A WAITING LINE PROCESS OF MARKOV TYPE!

By A. B. CLARgE
University of Michigan

Summary. Waiting-line or queuing processes of the Markov type are studied,
the incoming traffic being of Poisson type and having negative-exponential
holding time. The parameters are allowed to depend on time. The problem of
finding an exact solution for the probability distribution of the waiting-line
length as a function of time is reduced to the solution of an integral equation of
the Volterra type. When the ratio of the parameters for the incoming and out-
going traffic is constant, this equation can be solved explicitly and the required
distribution obtained. Using this solution, the behavior of the process for large
values of ¢ is studied, particularly for the unstable case with traffic intensity = 1.

Statement of the problem. We shall consider a Markov process n(t) taking
values in the discrete space of nonnegative integers 0, 1, 2, - - - , for which there
exist nonnegative continuous functions A(t) and u(t) satisfying

(i) for eachng = 0,1,2, -+ , Pr{n(t + At) — n(t) = 1 |n(t) = no}

= M)At + o(A),

(ii) for each ng = 1, 2,3, .-+ , Pr{n(t + Af) — n(f) = —1 |n(t) = no}

= u(t)At + o(At),

(iii) Pr{|n(t + Af) —n(@t) | > 1} = o(Ab).

Intuitively, this states that the probability of an “arrival” to the “waiting-
line” during the time interval (¢, ¢ 4 At) is A(t)A¢ + o(At), and the probability
of a “departure” during this interval is u(t)At + o(Af). Thus the system differs
from a process which is simply the difference of two independent Poisson proc-
esses (“arrivals to” and “departures from” the waiting line) only in that n(¢)
is restricted to nonnegative values.

Letting

P,n= P,,(t) = Prin(t) = n|n@0) = »} (n,»=10,1,2, ---),

the basic “forward” set of Kolmogorov equations for the system becomes

M & Prn = =00 + 6O)Prn + XOPrns + kOPrs (> 0),
d
(2) (‘i_t‘ Pv.O = _')\(t)Pv.O + I‘(t)Pv,l

(see, for example, [4], p. 377).
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Our basic problem is the solution of this system of differential equations under
the initial conditions

(3) P,n(0) = 8y, (nyv=20,1,2, ).

Reduction to an integral equation. By the results of [5] one is assured of the
existence of a unique, nonnegative, continuously differentiable system of solu-
tions satisfying D 2o P, = 1.

On rescaling the time axis by introducing the new variable

T = j:p(s) ds

in place of ¢, it is seen that equations (1) and (2) transform into a new system
in which u is identically equal to 1. This rescaling is possible provided u(t) has
only discrete zeros. This assumption, while in no way essential to the results of
this paper, will be made in order to simplify the details.

Under these conditions, the system (1) through (3) becomes

@) & Pon= =) + UPs + 60 Prns + Prsss (n> 0),
(5) g' Pr,O = _P(T)Pr,o + Pv.l;
T
(6) P,.(0) = 68,, (m,»=0,1,2,---)
where
_ A0,
P(T) - M(t) ’

this ratio represents, in the terminology of telephone waiting-line theory, the
instantaneous relative traffic intensity of the process.
By analogy, the quantity

RE) = M =1 o@) do
jo p@ ds T

might be termed the smoothed relative traffic intensity of the process.
The system (4) through (6) can be simplified by introducing a new system of
dependent variables:

Qy.n(T) - 67[1+R(T)1Py,n (V, n = 0, 1, 2, .o .).

In terms of these variables the system (4) through (6) becomes

(7) %Qv,n(f) = P(T)Qr.n—l(f) + Qv.n+l(7') (n > 0),
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® L Quale) = Qale) + Qual®,

(9) Qv,n(o) = 67.11 (1’, n = 0, 1, 2, .. ').

In order to reduce this difference-differential equation (7) to a partial differen-
tial equation, we introduce the generating function
0 T)”

Q1) =2 Q. (—z—;— (»=0,1,2,:--).

n=0 !

This function will be analytic in z and continuously differentiable in 7. Dif-
ferentiation with respect to z and r gives, using (7), the following hyperbolic
partial differential equation for Q,(z, 7):

Qs
1 = Y
(10) 3 5 p(1)Q
The solution of such an equation (“the Telegrapher’s equation”) in general
requires two boundary conditions. These are given by (8) and (9) which trans-
form into

(11) G—Q;T“—) = Q(r,7),
and
(12) 00 =Z.

