such a representation of X , i.e. a partial surjective function ρ :⊆ ωω → X ,
an α ∈ ωω is a name for a point x ∈ X when ρ(α) = x . A function f : X → X
is then said to be relatively continuous (resp. computable) with respect to ρ if the
function f is continuous (or computable) in the ρ-names, i.e. there exists a continuous
(resp. computable) F : dom ρ → dom ρ such that f ◦ ρ = ρ ◦ F . Of course the
notion of relatively continuous function depends on the considered representation.
However, for every second countable T0 space X there exists—up to equivalence—a
greatest representation (see Theorem 1) among the continuous ones, called an admis-
sible representation of X . The importance of admissible representations resides in the
following fact (see Theorem 2): for an admissible representation ρ of X , a function
f : X → X is relatively continuous with respect to ρ if and only if f is continuous.
Notice however that as long as the representation is not injective, there are in general
many continuous transformations of the nameswhich do not induce amap on the space
X . Indeed different names α, β of some point x can be sent by a continuous function
F onto names F(α), F(β) representing different points, i.e. ρ(F(α)) �= ρ(F(β)).
Such transformations are called relatively continuous relations (see Definition 3) and
they were first investigated in a systematic manner by Brattka and Hertling [4].

We propose to consider reducibility by total relatively continuous relations. In
Sect. 2, we observe that total relations account perfectly for the idea of reducibility in
the abstract and in fact generalise the framework of reductions as functions. However
when we fix an admissible representation ρ of a second countable T0 space X , it is
natural to think of reductions by relatively continuous relations as “reductions in the
names”: if A, B ⊆ X , then A reduces to B, in symbols A �W B, if and only if there
exists a continuous function F from the names to the names such that for every name
α, ρ(α) ∈ A ↔ ρ(F(α)) ∈ B. In other words, for every point x and every name α

for x , F(α) is the name of a point that belongs to B if and only if x belongs to A.
Tang [23] works with an admissible representation of the Scott domain Pω and

studies exactly the notion of reduction that we propose here in a more general setting.
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662 Y. Pequignot

But first, this study is antecedent to the introduction by Kreitz and Weihrauch [13]
of admissible representations and Tang does not notice that his representation of Pω

is admissible, and thus canonical in a sense. Second, even though his paper is often
cited, we have not found any other reference to his particular approach to reducibility
on Pω.

Importantly, reducibility by relatively continuous relations coincides with the con-
tinuous reducibility on zero dimensional spaces. It can therefore be viewed as a
generalisation ofWadge reducibility outside zero dimensional spaces. Notice however
that it differs notably from the continuous reducibility in every separable metrisable
space that is not zero dimensional (see Corollary 2, Sects. 10 and 11).

Moreover, it follows from a result by Saint Raymond [19] extended by de Brecht
[5] that in every second countable T0 space X , the Baire classes and the Kuratowski–
Hausdorff classes are initial segments for�W . And therefore reducibility by relatively
continuous relations refines these classical hierarchies.

Finally, using a variant of the Wadge game, it follows from Borel determinacy, by
the same methods as in the case of the Baire space, that the qo�W is well founded and
satisfies the Wadge duality principle (in particular antichains are of size at most 2) on
the Borel sets of any Borel representable space. Here a Borel representable space is
simply a second countable T0 space for which there exists an admissible representation
whose domain is Borel in ωω. As in the case of the Baire space, this structural result
depends on the determinacy of the games under consideration. In particular, under
the Axiom of Determinacy, it extends to all subsets of every second countable T0
space.

2 Reductions as total relations

The concept of reduction is used in several different fields, such as complexity theory,
automata theory and descriptive set theory. While particular definitions relies on dif-
ferent concepts, they all share a general idea. If X,Y are sets, A ⊆ X and B ⊆ Y , a
function f : X → Y is called a reduction of A to B if f −1(B) = A or equivalently if

∀x ∈ X (x ∈ A ↔ f (x) ∈ B) .

Let F be a class of functions from X to X that contains the identity on X and that
is closed under composition. For A, B ⊆ X we say that A is reducible to B with
respect to F if there exists f ∈ F such that f is a reduction of A to B. This defines a
quasiorder, i.e. a reflexive and transitive relation, on the powerset of X .

We now observe that as far as reducibility is concerned reductions do not need to
be functions. In fact one may as well consider total relations in place of functions.

We say R ⊆ X × Y is a (total) relation from X to Y , in symbols R : X ⇒ Y , if
for all x ∈ X there exists y ∈ Y with (x, y) ∈ R. We also write R(x, y) in place of
(x, y) ∈ R. If A ⊆ X and B ⊆ Y we say that a reduction of A to B is a total relation
R : X ⇒ Y such that
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A Wadge hierarchy for second countable spaces 663

∀x ∈ X ∀y ∈ Y
[
R(x, y) → (x ∈ A ↔ y ∈ B)

]
. (1)

One can also view a relation R ⊆ X × Y as the function

R→ : X −→ P(Y )

x �−→ R→(x) = {y ∈ Y | R(x, y)}.

From this point of view, R is total from X to Y if and only if R→(x) �= ∅ for all x ∈ X ,
and (1) can be stated as follows:

∀x ∈ X
[(
x ∈ A ∧ R→(x) ⊆ B

) ∨ (
x ∈ A� ∧ R→(x) ⊆ B�)]. (2)

Of course, for every function f : X → Y , f is a reduction of A to B if and only if
its graph {(x, f (x)) | x ∈ X}, as a total relation from X to Y , is a reduction of A to
B. So our notion of reduction as total relations subsumes the notion of reduction as
functions.

Observe also that it follows directly from (2) that a total relation R is a reduction
of A to B if and only if it is a reduction from A� to B�.

Two total relations R : X ⇒ Y and S : Y ⇒ Z compose to yield the total relation
S ◦ R : X ⇒ Z in the expected way

S ◦ R = {
(x, z) ∈ X × Z

∣∣ ∃y ∈ Y R(x, y) ∧ S(y, z)
}
.

Fact 1 If A ⊆ X, B ⊆ Y , C ⊆ Z, R : X ⇒ Y is a reduction of A to B and S : Y ⇒ Z
is a reduction of B to C, then S ◦ R : X ⇒ Z is a reduction of A to C.

Let R be a class of total relations from X to X that contains the diagonal {(x, x) |
x ∈ X} and that is closed under composition. For A, B ⊆ X we say that A is reducible
to B with respect to R if there R ∈ R such that R is a reduction of A to B. Again this
defines a quasiorder on the powerset of X that we call R-reducibility.

The following fact follows immediately from (1).

Fact 2 Let R, S : X ⇒ Y , A ⊆ X, B ⊆ Y . If R ⊆ S and S is a reduction of A to B,
then R is also a reduction of A to B.

Consequently, for a class R as above, if we consider the the upward closure of R
defined by

R = {S : X ⇒ X | ∃R ∈ R R ⊆ S},

then the R-reducibility equals the R-reducibility. Therefore as far as reducibility is
concerned, we gain generality by considering classes of total relations instead of
classes of functions, and we can always consider classes of total relations that are
upward closed.
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664 Y. Pequignot

3 Admissible representations

In this sectionwebriefly review the notion of admissible representation of a topological
space. This notion is fundamental to the approach to computable analysis known as
Type-2 Theory of Effectivity (see [26]).

