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Abstract

Brain activity during natural walking outdoors can be captured using mobile elec-

troencephalography (EEG). However, EEG recorded during gait is confounded with 

artifacts from various sources, possibly obstructing the interpretation of brain activ-

ity patterns. Currently, there is no consensus on how the amount of artifact present in 

these recordings should be quantified, or is there a systematic description of gait arti-

fact properties. In the current study, we expand several features into a seven-dimen-

sional footprint of gait-related artifacts, combining features of time, time-frequency, 

spatial, and source domains. EEG of N = 26 participants was recorded while standing 

and walking outdoors. Footprints of gait-related artifacts before and after two differ-

ent artifact attenuation strategies (after artifact subspace reconstruction (ASR) and 

after subsequent independent component analysis [ICA]) were systematically differ-

ent. We also evaluated topographies, morphologies, and signal-to-noise ratios (SNR) 

of button-press event-related potentials (ERP) before and after artifact handling, to 

confirm gait-artifact reduction specificity. Morphologies and SNR remained un-

changed after artifact attenuation, whereas topographies improved in quality. Our re-

sults show that the footprint can provide a detailed assessment of gait-related artifacts 

and can be used to estimate the sensitivity of different artifact reduction strategies. 

Moreover, the analysis of button-press ERPs demonstrated its specificity, as process-

ing did not only reduce gait-related artifacts but ERPs of interest remained largely 

unchanged. We conclude that the proposed footprint is well suited to characterize 

individual differences in gait-related artifact extent. In the future, it could be used to 

compare and optimize recording setups and processing pipelines comprehensively.
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1 |  INTRODUCTION

Little is known about the cortical signatures of gait, possi-

bly because most neuroimaging technologies do not tol-

erate gross motion well and, therefore, the recording of 

neural data during motion remains a challenge. Yet, under-

standing the brain dynamics of gait is important not only to 

control lower extremity exoskeletons for assisted walking 

(Venkatakrishnan, Francisco, & Contreras-Vidal, 2014) but 

also to identify the neural correlates of altered gait patterns. 

For example, changes in gait characteristics may be a precur-

sor of cognitive decline, as they have been observed as early 

as 12 years before the onset of a mild cognitive impairment 

(Buracchio, Dodge, Howieson, Wasserman, & Kaye, 2010). 

Walking has been linked to increased brain activity in the 

premotor area, the supplementary motor area (SMA), the 

pre-SMA and frontal and prefrontal cortex (for a review, see 

Hamacher, Herold, Wiegel, Hamacher, & Schega,  2015). 

Changes in gait-related brain activity may provide deeper 

insights into early signs of neurodegeneration than the mea-

surement of gait characteristics alone.

Recent advances in mobile brain/body imaging (MoBI) 

techniques allow the study of cortical activity during natu-

ral whole-body movements while simultaneously capturing 

body motion (Gramann, Ferris, Gwin, & Makeig,  2014; 

Makeig, Gramann, Jung, Sejnowski, & Poizner,  2009). 

Mobile electroencephalography (EEG) can capture cortical 

activity with a high temporal resolution during natural walk-

ing outdoors (De Vos, Gandras, & Debener, 2014; Debener, 

Minow, Emkes, Gandras, & de Vos,  2012; Pizzamiglio, 

Abdalla, Naeem, & Turner,  2018; Pizzamiglio, Naeem, 

Abdalla, & Turner, 2017; Reiser, Wascher, & Arnau, 2019). 

This requires combining EEG with motion sensors, like ac-

celerometers and gyroscopes, which capture gait events in 

natural outdoor environments with high temporal accuracy 

(Anwary, Yu, & Vassallo, 2018).

During motion, EEG recordings are prone to be contam-

inated by non-neural activity originating from physiolog-

ical (e.g., electro-ocular, electromyographic [EMG]) and 

non-physiological sources (e.g., cable and electrode move-

ment; Castermans, Duvinage, Cheron, & Dutoit, 2014). These 

artifacts may severely deteriorate signal quality and can be 

time coupled to the gait cycle, like the cortical activity of 

interest. Hence, they can hinder an interpretation of the cor-

tical activity and need to be removed from the signal. Simple 

time-domain averaging procedures for enhancing the signal-

to-noise ratio (SNR) do not solve this problem. Recently, tem-

poral, spatial, and frequency properties of gait cycle-related 

artifacts have been reported (Arad, Bartsch, Kantelhardt, 

& Plotnik, 2018; Castermans et al., 2014; Gwin, Gramann, 

Makeig, & Ferris, 2011; Kilicarslan & Contreras Vidal, 2019; 