Vi

In the method of solution to be used here, we first solve for @,(z, ) in terms
of the (unknown) function

(13 ) = 200

using the classical Riemann method, with boundary conditions (12) and (13)
(see, for example, [3], p. 316). The condition (11) is then used to derive an integral
equation for f,(7).

The Riemann function associated with (10) is easily seen to be

L2{[R(r)7 — R(e)el(z — O},

where I,(u) denotes the modified Bessel function ¢ "J.(¢u). Application of
standard methods and integration formulas for Bessel funections ([11], p. 373) gives
the solution

(14) Q. (z, 7) = A,(0,7, 2) + ];T AO('J': KE) Z)fy(O') do,

where
(15) Au(o, 7,2) = 2" [R()r — R(o)o] ""LI2{[R(r)r — R()ole}"]
(n =0, %1, £2, ).
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Noting that
;;—3; A,.(O’, T, Z) = An—l(a'; T, Z))
a
(16) _5; An(a-’ T, z) = p(T)AvH-l(o" Ty Z),
An(or O, 0) = 60-" ’
An(r,7y7) =0 forn > 0, A4o(r,r,7) =1,
one finds

P, — gwrm 9°Q,7)
" 9z"

P

arn .
— e [A,_,,(O, n0) + [ Al 1) da:l.

On substituting this into (11) using (16), one obtains the following Volterra-
type integral equation for f,(7):

(18) 16 = B0, + [ " Bulo, 0f(a) do,

where
B.(o, 7) = Au(o, 7, 7) — p(7)Ansa(a, 7, 7).

- Consequently, (17) gives the solution to our problem, provided a solution
f(7) to (18) can be found. In the important special case of p(r) = constant,
(18) can be solved explicitly. In other cases it provides information as to the
limiting behavior of f,(r).

The case of constant traffic intensity. Let us now assume the relative traffic
intensity to be constant, p(7) = p. Under these conditions R(7) = p, as well.

Note that the three conditions: p(7) = constant, R(7) = constant, and
p(r) = R(7) are all equivalent. ‘

Several methods are available for obtaining the explicit solution of (18). The
one used here is possibly the simplest if not the most elegant.

Let us now assume that f,(7) is representable by a power series

(19) (7)) = g it

convergent for all values of 7. This can be proved directly using (7); however,
this is not required. If a solution of (18) can be found in the form of such a power
series, then the uniqueness property for the solutions of such an integral equation
assures us that this series must be f,(7).
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Using Sonine’s integral formula (see, for example, [11], p. 373), we have the
following formula

[ Ao, 7, DRG)el 0(e) do = FA—ss 0, 7,7,
forn = 0, k = 0. In the case R(r) = p(r) = p, this becomes
fof A_n(o,7,7)d" do = pkill A 1(0,7,7).
Since I_n(u) = I.(u), A_.(0, 7, 7) = p"A4.(0, 7, 7), this is also equivalent to
(20) [ Aslor,7) o do = B Ansens(0, 7, ).
Consequently, on substituting (19) into (14) and integrating, one finds
Q(z,7) = A,(0,7,2) + g ay k! A (0,7, 2).

Substituting this into (11) using (16), one obtains the identity

A,.(O, 75 ™) — PAV+1(O) Ty 7)
(21) @
= a,.,vo(O, T, T) + kz (av,kk! - av,k-l(k - 1) !)Ak(oy Ty T)’
=1

On equating coefficients of 4x(0, v, 7) (k = 0,1,2, ---), one finds the fol-
lowing recurrence relations for the a, :

ayo =0 for vy >0,
av,k=%av,k—1, f01'0<k<1/ or V‘l']. <k,

1

pl’

1
- Qy,p—-1 +
v

Uy =
Gypp1 = 1 Gy — —P .
v+ 1 v+ 1!
The solution of this system is found to be
ar = 0, k<,
1

’1,—!7

AQyy =

(1 —p)
A k>,

k =
whence

’ 2 k v—1 k »
@ s0-Fra-aEi-0-a( g5
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In the special case » = 0,
for) = (1 — p)e" + p.