A topological space X is called second countable if it admits a countable basis of
open sets. It satisfies the separation axiom T0 if every two distinct points are topo-
logically distinguishable, i.e. for any two distinct points x and y there is an open set
which contains one of these points and not the other. It is called 0-dimensional if it
admits a basis of clopen sets, i.e. of simultaneously open and closed sets. The Baire
space is denoted by ωω. Recall that a space is second countable and 0-dimensional if
and only if it is homeomorphic to a subset of ωω. A Polish space is a second countable
completelymetrisable topological space, the Baire space is a crucial example of Polish
space. Recall [11, (3.11), p.17] that a subspace of a Polish space is Polish if and only
if it is �0

2, i.e. a countable intersection of open sets.
Let X,Y be second countable T0 spaces. If A ⊆ X and f : A → Y is a function, f

is called a partial function from X to Y , in symbols f :⊆ X → Y , and we refer to A
as the domain of f , denoted by dom f . A partial function f :⊆ X → Y is continuous
if it is continuous on its domain for the subspace topology on dom f , i.e. if for every
open U of Y there is an open V of X such that f −1(U ) = V ∩ dom f .

We quasiorder the partial functions from ωω into X by saying that for f, g :⊆
ωω → X

f ≤C g ←→
{
there exists a continuous h : dom f → dom g
with g ◦ h(α) = f (α) for all α ∈ dom f .

Clearly, if g is continuous and f ≤C g, then f is continuous too. Hence the set of
partial continuous functions from ωω into X is downward closed with respect to ≤C .

Definition 1 [26] Let X be second countable T0. A partial continuous function ρ :⊆
ωω → X is called an admissible representation of X if it is a ≤C -greatest element
amongpartial continuous functions to X , i.e. f ≤C ρ holds for every partial continuous
f :⊆ ωω → X .

Observe that an admissible representation ρ of X is necessarily onto X , since for
every point x ∈ X , we have cx ≤C ρ where cx : ωω → X , α �→ x is the constant
function.

Remark 1 Since the subspaces of ωω are up to homeomorphism the second countable
0-dimensional spaces, an admissible representation of X is also a continuous map
ρ : D → X from some second countable 0-dimensional space D such that for every
continuous map g : E → X from a second countable 0-dimensional space E there
exists a continuous map h : E → D such that ρ ◦ h = g.

It is well known that every second countable T0 space X has an admissible repre-
sentation. As this is crucial for the sequel, we now explain this simple fact. So let X
be a second countable T0 space and (Vn)n∈ω be a countable basis of open sets for X .

123



A Wadge hierarchy for second countable spaces 665

We define the standard representation of X with respect to (Vn) to be the partial map
ρ :⊆ ωω → X defined by

ρ(α) = x ←→ Im α = {n | ∃k α(k) = n} = {n | x ∈ Vn},

for α : ω → ω and x ∈ X . Note that ρ is indeed a function on its domain because X
is T0. An α ∈ ωω codes via ρ a point x ∈ X if and only if α enumerates the indices of
all the Vn’s to which x belongs.

Theorem 1 For every second countable T0 space X there exists an admissible repre-
sentation ρ :⊆ ωω → X. Moreover it can be chosen such that

1. ρ is open,
2. for every x ∈ X, the fibre ρ−1(x) is Polish.

Proof Let (Vn) be a countable basis for X and let ρ :⊆ ωω → X be the standard
representation of X with respect to (Vn). It is enough to show that ρ satisfies all the
requirements.

Continuity: Note that ρ−1(Vn) = {α ∈ dom ρ | ∃k α(k) = n} is open in ωω for
every n, so ρ is continuous.

Openness: For every basic Ns = {x ∈ ωω | s ⊆ x}, s ∈ ω<ω, we have ρ(Ns) =⋂
k<|s| Vsk which is open in X , so ρ is an open map.

Polish fibres: For every point x ∈ X

ρ(α) = x ←→ ∀n[
(∃k α(k) = n) ↔ x ∈ Vn

]

is a �0
2 definition of the fibre in x , so ρ has Polish fibres.

Admissibility: Let f :⊆ ωω → X be continuous and fix some enumeration π : ω →
ω of ω where each natural number appears infinitely often. Let us
consider the monotone map h∗ : ω<ω → ω<ω defined by induction
on the length |s| of s ∈ ω<ω by:

h∗(∅) =∅

h∗(s�m) =
{
h∗(s)�π(|s|) if f

(
Ns�m

) ⊆ Vπ(|s|)
h∗(s) otherwise,

where, for s ∈ ω<ω, f (Ns) denotes the set { f (α) | α∈dom f and s⊆
α}. We let h : dom f → dom ρ be the continuous function defined
by h(α) = ⋃

l∈ω h∗(α�l) (see [11, (2.6), p.8]). We claim that h is a
witness for the fact that f ≤C ρ, namely that for every α ∈ dom f
and every n ∈ ω we have n ∈ Im h(α) if and only if f (α) ∈ Vn .
Let α ∈ dom f and n ∈ ω and assume that f (α) ∈ Vn . Then by
continuity of f there exists a k ∈ ω such that f (Nα�k+1

) ⊆ Vn and
π(k) = n. It follows that n belongs to the image of h∗(α�k+1) and
therefore to the image of h(α).
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666 Y. Pequignot

Conversely, let α ∈ dom f and assume that n belongs to the image of
h(α). Then for lminimal such that n belongs to the image of h∗(α�l+1),
and by definition of h∗ this means that we have f (Nα�l+1

) ⊆ Vπ(l)

and π(l) = n. Therefore f (α) ∈ Vn and this concludes the proof. ��
Importantly, Brattka [3, Corollary 4.4.12] showed that every Polish space X has

a total admissible representation, i.e. an admissible representation ρ :⊆ ωω → X
with dom ρ = ωω. As an easy consequence one gets that for every second countable
T0 space X : there exists an admissible representation of X with a Polish domain if
and only if there exists a total admissible representation of X . Motivated by the rich
theory of Polish spaces, it is natural to consider the class of those second countable T0
spaces which have a total admissible representation. As a matter of fact de Brecht [5]
showed that this class coincides with the class of quasi-Polish spaces that he recently
introduced. Moreover he showed that many classical results of descriptive set theory
can be generalised to this large class of non necessarily Hausdorff spaces and that the
metrisable quasi-Polish spaces are exactly the Polish spaces.

The real lineRwill serve as an example along the paper and we now introduce two
different admissible representations for it.

Example 1 Let (qn)n∈ω be an enumeration of the rationals and let In = (qn0 , qn1) be
an enumeration of the non empty intervals of the real line R with rational endpoints.

We define ρR :⊆ ωω → R as the standard representation relatively to the enumer-
ated basis (In)n∈ω, i.e.

ρR(α) = x ←→ Im α = {n | x ∈ In},

so that α ∈ ωω codes x ∈ R if and only if α enumerates all the intervals with rational
endpoints to which x belongs.