Kline, Huang, Snyder, & Ferris,  2015). For instance, head 

movements can cause artifacts in EEG recordings (O’Regan, 

Faul, & Marnane, 2013) that may be coupled to the gait cycle 

(Hirasaki, Moore, Raphan, & Cohen, 1999). Previous stud-

ies already showed that time frequency and power spectra 

of single EEG channels are similar to the vertical head ac-

celeration during treadmill walking using passive electrodes 

(Castermans et al., 2014) as well as active electrodes (Kline 

et al., 2015). Using active electrodes these patterns emerge at 

higher gait speeds (3 km/hr or greater; Nathan & Contreras-

Vidal, 2016). Hence, we expected head acceleration to influ-

ence the amount of captured artifactual EEG activity.

It has also been suggested that residual EMG activity 

might contaminate the activity of different frequency bands 

(i.e., low-delta and high-gamma) associated with walk-

ing (Castermans et  al.,  2014). EMG as captured by elec-

trodes placed at subjects’ necks varied over the gait cycle. 

Specifically, neck EMG during walking was lateralized, 

but the pattern was not consistent. On the one hand, EMG 

of muscles located at the side of the neck displayed broad-

band power increases around ipsilateral heel strikes (Gwin 

et al., 2011). On the other hand, broadband power increases 

following contralateral heel strike in electrodes positioned 

at the back of the neck were reported (Severens, Nienhuis, 

Desain, & Duysens, 2012). Interestingly, time courses of 

neck muscle activity did not show clear modulations over the 

gait cycle (e.g., Cromwell, Aadland-Monahan, Nelson, Stern-

Sylvestre, & Seder, 2001; Richer, Downey, Nordin, Hairston, 

& Ferris, 2019).

Furthermore, it has been observed that the artifact ex-

tent varies over the scalp with greater gait-related artifacts 

present at central electrodes (Castermans et al., 2014; Kline 

et al., 2015). These examples indicate that while a coherent 

characterization of the artifact itself is still lacking, it is nec-

essary to separate physiological from non-physiological EEG 

signatures successfully.

Studies examining gait-related cortical activity with EEG 

have applied various artifact reduction strategies. EEG arti-

fact attenuation often includes temporal and spatial filters, 

channel and epoch rejection, or linear decomposition to facil-

itate discrimination between signal and artifact. Commonly, 

independent component analysis (ICA; e.g., Gwin 

et  al.,  2011; Makeig, Debener, Onton, & Delorme,  2004; 

Snyder, Kline, Huang, & Ferris,  2015; Wagner, Makeig, 

Gola, Neuper, & Müller-Putz, 2016), spectral principal com-

ponent analysis (Seeber, Scherer, Wagner, Solis-Escalante, 

& Müller-Putz,  2015), or artifact subspace reconstruction 

(ASR; Bulea, Kim, Damiano, Stanley, & Park,  2015; Luu, 

Brantley, Nakagome, Zhu, & Contreras-Vidal, 2017; Nathan 

& Contreras-Vidal, 2016; Nordin, Hairston, & Ferris, 2019, 

2020) and combinations thereof are used. A comprehensive 

review of previously applied artifact processing strategies 

is clearly beyond the scope of this study as it was not our 

goal to identify a single optimal artifact reduction strategy. 

Moreover, a ground truth about artifact characteristics is 
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typically not available in EEG data (but see Richer, Downey, 

Hairston, Ferris, & Nordin,  2020; Richer et al., 2019 for 

phantom head recordings of emulated treadmill walking in-

cluding neck muscle activity and artificial neural sources). 

Instead, we suggest taking a step back and identifying the sig-

nal dimensions that could be used to describe the gait artifact 

comprehensively. Most previous studies used one, or very 

few features to determine the success of artifact reduction, 

but different studies used various features, making systematic 

evaluations across studies difficult. To address this problem, 

our goal was to develop a standard in the description of the 

artifact. An established procedure describing gait artifacts 

should facilitate future work comparing different processing 

strategies, and it should help to identify hardware most suit-

able for mobile EEG recording during walking.