Substituting (22) into (17) and integrating term-by-term using (20), one finds
the final solution

P,,= ¢ [A,_R(O,'r, 7)

(23) d
+ p"Appr1(0,7,7) + (1 — p)p” . Z+:+2 A0, 7, T):I .

Using a table of Bessel functions, P,,, can be tabulated for various values of
r and p from this formula. Some tables are available for the case » = 0 (see
[2]). For other values of », P, , can be found from the formula

Pv,n = P_VPD,v+n + 6—T(l+p)[Av—n(0: T, T) - pnAv+n(0: T, T)],’

which is easily derived from (23).

Formulas essentially equivalent to (23) have been derived by Ledermann and
Reuter [9] and by Bailey [1] for the case of constant A and p, using somewhat
different methods.

Limiting formulas for mean and variance. All the well-known limiting results
for the case p = constant can be derived directly from (23). When p < 1, the
probability distribution of n(¢) approaches a geometric equilibrium distribution
with common ratio p as r — o, independent of ». When p = 1, no such limit-
ing distribution exists. (See [7] and [8] for precise statements of the results in this
and in more general cases.)

Let us temporarily drop the restriction that p be constant, and proceed to
develop formulas for the mean M,(7) and the standard deviation a,(r) of the
distribution. By definition,

0

M,(r) = 2 nPyn,

n=0

03(7') = ; [n - Mv(T)]2Pv,n .

Assuming term-by-term differentiation to be justified (which can easily be
proved), these series may be differentiated using (4), together with the fact that
2P, = 1, to give

d

o M,(r) = p(r) — 1+ P,o,
T

g;ai(f) = () + (o) — DML — [1 + 2M,()] d]‘{zyf(r)
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whence

(28 M6 = BE) - 1 + [ " Prolo) do + 3,

@9 o6 =2 [ b + blo) — W) do = M) = DLET +» + 5

If p{r) is bounded for all + = 0, then one sees from (24) and (25) that both
M,(7) and oy(7) = O(7) as 7 — o,

In the case of constant p = 1, (24) and (25) will be used to determine more
explicitly the limiting behavior of M,(r) and ¢,(7) as  — . (It is here assumed
that + = fou(s) ds — = ast — «.)

Let us first assume that p = constant and that p > 1. Using standard integra-
tion formulas for Bessel functions ([11], p. 386), one finds that

_1
p*p — 1) °
When this formula is used to integrate (23) term-by-term, one obtains

f P, (o) do = 1 L 1
o

f e MP4.00,7,7) dr =
o

(e — 1) + P — 1) + -0 kf\?iz Pk — 1)

-1
Pl —1)"

Consequently,

f' Poolo) do = + o(1),
(] 4

b
, (0 — 1)
and, substituting this result into (24),

(26) M) = 6= Dr + - L 4+ o).

e —1)
If (26) is substituted into (25), then it is easily shown that
@7 o) = V7l + 1) + o(+/7).
Let us now assume p = 1. In this case, from (23),

Poo(r) = ¢ [1,(27) + I,11(27)]

val+o Q)

using an asymptotic formula for I,(z). Consequently,

(28) me) = | "Prolo) do + v = 24/i77 + 0Q1),
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and
(29) o(r) = V2rd — 2/x) + O(1).
Note that neither (26) nor (27) reduces to (28) or (29) when p is set equal to 1.

Waiting times. If T(7) is a random variable representing the time required
to complete the servicing of an individual arriving at time r, then

T(7) = Sln(r)]

where S[n] is a random variable independent of n(r) and represents the time re-
quired for n + 1 transitions in a Poisson process having parameter 1; i.e., Sn]
is the sum of n + 1 independent random variables each having the probability
density function ¢, 0 < 7 < «, and will thus have a Gamma distribution.
Khintchine [6] and Volberg [10] have derived asymptotic formulas for the dis-
tribution of T(r) as 7 — o« for the case of constant p. Using the above formula,
one sees that the probability density function for T(7) is

o n
- S —
;0(8; 'r) = ¢ Zo P”'”;&—l = ¢ [8+T(1+P)1Qy(s + T),
n== .

for s > 0. By using this result, these asymptotic formulas may be derived from
the results of this paper.

Note. I am indebted to the referee for the references to the papers of Volberg
[10] and Ledermann and Reuter [9].
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