The second admissible representation is based on Cauchy sequences and it works
mutatis mutandis for every separable complete metric space.

Example 2 Let (qn)n∈ω be an enumeration of the rationals, and let d be the euclidean
metric on R. A sequence (xk)k∈ω is said to be rapidly Cauchy if for every i, j ∈ ω,
i < j implies d(xi , x j ) ≤ 2−i . The Cauchy representation σR :⊆ ωω → R of the real
line is defined by

σR(α) = x ←→ (
qα(k)

)
k∈ω

is rapidly Cauchy and lim
k→∞ qα(k) = x .

This is an admissible representation of R.

As an example of a nonmetrisable spacewe consider the Scott DomainPω, namely
the powerset of ω partially ordered by inclusion and endowed with the Scott topology.
A basis of Pω is given by sets of the form OF = {X ⊆ ω | F ⊆ X} for some finite
F ⊆ ω. This space is universal for the second countable T0 spaces. Indeed for every
such space X with some basis (Vn)n∈ω the map e : X → Pω, x �→ {n | x ∈ Vn} is
an embedding.
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A Wadge hierarchy for second countable spaces 667

Example 3 The enumeration representation of Pω is the total function ρEn : ωω →
Pω defined by

ρEn(α) = {n | ∃k α(k) = n + 1}.

It is easy to see that ρEn is an open admissible representation with Polish fibres.

As another example of an admissible representation of Pω consider:

Example 4 Let (sn)n∈ω be an enumeration of the finite subsets ofω.We defineρ<∞ :⊆
ωω → Pω by

ρ<∞(α) = x ←→ ∀n ∈ ω sα(n) ⊆ sα(n+1) and
⋃
n∈ω

sα(n) = x .

The domain of ρ<∞ is closed and ρ<∞ is clearly continuous. The map ρ<∞ is also
an admissible representation of the space Pω since it is continuous and ρEn ≤C ρ<∞,
as witnessed by the continuous f : ωω → dom ρ<∞ defined by

f (α)(n) = k, where sk = {m | ∃ j ≤ n α( j) = m + 1}.

4 Relative continuity

The importance of admissible representations stems from the fact that continuity of a
function between second countable T0 spaces can be accounted for “in the codes”.

Definition 2 Let X,Y be second countable T0 spaces. We say that a total function
f : X → Y is relatively continuous if for some (any) admissible representations ρX

and ρY of X and Y respectively, there exists a continuous g : dom ρX → dom ρY ,
called a continuous realiser of f , such that f ◦ρX (α) = ρY ◦g(α) for everα ∈ dom ρX .

Using the maximality property of admissible representations, it is easy to see that
a function f : X → Y admits a continuous realiser for some choice of admissible
representations of X and Y if and only if it admits a continuous realiser for any choice
of admissible representations.

Theorem 2 Let X,Y be second countable T0 spaces. A total function f : X → Y is
relatively continuous if and only if f is continuous.

Proof Let ρX and ρY be open admissible representations of X and Y respectively.
If f : X → Y is continuous, then f ◦ρX : dom ρX → Y is continuous. Since ρY is

admissible, there exists a continuous g : dom ρX → dom ρY (dom f ◦ρX = dom ρX )
with f ◦ ρX = ρY ◦ g on the domain of ρX , so f is relatively continuous.

Conversely, if f : X → Y is relatively continuous there exists a partial continuous
g : dom ρX → dom ρY with f ◦ ρX = ρY ◦ g on dom f ◦ ρX = dom ρX . Therefore
f ◦ ρX : dom ρX → Y is continuous. So the proof will be finished once we have
proved the following fact: if g :⊆ X → Y is continuous, surjective and open map,
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668 Y. Pequignot

f : Y → Z is any function and f ◦ g :⊆ X → Z is continuous, then f is continuous.
To see this, let U be open in Z . Then

f −1(U ) = {g(x) | x ∈ dom g ∧ g(x) ∈ f −1(U )} since g is onto,

= g
(
( f ◦ g)−1(U )

)

is open in Y since g is an open map and f ◦ g is continuous. ��

5 Injective admissible representations and dimension

For an admissible representation ρ :⊆ ωω → X and a point x ∈ X , one can think of
α ∈ ωω with ρ(α) = x as a “code” or “name” for x . It is natural to ask what are the
spaces which possess an injective admissible representation. It is actually simple to
see that these spaces are exactly those of dimension 0. We now show this fact.

Recall the following fact on the cardinality of a basis.

Lemma 1 Let X be second countable. For every basis C, there is a countable basis
C′ ⊆ C.
Proof Let (Vn) be countable basis for X . Whenever possible choose Cn,m ∈ C with
Vn ⊆ Cn,m ⊆ Vm . Then the countable family of the Cn,m’s is a basis for X . Indeed
for every x ∈ Vm there is a C ∈ C with x ∈ C ⊆ Vm (since C is a basis), and
furthermore there exists n with x ∈ Vn ⊆ C ⊆ Vm (since (Vn)n∈ω is a basis), hence
x ∈ Cn,m ⊆ Vm . ��
Lemma 2 Let X be a second countable T0 space and σ :⊆ ωω → X be an admissible
representation of X. Then there is A ⊆ dom σ such that σ �A is an open admissible
representation of X.

Proof Let ρ :⊆ ωω → X be an open admissible representation of X which exists by
Theorem 1. There exists a continuous g : dom ρ → dom σ that witnesses ρ ≤C σ .
We claim that A = {g(α) | α ∈ dom ρ} works. Indeed ρ ≤C σ �A as g also witnesses,
and for every open O ⊆ ωω we have

σ �A(O) = {σ ◦ g(α) | α ∈ dom ρ} = ρ(O),

which concludes the proof. ��
Proposition 1 Let X be a second countable T0 space. The following are equivalent:

1. X is 0-dimensional,
2. there exists an injective admissible representation of X.

Proof

1→2: By Lemma 1, X admits a countable basis (Vn) consisting in clopen subsets
of X , and for simplicity we may assume further that the basis is closed under
complements, i.e. for every n there exists m with X\Vn = Vm .
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A Wadge hierarchy for second countable spaces 669

Let σ :⊆ ωω → X be the partial map defined by σ(α) = x if and only if
α : ω → 2 is the characteristic function of {n ∈ ω | x ∈ Vn}. Clearly σ is
injective and continuous. To see that σ is admissible, it is enough to show that
ρ ≤C σ where ρ is the standard representation of X with respect to (Vn). This
is witnessed by the continuous function g : dom ρ → dom σ defined by

g(α)(n) =
{
1 if there exists k with α(k) = n + 1,

0 if there exists k with α(k) = m + 1 and Vm = X\Vn .