Previous authors have used subjective strategies like vi-

sual inspection of continuous EEG data (Artoni et al., 2017; 

Gwin et al., 2011) or gait event-related spectral perturbations 

(ERSPs; Kline et al., 2015; Nordin, Hairston, & Ferris, 2020), 

to evaluate the presence of gait artifacts before and after ar-

tifact attenuation. They also compared signal-to-noise ratios 

(SNR) on the sensor or component level (Oliveira, Schlink, 

Hairston, König, & Ferris, 2016a) or compared event-related 

potentials (ERP) not locked to the gait cycle (Bruijn, Van 

Dieën, & Daffertshofer,  2015). The lack of any consensus 

on the assessment of mobile EEG signal quality limits com-

parability across studies. To overcome this problem, bench-

marking features have been proposed (Oliveira, Schlink, 

Hairston, König, & Ferris,  2016b). The majority of previ-

ously proposed benchmarking features are, however, based 

on evaluating non-gait-locked ERPs, preventing the appli-

cation of these features to single-task datasets. However, a 

non-ERP based feature has been established, the Walking/

Sitting ratio (Oliveira et  al.,  2016b). This feature contrasts 

EEG power of sitting and walking conditions and is based 

on the assumption that in the absence of major changes in 

cortical activity between sitting and walking, similar EEG 

power would be expected. Yet, broadband EEG power in-

creases during walking compared to sitting have been ob-

served before artifact attenuation (Arad et al., 2018; Oliveira 

et al., 2016b). In line with this, previous studies uncovered 

gait cycle event-related oscillatory signatures only after so-

phisticated artifact processing (Fischer et  al.,  2018; Seeber 

et al., 2015; Storzer et al., 2016). Moreover, oscillatory neu-

ral activity typically does not change over broad frequency 

bands in the same direction at the same time, whereas such 

patterns are generated by non-oscillatory, transient signals, 

such as artifacts. As gait-related artifacts are not only present 

in the frequency domain, there is a need to extend features to 

various other domains and to incorporate the temporal dy-

namics of a gait cycle. A comprehensive description of the 

properties of gait-related artifacts would enable evaluation of 

artifacts across participants, datasets, recording conditions, 

and hardware, and hence, contribute to the advancement of 

artifact attenuation strategies.

In the current study, we expanded several established 

features into a seven-dimensional footprint of gait-related 

artifacts. This was done by combining features in the time, 

time–frequency, spatial, and source domains. To demonstrate 

the sensitivity to a typical artifact attenuation strategy, we 

compared the footprint before and after two different stages 

of artifact processing in an EEG dataset collected during free 

walking and standing outdoor conditions. We used a repu-

table attenuation strategy including ASR and ICA (Nordin, 

Hairston, & Ferris, 2019) to demonstrate the sensitivity of 

the footprint. To assess the specificity of the artifact reduc-

tion, we also evaluated the similarity of the morphologies, to-

pographies and SNRs of button-press ERPs before and after 

artifact attenuation.

2 |  MATERIALS AND METHODS

2.1 | Participants

Data of N = 26 young, right-handed, and healthy individu-

als with normal gait were recorded in this study. Participants 

were recruited via the online platform of the University of 

Oldenburg. Before the experiment, they gave written in-

formed consent and received monetary compensation (10€/

hr) afterward. The local ethics committee of the University of 

Oldenburg approved the study (permit number: 2018-079).

2.2 | Materials

EEG data were acquired with 66 Ag/AgCl passive electrodes 

with a custom 64-channel layout using a subset of the posi-

tions in the 10-5 system (Easy Cap GmbH, Herrsching, GER, 

for channel layout, see Figure S1). For our setup, we com-

bined two 32-channel LiveAmps (Brain Products GmbH). 

Electrode impedances were kept below 10 kΩ. EEG data were 

sampled at 500 Hz and online referenced to FCz. The ground 

electrode was placed at location AFz. The amplifiers were at-

tached to the top of a participant's head using a custom-made 

sponge containing openings to avoid direct physical pres-

sure on electrodes (see Figure 1a). EEG data were recorded 

with a lightweight laptop in tablet mode (Ultrabook, Latitude 

5289, Dell Inc.) held by the participants. A Bluetooth con-

nection between amplifiers and the laptop was established 

using the LiveAmpConnector (version 1.16, bit.ly/31P2mrd). 