2→1: Ifρ is an injective admissible representation of X , then byLemma2 there exists
A ⊆ dom ρ such that ρ�A is open and admissible. But since an admissible
representation is surjective and ρ is injective, we must have A = dom ρ.
Therefore ρ is an homeomorphism, and so X is homeomorphic to dom ρ,
hence X is 0-dimensional. ��

6 Relatively continuous relations

We have seen that a function f : X → Y between second countable T0 spaces is
continuous if and only if it is induced by some continuous function “in the codes”.
Moreover we have seen that when X is not 0-dimensional, then no admissible repre-
sentation of X is injective, and so necessarily some points are to receive several codes.
Since different codes of the same point can be sent onto codes of different points, a
continuous function in the codes may very well induce a relation which is not func-
tional on the spaces. Even though the resulting “transformations” of the space are not
necessarily functional, they are still continuous in a sense. They are called relatively
continuous relations, and were first studied in [4].

Definition 3 Let X,Y be second countable T0 spaces. A total relation R : X ⇒ Y is
said to be relatively continuous if, for some (any) admissible representations ρX and
ρY of X and Y respectively, there exists a continuous realiser f : dom ρX → dom ρY
such that for every α ∈ dom ρX we have

(
ρX (α), ρY ◦ f (α)

) ∈ R.

Remark 2 Suppose R : X ⇒ Y is relatively continuous with respect to ρX and ρY
as witnessed by some continuous f : dom ρX → ρY and let σX , σY be admissible
representations of X and Y respectively. Since σX ≤C ρX and ρY ≤C σY there are
continuous g : dom σX → dom ρX and h : dom ρY → dom σY with ρX ◦ g = σX

and σY ◦ h = ρY . Therefore if we set f ′ : dom σX → dom σY to be f ′ = h ◦ f ◦ g
we obtain that for every α ∈ dom σX

σY ◦ f ′(α) = σY ◦ h ◦ f ◦ g(α) = ρY ◦ f ◦ g(α).

Now since σX (α) = ρX ◦ g(α) if we let β = g(α) we have

(
σX (α), σY ◦ f ′(α)

) = (
ρX (β), ρY ◦ f (β)

) ∈ R,
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670 Y. Pequignot

so R is relatively continuous with respect to σX and σY .

Clearly a function f : X → Y is (relatively) continuous if and only if its graph is
relatively continuous as a total relation from X to Y . Moreover it is easily seen that
the class of relatively continuous total relations is closed under composition.

Observe also that the definition directly implies that if R : X ⇒ Y is relatively
continuous and R ⊆ S : X ⇒ Y , then S is relatively continuous too.

Let X,Y be second countable T0 spaces together with admissible representations
ρX , ρY . Every continuous function f : dom ρX → dom ρY induces a total relation
RρX ,ρY

f : X ⇒ Y defined by

x RρX ,ρY
f y ←→ ∃α ∈ dom ρX (ρX (α) = x ∧ ρY ◦ f (α) = y).

The function f witnesses that RρX ,ρY
f is relatively continuous. In fact, f witnesses

that some R : X ⇒ Y is relatively continuous if and only if RρX ,ρY
f ⊆ R. Therefore

we have the following.

Fact 3 Let X,Y be second countable T0 and ρX , ρY be admissible representations of
X and Y respectively. A total relation R : X ⇒ Y is relatively continuous if and only
if there exists a continuous f : dom ρX → dom ρY such that RρX ,ρY

f ⊆ R.

From Proposition 1 and the previous fact, it follows that the relatively continu-
ous relations from a 0-dimensional spaces are simply the continuously uniformisable
relations.

Corollary 1 Let X,Y be secondcountable T0with X zerodimensional. A total relation
R from X to Y is relatively continuous if and only if it admits a continuous uniformising
function, i.e. there exists a continuous f : X → Y with R(x, f (x)) for all x ∈ X.

It is an interesting problem to look for an intrinsic characterisation of the relatively
continuous total relations, that is, one which does not rely on the notion of admissible
representation. Partial answers were obtained in [4,18]. However, to our knowledge,
the general problem is still open. We conclude this section with some known results
in the direction.

Let us say that R : X ⇒ Y preserves open sets if R−1(O) = {x ∈ X | ∃y ∈
O R(x, y)} is open in X for ever open set O of Y .

Proposition 2 [4, Proposition 4.5] Let X,Y be second countable T0 spaces. There
exists a class R of total relations which preserves open sets such that for every S :
X ⇒ Y

S is relatively continuous ←→ ∃R ∈ R R ⊆ S.

Proof Let ρX , ρY be admissible representations of X,Y with ρX an open map. Let R
be the family of total relations RρX ,ρY

f where f : dom ρX → dom ρY is continuous. By

Fact 3, it only remains to prove that RρX ,ρY
f preserves open sets for every continuous

f .
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A Wadge hierarchy for second countable spaces 671

Indeed for every continuous f : dom ρX → dom ρY and every open O of Y

(RρX ,ρY
f )−1(O) = {ρX (x) | x ∈ (ρY ◦ f )−1(O)} = ρX [(ρY ◦ f )−1(O)],

which is open since ρY ◦ f is continuous and ρX is open. ��
Moreover, in the case of a Polish codomain, Brattka and Hertling [4] showed the

following.

Theorem 3 Let X be second countable T0, Y be Polish, and R : X ⇒ Y be such that
R→(x) is closed for every x ∈ X. Then R is relatively continuous if and only if there
exists S : X ⇒ Y that preserves open sets and such that S ⊆ R.

One should notice that preserving open sets is not a sufficient condition for the
relative continuity of a total relation. Consider for example the partition of ωω into

F = {α ∈ ωω | ∃n ∀k ≥ n α(k) = 0} and F = ωω\G.

Clearly G and F are both dense in ωω. Moreover it is well known that F ∈ �0
2\�0

2.
Consider the total relation R = (G×F)∪(F×G). Then R−1(O) = ωω for every non
empty open set O , but R not relatively continuous. Indeed any function f : ωω → ωω

which uniformises R needs to verify f −1(G) = F , and since F is not �0
2, f cannot

be continuous.

7 Reduction by relatively continuous relations

We recall the classical (see e.g. [11, (21.13), p. 156])

Definition 4 If X,Y are topological spaces, A ⊆ X and B ⊆ Y , we say that A is
Wadge reducible to B, in symbols A ≤W B, if there exists a continuous function
f : X → Y that is a reduction of A to B.

We propose to make the following definition.

Definition 5 If X,Y are second countable T0 spaces, A ⊆ X and B ⊆ Y , we say that
A is reducible to B, in symbols A �W B, if there exists a total relatively continuous
R : X ⇒ Y that is a reduction of A to B.

Notice that strictly speaking we should write (A, X) �W (B,Y ) in place of A �W

B, but the spaces are usually understood.
Since the class of relatively continuous relations between second countable T0

spaces contains the identity functions (in fact all relatively continuous functions) and
is closed under composition, �W is a quasi-order.

For second countable T0 spaces X,Y , (A, X) ≤W (B,Y ) implies (A, X) �W

(B,Y ), by Theorem 2. However, the qo �W should not be confused with the Wadge
qo ≤W .

By, when we fix admissible representations, then reducibility by relatively contin-
uous relations simply amounts to continuous reducibility in the codes.
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Lemma 3 Let X,Y be second countable T0 spaces with fixed admissible representa-
tions ρX , ρY . For every A ⊆ X and B ⊆ Y the following are equivalent

1. A �W B,
2. (ρ−1

X (A), dom ρX ) ≤W (ρ−1
Y (B), dom ρY ).

Proposition 3 Let X be a separable 0-dimensional metrisable space. Then ≤W and
�W coincide on subsets of X.

Proof It directly follows from Fact 2 and Corollary 1. ��

8 Baire classes and Hausdorff–Kuratowski classes

The classical approach initiated by the French analysts Baire, Borel, and Lebesgue to
the classification of the subsets of a metric space is more descriptive in nature. Sets are
classified according to the complexity of their definition from open sets. This approach
was continued later by Luzin, Suslin, Hausdorff, Sierpiński and Kuratowski.

As observed in [22,23], the classical definition of Baire classes in metric spaces
is not satisfactory for non metrisable spaces. Following [5,21] we use the following
slightly modified definition of Baire classes in an arbitrary topological space.

Definition 6 Let X be a topological space. For each positive ordinal α < ω1 we define
by induction

�0
1(X) = {O ⊆ X | X is open},

�0
α(X) =

{⋃
i∈ω

Bi ∩ C�
i

∣∣∣∣ Bi ,Ci ∈
⋃
β<α

�0
β for each i ∈ ω

}
,

�0
α(X) = {

A� ∣∣ A ∈ �0
α

}
,

�0
α(X) = �0

α(X) ∩ �0
α(X).

Proposition 4 For any topological space X and any α > 0:

1. �0
α(X) is closed under countable union and finite intersection;

2. �0
α(X) is closed under countable intersection and finite union;

3. �0
α(X) is closed under finite union and intersection as well as under complemen-

tation.

Proposition 5 If α < β, then �0
α ∪ �0

α ⊆ �0
β . So the following diagram of inclusion

holds between Baire classes:

Σ0
1 Σ0

2 Σ0
α

Δ0
1 Δ0

2 Δ0
3 · · · Δ0

α Δ0
α+1 · · ·

Π0
1 Π0

2 Π0
α

⊆
⊆

⊆

⊆
⊆
⊆

⊆

⊆
⊆
⊆

⊆

⊆
⊆
⊆

⊆

⊆
⊆
⊆

Proposition 6 If α > 2, then

�0
α(X) =

{⋃
i∈ω

Bi

∣∣∣∣ Bi ∈
⋃
β<α

�0
β(X) for each i ∈ ω

}
.

123



A Wadge hierarchy for second countable spaces 673

And if X is metrisable the previous statement holds also for α = 2, i.e.

�0
2(X) =

{⋃
i∈ω

Bi

∣∣∣∣ Bi ∈ �0
1(X) for each i ∈ ω

}
.

Hausdorff and later Kuratowski refined the Baire classes by introducing the so
called Difference Hierarchy. Recall that any ordinal α can uniquely be expressed as
α = λ + n where λ is limit or equal to 0, and n < ω. The ordinal α is said to be even
if n is even, otherwise α is said to be odd.

Definition 7 Let ξ ≥ 1 be a countable ordinal. For any sequence (Cη)η<ξ with α <

β < ξ implies Cα ⊆ Cβ , the set A = Dξ ((Cη)η<ξ ) is defined by

A =
{⋃{Cη\⋃

η′<η Cη′ | η odd, η < ξ} for ξ even,⋃{Cη\⋃
η′<η Cη′ | η even, η < ξ} for ξ odd.

For a topological space X , and 0 < α, ξ < ω1 we let Dξ (�
0
α(X)) be the class of all

sets Dξ ((Cη)η<ξ ) where (Cη)η<ξ is an increasing sequence in �0
α(X).

Of course if f : X → Y is continuous map and A ∈ Dξ (�
0
α(Y )), then

f −1(A) ∈ Dξ (�
0
α(X)). This straightforward observation is crystallised in the def-

inition of (boldface) pointclass, that is a collection of subsets of the Baire space closed
under continuous preimages, or in other words, an initial segment of the Wadge qua-
siorder on the Baire space.

In fact in an arbitrary second countable T0 space X the classes Dξ (�
0
α) enjoy the

stronger and less straightforward property of being initial segments of the quasiorder
�W .

Theorem 4 Let X,Y be second countable T0 spaces and A ⊆ X, B ⊆ Y . For
1 ≤ α, ξ < ω1, if B ∈ Dξ (�

0
α(Y )) and A �W B, then A ∈ Dξ (�

0
α(X)).

This proposition is a consequence of the following theorem due to de Brecht
[5, Theorem 78].

Theorem 5 (de Brecht) Let X be a second countable T0 space, ρ :⊆ ωω → X an
admissible representation of X. For any countable α, ξ > 0 and A ⊆ X

A ∈ Dξ (�
0
α(X)) ←→ ρ−1(A) ∈ Dξ (�

0
α(dom ρ)).

Here is the proof of Theorem 4.

Proof (of Theorem4)Let B ∈ Dξ (�
0
α(Y )) and suppose that A ⊆ X satisfies A �W B.

Let ρX , ρY be admissible representations of X,Y respectively. Since A �W B, there
exists a continuous f : dom ρX → dom ρY with (ρY ◦ f )−1(B) = ρ−1

X (A). By
continuity, ρ−1

X (A) = (ρY ◦ f )−1(B) ∈ Dξ (�
0
α(dom ρX )), and so by Theorem 5 A

is Dξ (�
0
α) in X . ��
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674 Y. Pequignot

For the convenience of the reader we devote the rest of this section to the proof
of Theorem 5. The main ingredient is the following proposition which is a slightly
modified version of a result by Saint Raymond [19, Lemma 17]. Its relevance in our
context was first observed by de Brecht [5]. It is based on Baire category and we refer
the reader to [11, Section 8] for definitions and results.

Proposition 7 (Saint Raymond) Let X,Y be topological spaces, with X metrisable.
Let ϕ : X → Y be an open, continuous map with Polish fibres, i.e. ϕ−1(y) is Polish
for all y ∈ Y . Define for Z ⊆ X

N0(Z) = {y ∈ Y | Z ∩ ϕ−1(y) is non meagre in ϕ−1(y)},
N1(Z) = {y ∈ Y | Z ∩ ϕ−1(y) is comeagre in ϕ−1(y)}.

Then for every positive ordinal ξ < ω1,

1. If Z ∈ �0
ξ (X), then N0(Z) ∈ �0

ξ (Y ),

2. If Z ∈ �0
ξ (X), then N1(Z) ∈ �0

ξ (Y ).

Therefore, if ϕ is surjective then for every A ⊆ Y and every α > 0

1. ϕ−1(A) ∈ �0
α(X) ←→ A ∈ �0

α(Y ),
2. ϕ−1(A) ∈ �0

α(X) ←→ A ∈ �0
α(Y ).

Proof Since N1(X\Z) = Y\N0(Z) for every ξ both statements are equivalent. Let
(Vk)k∈ω be a countable basis for the topology of X . We proceed by induction on ξ .

For ξ = 1 let Z ∈ �0
1, since ϕ is assumed to be open we have ϕ(Z) is open in Y .