The Presentation software (version 20.02, Neurobehavioral 

Systems, Inc., RRID: SCR_002521) controlled experimen-

tal events. Head acceleration was captured with a 3D accel-

erometer built into the EEG amplifier, and feet acceleration 

was measured with two 3D accelerometers (eMotion Faros 
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180°, Mega Electronics Ltd) attached to the top of partici-

pants’ shoes using self-adhesive bandages. EEG data, head 

acceleration, and experimental events were synchronized 

using Lab Streaming Layer and the LabRecorder (version 

1.13, bit.ly/2ULAFhb). Data were stored in a single.xdf file 

and time synchronized to the feet acceleration data offline, 

using synchronization events inserted into all devices before 

and after the experiment. After synchronization, each dataset, 

therefore, consisted of two times 32 EEG channels, one EEG 

trigger channel, three accelerometer channels from the head, 

and six accelerometer channels from the feet. Custom scripts 

were used to extract gait events from the feet acceleration. In 

pilot recordings, accurate timing of gait events was validated 

with a motion capture system (Vicon, Oxford, UK). The av-

erage temporal error was around 2 ms and deemed accept-

able. Data are available at OpenNeuro (https://openn euro.

org/datas ets/ds003039) and scripts can be found at GitHub 

(https://doi.org/10.5281/zenodo.4005945).

2.3 | Procedure

The experiment consisted of two parts. Indoors, participants 

only performed a self-paced gait initiation task but no con-

tinuous free walking. This study reports outdoor data only. 

Outdoors, a standing baseline of 2  min was recorded, and 

then participants performed a self-paced button-pressing 

task for 4 min (see Figure 1b,c). During the button-pressing 

task, individuals were instructed to press buttons displayed 

on the touchscreen of the laptop in their hands with their left 

or right thumb. A sound confirmed each successful button 

press. Individuals were told to surprise the experimenter 

about the side and the actual time of each button press and 

to wait for approx. 1–3 s between button presses. In previ-

ous, unpublished studies, we found this instruction to evoke 

clear readiness potentials. These are slow-cortical potentials 

preceding self-paced voluntary movements (Kornhuber & 

Deecke,  1965), which are followed by movement-related 

cortical potentials (MRCP) occurring around the time of a 

motor response (Hallett,  1994). Subsequently, participants 

walked at their preferred speed across campus on two differ-

ent routes (see Figure 1d), which were marked with pylons. 

Walking each route took approximately 4 min. Both routes 

were walked twice by the participants, in a randomized order. 

On each route, participants performed the button-pressing 

task, as described above, once. Participants were instructed 

to fixate their gaze to a point at eye level and to avoid un-

necessary head movements and jaw clenching during EEG 

recording.

2.4 | EEG analysis

EEG data were processed using EEGLAB (version 

14.1.2, Delorme & Makeig,  2004, RRID:SCR_007292), 

Brainstorm (version Jan 2020, Tadel, Baillet, Mosher, 

Pantazis, & Leahy,  2011, RRID:SCR_001761) and cus-

tom code in MATLAB (version R2018b, MathWorks Inc., 

RRID:SCR_001622). The EEG preprocessing is outlined 

in Figure 2. The scripts used for the calculation of the foot-

print are accessible on GitHub (https://doi.org/10.5281/

zenodo.4005945).

F I G U R E  1  (a) 64-channel electrode 

cap with bundled cables. The wireless 

amplifier was placed in a customized sponge 

on top of the subject's head. Recesses in the 

sponge around the electrodes distributed 

the weight to non-electrode locations. The 

sponge–amplifier combo was secured with 

a self-adhesive bandage wrapped around 

the subject's head at a comfortable tightness 

also reducing cap movement. (b) Structure 

of the outdoors part of the experiment. (c) 

Subject performing the walking task holding 

the ultrabook with both hands. (d) The 

two routes that subjects walked twice, in a 

randomized order
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2.4.1 | Preprocessing

First, EEG data were high-pass filtered at 1 Hz (order 826) 

and low-pass filtered at 135 Hz (order 56) with the zero-

phase, finite impulse response (FIR) filters (eegfiltnew) 

and then downsampled to 250 Hz. Bad channels were iden-

tified using the clean_rawdata toolbox (flatline channels 

for 5 s, channel correlation below 0.8, and line noise above 

4, other parameters disabled; version 2.1). Note that the 

correction function of the ASR toolbox was not applied 

here. Subsequently, the data were re-referenced to the com-

mon average.