Since ϕ−1(y) is a Baire space for all y ∈ Y , the open subset Z ∩ ϕ−1(y) of ϕ−1(y) is
non meagre if and only if it is non empty. So N0(Z) = ϕ(Z) ∈ �0

1(Y ).
So assume now that both statements are true for every ξ ′ < ξ and let Z ∈ �0

ξ .

Since X is metrizable, Z is the union of a countable family (Zn)n∈ω with Zn ∈ �0
ξn

for some ξn < ξ . For any point y ∈ Y , using the fact that any Borel subset of a Polish
space has the Baire Property, we have the following equivalences:

Z ∩ ϕ−1(y) is non meagre in ϕ−1(y)

↔ some Zn ∩ ϕ−1(y) is non meagre in ϕ−1(y)

↔ some Zn ∩ ϕ−1(y) is comeagre in some non empty open subset of ϕ−1(y)

↔ ∃n ∃k (Zn ∪ V �
k ) ∩ ϕ−1(y) is comeagre in ϕ−1(y) and Vk ∩ ϕ−1(y) �= ∅.

Therefore,

N0(Z) =
⋃
n,k

N1(Zn ∪ V �
k ) ∩ ϕ(Vk).

Now Zn ∪ V �
k ∈ �0

ξn
, and so N1(Zn ∪ V �

k ) ∈ �0
ξn

by the induction hypothesis.

Moreover ϕ(Vk) ∈ �0
1 since ϕ is an open map. It follows that N0(Z) is �0

ξ according
to Definition 6.
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A Wadge hierarchy for second countable spaces 675

For the second claim, it is enough to notice that if ϕ is surjective and A ⊆ Y then
for Z = ϕ−1(A) we have A = N0(Z) = N1(Z). ��

Building on Proposition 7 and using the same technique de Brecht [5, see Theorem
78] showed:

Proposition 8 (de Brecht) Let ϕ : X → Y be an open and continuous map with
Polish fibres, and X metrisable. If ϕ−1(A) = Dξ ((Cη)η<ξ ) with (Cη)η<ξ an increas-
ing sequence in �0

α , then A = Dξ (N0(Cη)η<ξ ). So A ∈ Dξ (�
0
α(Y )) if and only if

ϕ−1(A) ∈ Dξ (�
0
α(X)).

Proof Let Bη = N0(Cη). First let y ∈ A. Since ϕ−1(y) = ⋃
η<ξ Cη ∩ ϕ−1(y) and

ϕ−1(y) is Polish and non empty, there exists a least ηy < ξ such that Cηy ∩ ϕ−1(y)
is non meagre in ϕ−1(y), i.e. y ∈ Bηy . In particular, Cη′ ∩ ϕ−1(y) is meagre in
ϕ−1(y) for all η′ < ηy , hence

⋃
η′<ηy

Cη′ ∩ ϕ−1(y) is meagre in ϕ−1(y). It follows

that (Cηy\
⋃

η′<ηy
Cη′) ∩ ϕ−1(y) is non meagre in ϕ−1(y), so in particular it contains

some x ∈ X . Since x ∈ ϕ−1(A) = Dξ ((Cη)η<ξ ) the parity of ξ must differ from that
of ηy . Therefore y ∈ Dξ ((Bη)η<ξ ).

Conversely let y ∈ Dξ ((Bη)η<ξ ). There exists ηy < ξ whose parity is different
from that of ξ such that y ∈ Bηy\

⋃
η′<ηy

Bη′ . Since Bη = N0(Aη), Cηy ∩ ϕ−1(y)

is non meagre in ϕ−1(y), and
⋃

η′<ηy
Cη′ ∩ ϕ−1(y) is meagre in ϕ−1(y). As before

(Cηy\
⋃

η′<ηy
Cη′) ∩ ϕ−1(y) is non meagre in ϕ−1(y) and so in particular it must

contain some point x ∈ X . We have x ∈ Dξ ((Cη)η<ξ ) = ϕ−1(A) and so y = ϕ(x) ∈
A. ��

Using the fact that every second countable T0 space has an admissible representation
which is open and has Polish fibres, we can now conclude the proof of Theorem 5.

Proof (of Theorem 5) The left to right implication follows from the continuity of
the admissible representation and the fact that preimage maps are complete Boolean
homomorphism.

For the right to left implication, it is enough by Propositions 7 and 8 to show that we
can assume ρ to be open with Polish fibres—since such an admissible representation
always exists by Theorem 1. So let δ :⊆ ωω → X be any admissible representation
of X , then there exists a continuous f : dom ρ → dom σ with δ ◦ f = ρ on the
domain of ρ. If δ−1(A) ∈ Dξ (�

0
α(dom δ)) then as in the first implication we have

ρ−1(S) = f −1(δ−1(S)) ∈ Dα(�0
θ (dom ρ)). This concludes the claim. ��

9 A reduction game

We now show that on virtually every second countable T0 space—for instance on
every quasi-Polish space—the reducibility�W is well founded and satisfies theWadge
duality principle, in particular antichains have size at most 2.
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Suppose that ρ :⊆ ωω → X is an admissible representation of a second countable
T0 space X then by Lemma 3 the preimage map

ρ−1 : (P(X),�W ) −→ (P(dom ρ),≤W )

A �−→ ρ−1(A)

is an embedding of quasiorders. Therefore if we know that the quasi-order ≤W on the
0-dimensional space dom ρ is well founded and satisfies the Wadge duality principle
then we can conclude that the quasi-order �W also enjoys these properties on X .
In particular if X is quasi-Polish then we can choose ρ such that dom ρ = ωω and
therefore we directly get that the quasi-order �W is well founded and satisfies the
Wadge duality principle on Borel subsets of X from the corresponding facts for the
Baire space.

We consider a simple generalisation of the game first introduced by Wadge to
study continuous reducibility on the Baire space in order to account for the structural
properties of the reducibility by relatively continuous relations on an arbitrary second
countable T0 space.

Let X,Y be second countable T0 spaces, ρX , ρY admissible representations of X
and Y respectively, and A ⊆ X , B ⊆ Y . We define a perfect information two players
game GρX ,ρY (A, B) as follows

I : α0 α1 α2 α3 · · · α

II : β0 β1 β2 β3 · · · β

Player I starts by choosing some α0 ∈ ω and then Player II chooses some β0 ∈ ω,
then Player I choose some α1 ∈ ω, so on and so forth. Player II wins a game (α, β) if
and only if either α �∈ dom ρX , or α ∈ dom ρX , β ∈ dom ρY and

ρX (α) ∈ A ←→ ρY (β) ∈ B.

This is the Lipschitz Wadge game with the additional condition that if Player I plays
in dom ρX , then Player II must play in dom ρY . When ρX = ρY we write GρX (A, B)

instead of GρX ,ρX (A, B).
The game GρX ,ρY (A, B) is tightly related to our notion of reducibility.

Lemma 4 Let X,Y be second countable T0 spaces,ρX , ρY admissible representations
of X,Y respectively. Then for all A ⊆ X and B ⊆ Y :

1. If Player II has a winning strategy in GρX ,ρY (A, B), then A �W B,
2. If Player I has a winning strategy in GρX ,ρY (A, B), then B �W A�.

Proof A winning strategy for Player II induces a total continuous function f : ωω →
ωω such that for every α ∈ dom ρX , f (α) ∈ dom ρY and

α ∈ ρ−1
X (A) ←→ f (α) ∈ ρ−1

Y (B).
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Therefore if Player II has a winning strategy in GρX ,ρY (A, B), then

(ρ−1
X (A), dom ρX ) ≤W (ρ−1

Y (B), dom ρY )

and so A �W B.
Now a winning strategy for Player I induces a continuous function g : ωω → ωω

such that whenever α ∈ dom ρY then g(α) ∈ dom ρX and

g(α) �∈ ρ−1
X (A) ←→α ∈ ρ−1

Y (B)

or equivalently,

ρY (α) ∈ B ←→ρX ◦ g(α) ∈ A�.

Therefore if Player I has a winning strategy in GρX ,ρY (A, B), then we have both
B �W A� and B� �W A. ��

As long as dom ρX , dom ρY , and A ⊆ X , B ⊆ Y are all Borel, it is easy to see that
GρX ,ρY (A, B) is a Gale-Stewart game with Borel payoff set, and thus is determined
by Martin’s Borel determinacy. We are naturally led to the following definition.

Definition 8 A second countable T0 space X is called Borel representable if there
exists an admissible representation ρ :⊆ ωω → X of X such that dom ρ Borel in ωω.

From Lemma 4 and the Borel determinacy we obtain the following.

Theorem 6 Let X be a Borel representable space. The quasi-order �W satisfies the
WadgeDuality principle onBorel sets of X, i.e. for all Borel A, B ⊆ X either A �W B,
or B �W A�.

Of course assuming the Axiom of Determinacy (AD), the general structural result
holds, i.e. assuming AD, if X is a second countable T0 space, A, B ⊆ X , then either
A �W B, or B� �W A.

Following the exact same proof by Martin and Monk as in the case of Wadge
reducibility in 0-dimensional Polish spaces, see for example [11, (21.15) p.158], we
obtain:

Theorem 7 Let X be aBorel representable space. The quasi-order�W iswell founded
on the Borel subsets of X.

Again, assuming AD, this result extends to all subsets of every second countable
T0 space.

These positive results on the structure of the quasi-order �W also imply that �W

often differs with the quasi-order of continuous reducibility ≤W . Indeed Schlicht [20]
showed that in every non 0-dimensional metric space there exists an antichain of the
size of the continuum for the continuous reducibility. Using this result and Proposition
3, we see that in the separable metrisable case the two reducibilities differ as soon as
we leave the zero-dimensional framework.
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Corollary 2 Let X be a metrisable and Borel representable space. Then�W and≤W

coincide on subsets of X if and only if X is 0-dimensional.

As it is observed in [14,24] the fact that the Wadge hierarchy of Borel sets in
Polish 0-dimensional is well founded and has finite antichains can be generalised and
its proof simplified by considering the notion of a better quasiorder introduced by
Nash-Williams [16]. Let (Q,≤Q) be a quasiorder, and let X be a second countable T0
space. Define a quasi-order on

Q∗
X = {l : X → Q | Im l is countable and l−1({q}) is Borel ∀q ∈ Q}

by letting l1 �∗
W l2 if and only if there exists a total relatively continuous relation

R : X ⇒ X such that

∀x, y ∈ X
[
x R y → l1(x) ≤Q l2(y)

]
.

Then for an admissible representation ρ :⊆ ωω → X consider the Lipschitz
game Gρ(l1, l2) where Player I and II play alternatively in ω eventually determining
(α, β) ∈ ωω × ωω. We say that Player II wins the run (α, β) if and only if α �∈ dom ρ

or α, β ∈ dom ρ and l1(ρ(α)) ≤Q l2(ρ(β)).
It is easy to see that the existence of a winning strategy for Player II in Gρ(l1, l2)

implies that l1 �∗
W l2. Moreover as along as l1, l2 ∈ Q∗

X and dom ρ is Borel, the game
Gρ(l1, l2) the game is Borel, and thus determined. Therefore if l1 ��∗

W l2 then Player
I has a winning strategy in Gρ(l1, l2).

The exact same proof as in [24, Theorem 3.2] or as in [14, Theorem 3] yields the
following.

Theorem 8 Let X be Borel representable. If Q is a better quasi-order, then (Q∗
X ,�∗

W )

is a better quasi-order.

Notice that in the case of a quasi-Polish space X Theorem 8 can also be viewed as
a consequence of the van Engelen–Miller–Steel Theorem [24, Theorem 3.2].

10 An example: the Real Line

In [9] (see also [10]) shows the existence of an embedding from (P(ω),⊆fin)—the sub-
sets of ω quasiordered by inclusion modulo finite, i.e. x ⊆fin y ↔ x\y is finite—into
the differences of two open sets of the real line equipped with the Wadge quasiorder.
We now recall this construction.

Take increasing sequences of real numbers 〈aα, bα | α < ωω〉 indexed by the
ordinal ωω and 〈cn | n ≥ 1〉 with

aα < bα < aα+1 for each α < ωω

a−
λ := sup{aα | α < λ} < aλ for each limit λ < ωω

a−
ωn < cn < aωn for each n ∈ ω.
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Now for X ⊆ ω\{0} we let

DX =
⋃

α<ωω

[aα, bα) ∪ {cn | n �∈ X}.

Clearly DX is a difference of two open sets for all X ⊆ ω\{0}.
Theorem 9 [9] For every X,Y ⊆ ω\{0},

X ⊆fin Y ←→ DX ≤W DY .

By Parovičenko’s Theorem [17], any poset of size ℵ1 embeds into the partially
ordered set (P(ω),⊆fin), hence there are long infinite descending chains and long
antichains for the Wadge reducibility, already among the difference of two open sets
of the real line.

As an example, we now give winning strategies witnessing DX �W DY for every
X,Y ⊆ ω\{0}.
Proposition 9 For every X,Y ⊆ ω\{0}, we have DX �W DY .

Proof Let ρR be the admissible representation of the real line from Example 1.
We choose for every x ∈ R a particular code via ρR by setting αx : ω → ω to be

the increasing enumeration of {n ∈ ω | x ∈ In}.
Now fix X,Y ⊆ ω\{0}. We describe a winning strategy σ = σX,Y for player II in

the game GρR(DX , DY ). Let Jk be the open interval (a
−
ωk , aωk ). And note that we only

need to consider positions where Player I has played (n0, n1, . . . , n j ) with
⋂ j

i=0 Ini
is non empty. Let X�Y denote the symmetric difference of X and Y , i.e.

X�Y = {x ∈ ω\{0} | ¬(x ∈ X ↔ x ∈ Y )}.

Our winning strategy σ : ωω → ω for Player II in GρR(DX , DY ) goes as follows:
As long as Player I is in a position where he has played (n0, n1, . . . , n j ) such that

I j = ⋂ j
i=0 Ini �⊆ Jk for all k ∈ X�Y , σ consists simply in copying Player I’s last

move: n j . Therefore σ will induce the identity function outside the Jk’s for which
k �∈ X�Y .