2.4.2 | Artifact attenuation

We chose to attenuate gait-related and other artifacts, like 

blinks, with previously used techniques, specifically a com-

bination of ASR (Mullen et al., 2015) and ICA. In contrast to 

other studies (Artoni et al., 2017; Bulea et al., 2015; Gwin, 

Gramann, Makeig, & Ferris, 2010; Gwin et al., 2011; Lau, 

Gwin, & Ferris, 2014; Sipp, Gwin, Makeig, & Ferris, 2013; 

Wagner et al., 2012, 2016; Wagner, Martínez-Cancino, & 

Makeig, 2019; Wagner, Solis-Escalante, Scherer, Neuper, 

& Müller-Putz,  2014), we refrained from clustering ICs 

across subjects, as our artifact attenuation impact was eval-

uated on a single-subject level. Furthermore, artifact extent 

was evaluated at the sensor level to allow comparisons of 

data before and after various preprocessing methods not 

limited to ICA.

Following preprocessing, the ASR algorithm was applied. 

ASR attempts to correct artifacts in continuous, non-station-

ary EEG data by performing a principal component analysis 

on sliding windows and finding deviations to reference data 

obtained in an initial calibration session. Potentially artifac-

tual data segments are subsequently corrected using informa-

tion gathered in the calibration phase and clean portions of 

the current segment. ASR was calibrated on 1-min standing 

baseline recordings and a cutoff of standard deviation (SD) of 

7 was chosen, following Nordin et al. (2019). Data processed 

up to this stage are referred to as artifact attenuated 1.

Subsequently, the walking conditions and the remaining 

standing baseline were concatenated. For ICA attenuation, 

consecutive 1-s epochs were extracted and epochs with a 

joint probability exceeding a threshold of SD = 3 were re-

jected using EEGLAB’s function jointprob. On the remaining 

data, an adaptive mixture independent component analysis 

(AMICA; Palmer, Kreutz-Delgado, & Makeig,  2011) was 

performed and the obtained weights were back-projected 

to the continuous data. AMICA decomposition was chosen 

in line with several other studies (e.g., Arad et  al.,  2018; 

Artoni et al., 2017; Bradford, Lukos, & Ferris, 2016; Bulea 

et al., 2015; Gwin & Ferris, 2012; Gwin et al., 2010, 2011; 

Lau et al., 2014; Nordin et al., 2019, 2020; Sipp et al., 2013; 

Wagner et al., 2012, 2016), as it achieved greater mutual in-

formation reduction and more near-dipolar ICs (Delorme, 

Palmer, Onton, Oostenveld, & Makeig, 2012). AMICA was 

also found to attenuate EMG artifacts during treadmill walk-

ing better than InfoMax (Bell & Sejnowski, 1995; Leutheuser 

et  al.,  2013). Following ICA, previously rejected channels 

were interpolated and dipoles were fitted using DIPFIT 

(version 3.2, Oostenveld, Delorme, & Makeig, 2003). A 

three-layer boundary element model (BEM) and the default 

anatomy were chosen. Only ICs with dipoles located inside 

the head and a residual variance lower than 15% were kept. 

ICs were also automatically classified using IClabel (Pion-

Tonachini, Kreutz-Delgado, & Makeig, 2019). Components 

exceeding a 90% probability of being eye, muscle, heart, 

line noise, and channel noise were rejected. Remaining ICs 

were back-projected to the sensor space. Data cleaned with 

ASR and, subsequently, ICA were called artifact attenuated 

2. Without further specification, data referred to as ‘artifact 

attenuated’ are data cleaned at stage 2 (including ASR and 

ICA).

F I G U R E  2  Overview of the electroencephalography (EEG) 

analysis pipeline. First, raw EEG data were preprocessed (dashed line) 

and then artifact attenuated using artifact subspace reconstruction 

(stage 1, dotted line) and subsequently independent component 

analysis (stage 2, solid line). All datasets underwent sensitivity 

analyses, resulting in footprint features of the time, time–frequency, 

spatial, and source domain. Footprints of preprocessed data and data at 

stage 2, as well as footprints of data at stage 1 and 2, were compared. 

Moreover, specificity analyses allowed to compare morphologies and 

topographies before and after artifact processing ~

~
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2.4.3 | Sensitivity analysis: Gait-artifact–
related footprint