Now consider Player I has played (n0, n1, . . . , n j ) such that there exists k ∈ X�Y

with I j = ⋂ j
i=0 ⊆ Jk and let l be the least integer with I l = ⋂l

i=0 Ini ⊆ Jk . We
distinguish several cases:

1. if ck ∈ DY \DX : then for σ to be winning for Player II, it must eventually make
him play the code of a point outside of DY and it cannot be ck .
Now since I l ⊆ Jk , say I l = (r0, r1), we can for example choose

y = r0 + min{r1, ck}
2

, if r0 < ck , or y = max{r0, ck} + r1
2

, if ck ≤ r0,

and play αy( j − l).
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In other words, if Player I enters some Jk with ck ∈ DY \DX , then σ consists in
playing the code of some y ∈ Jk different from ck , where y depends on the first
position where Player I enters Jk .

2. if ck ∈ DX\DY and ck ∈ I j : then as long as ck ∈ I j , σ must consist in playing as
if Player I was going to play ck , i.e. describe step by step a point belonging to DY

and it cannot be ck .
Now since I l−1 �⊆ Jk (if l = 0 set I l−1 = R), we choose some y ∈ DY ∩ Il−1 as
follows:
(a) if aωk ∈ I l−1, then set y = aωk ,
(b) otherwise there is a minimal β < ωk with aβ ∈ I l−1, set y = aβ ,
and we play αy( j − l).

3. if ck ∈ DX\DY and ck �∈ I j : then for σ to be winning for Player II, it must
eventually make him play the code of a point which is outside of DY , but we must
be careful to be consistent with what Player II has already played until that point.
Let p be the least integer such that ck �∈ I k . First if p ≤ l, i.e. at the first position
where Player I entered Jk we already knew he was not going to play ck , so we can
just copy its last move n j . Otherwise l < p so ck ∈ I l and we must distinguish
two cases:
(a) if aωk ∈ I l−1, then according to our previous case, at round p, Player II has

so far played according to σ :

t = (n0, n1, . . . , nl−1, α
a
ωk (0), αa

ωk (1), . . . , αa
ωk (p − l − 1)).

so
⋂p−1

i=0 It (i) is an open interval (r0, r1) with rational endpoints satisfying
r0 < aωk < r1, so we can take

z = max{a−
ωk , r0} + aωk

2

and play αz( j − p).
(b) Otherwise according to our previous case, up to round p, player II’s moves

according to σ are

t = (n0, n1, . . . , nl−1, α
aβ (0), αaβ (1), . . . , αaβ (p − l − 1)).

where β is the minimal ordinal with aβ ∈ I l−1. Again
⋂p−1

i=0 It (i) is an open
interval (r0, r1) with rational endpoints satisfying r0 < aβ < r1, so we can
take

z = max{a−
β , r0} + aβ

2

where a−
β stands for bβ−1 if β is successor, and we play αz( j − p).

It should be clear that σ is a winning strategy for Player II in GρR(DX , DY ). So
DX �W DY . ��
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If X �⊆fin Y , then X �≤W Y by Theorem 9 and so the winning strategy for II in
GρR(DX , DY ) described in the previous proof induces a continuous fX,Y : ωω → ωω.
The relation

RρR
fX,Y

(x, y) ←→ ∃α ∈ dom ρR
(
ρR(α) = x ∧ y = ρR( fX,Y (α))

)

is therefore a relatively continuous relation fromR toRwith no continuous uniformis-
ing function. Indeed any function uniformising RρR

fX,Y
is a reduction of X to Y and since

DX �≤W DY there is no such continuous function.

11 An example: the Scott domain

We now give a simple example in the space Pω of a case where ≤W differs from
�W . Consider

{{0}}, {ω} ⊆ Pω, we first show that
{{0}} �≤W {ω}. To see this, recall

that continuous functions on Pω are the Scott continuous functions with respect to
inclusion, so in particular they are monotone for inclusion. Now since ω is the top
element, any monotone map f : Pω → Pω with f ({0}) = ω has to send every
x ⊆ ω with 0 ∈ x onto ω too, so that f −1(ω) ⊇ O{0}. Therefore no Scott continuous
function is a reduction from

{{0}} to {ω}.
While we have

{{0}} �≤W {ω}, we actually have
{{0}} �W {ω}, i.e. there exists a

relatively continuous R : Pω ⇒ Pω such that for all x, y ∈ Pω

x R y −→ (x = {0} ↔ y = ω).

Clearly any such relation R cannot be uniformised by a Scott continuous function.
Indeed such a Scott continuous function would be a reduction between the considered
sets, and we know there is none.

The desired relation R can be given as a strategy in the Lipschitz Wadge game
GρEn(

{{0}}, {ω}). Since ρEn is total, we know by Lemma 3 that
{{0}} �W {ω} if and

only if A ≤W B for

A = ρ−1(
{{0}}) = {α ∈ ωω | α ∈ 2ω ∧ ∃k α(k) = 1}

and B = ρ−1({ω}) = {α ∈ ωω | α : ω → ω is surjective}.

Awinning strategy for Player II is for example given by the function σ : ω<ω → ω

defined by

σ(s) =
{
0 if s ∈ {0}<ω or ∃k < |s| sk �= 0, 1,

n if s ∈ 2ω and n = |s| − min{k | sk = 1}.

It is easily seen that this strategy induces a continuous function f : ωω → ωω

witnessing the relative continuity of the relation R : Pω ⇒ Pω given by
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R({0}) = {ω}
R(x) = {∅} if 0 �∈ x

R(x) = {n | n ∈ ω} if {0} ⊂ x .

where n = {0, . . . , n − 1} and ⊂ denotes strict inclusion.

A complete�0
2 inPω. Recall (e.g. [11]) that F = {α ∈ ωω | ∃n ∀k ≥ n α(k) = 0} is

complete for �0
2(ω

ω), i.e. F ∈ �0
2(ω

ω) and for every A ∈ �0
2(ω

ω) we have A ≤W F .
The set P<∞(ω) of finite subsets of ω is �0

2 in Pω. It is shown in [2, Theorem
5.10] that it is not complete for the Scott continuous reducibility in the class �0

2(Pω),
i.e. there exists G ∈ �0

2(Pω) such that G �≤W P<∞(ω). In contrast

Proposition 10 We have �0
2(Pω) = {A ⊆ Pω | A �W P<∞(ω)}.

Proof Let us use the admissible representation ρEn : ωω → Pω from Example 3. Let

F̃ = ρ−1
En (P<∞(ω)) = {α ∈ ωω | ∃n ∀k α(k) ≤ n}.

Clearly F̃ is �0
2 in ωω. So the right to left inclusion follows from Theorem 4.

Now we have F ≤W F̃ as the continuous function f : ωω → ωω, f (α)(n) =
Card{k < n | α(k) �= 0} clearly witnesses. Therefore for any �0

2 set A ⊆ Pω, there
is a continuous function f : ωω → ωω which reduces ρ−1

En (A) to ρ−1
En (P<∞(ω)), and

so A �W P<∞(ω). ��
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