EEG activity time locked to gait events were used to calcu-

late a set of seven features of gait-related artifacts. EEG data 

were processed as follows to enable the calculation of these 

footprint features. A summary of all features can be found 

in Table 1. Gait epochs were generated using the right heel 

strikes (RHS) as time-locking events. Epochs in which the 

consecutive right heel strikes were further than 1.5 s apart, 

epochs in which the order of gait events was abnormal (not 

in the order: RHS, left toe-off (LTO), left heel strike (LHS), 

right toe-off (RTO), RHS), and epochs with abnormal ac-

tivity (joint probability of SD  >  3) were rejected. The re-

maining data were submitted to a time–frequency transform 

using linearly spaced, three-cycle Morlet wavelets from 

4 to 60 Hz in 1 Hz steps (newtimef). All epochs were time 

warped to equal length, using the latencies of all gait events 

in one gait cycle. ERSP power was baseline corrected by 

dividing by the mean power of the standing baseline. The 

resulting, baseline-corrected ERSPs were used to calcu-

late footprint features B, D, E, and F. EEG sources of the 

individual, time-normalized gait ERP were estimated using 

Brainstorm. The default anatomy provided by the software 

and a three-layer BEM (as implemented in openMEEG, 

Gramfort, Papadopoulo, Olivi, & Clerc, 2010) were chosen. 

Noise covariance was calculated from standing baseline data 

and source signals were estimated using dynamical statisti-

cal parametric mapping (dSPM) (Dale et  al.,  2000) with a 

minimum norm estimator (MNE) and a constrained dipole 

orientation. Source activity was smoothed with a 3 mm full-

width-half-maximum (FWHM) kernel. Obtained source ac-

tivity was used to calculate feature G.

2.4.3.1 | A. EEG activity explained by head 

acceleration

The 3D head accelerations were 1 Hz high-pass filtered in 

the same manner as the EEG data (zero-phase FIR filters, 

order 826) to attenuate effects of gravity and also epoched 

around the RHS. Epochs were subsequently time normalized 

T A B L E  1  Description of footprint features and their mean and standard deviation before and after artifact handling

Feature Motivation Quantification

Before 

(M ± SD)

Stage1 

(M ± SD)

Stage 2 

(M ± SD)

A. EEG activity 

explained by head 

acceleration

Head movements cause artifacts 

and are coupled to the gait cycle.

Squared correlation of the root 

mean square of head acceleration 

and the global field potential.

0.52 ± 0.23 0.14 ± 0.14 0.10 ± 0.08

B. Frequency 

correlations

A consistently high coupling over 

a broad frequency range may 

indicate EEG data of non-neural 

origin.

The average correlation of all 

frequency time-courses squared.

0.95 ± 0.03 0.93 ± 0.03 0.93 ± 0.04

C. Lateral to all 

channel power 

Ratio

A large fraction of EEG activity 

recorded during walking at 

lateral electrodes may be 

artifactual.

The ratio of the total power of half 

the more lateral electrodes to the 

total power of all electrodes.

0.49 ± 0.29 0.58 ± 0.03 0.12 ± 0.23

D. Neck channel 

power ratio

Electrodes located over neck 

muscles show strong power 

increases following contralateral 

heel strike.

The ratio of power during double 

supports of neck channels 

contralateral to the previous heel 

strike to power at the ipsilateral 

ones subtracted from 1.

0.65 ± 0.07 0.15 ± 0.16 0.56 ± 0.03

E. The double 

support power 

ratio

A strong, broadband power 

increase can be observed during 

double support in the grand 

mean ERSP.

The ratio of total power during the 

double support phase to the total 

power of the gait cycle.

0.42 ± 0.07 0.37 ± 0.03 0.37 ± 0.03

F. Standing/

walking power 

ratio

EEG power of standing and 

walking might be similar.

The ratio of standing EEG 

power to walking EEG power 

subtracted from 1.

0.20 ± 0.25 −0.05 ± 0.17 −0.06 ± 0.22

G. M1 source 

activity

Source estimation identifies 

relatively more activity in 

cortical areas associated with leg 

motor control compared to the 

remaining cortex.

The ratio of normalized source 

activity at leg motor ROI to 

normalized source activity of the 

remaining cortex.

0.75 ± 0.30 0.78 ± 0.24 0.97 ± 0.21

Note: Observed feature values at different stages of artifact attenuation. After preprocessing (before), after ASR (stage 1) and after ASR and ICA (stage 2).

Abbreviations: ASR, artifact subspace reconstruction; EEG, electroencephalography; ICA, independent component analysis; M, mean, SD, standard deviation.
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and averaged. The extent of head acceleration was then quan-

tified as the root mean square (RMS) of this time series. The 

EEG RMS was calculated as the spatial standard deviation, 

also known as global field potential (GFP; Skrandies, 1990) 

of the time-normalized gait cycle ERP of each dataset. Both 

calculations resulted in a single time series. As peaks of the 

EEG GFP occurred slightly later than the peaks of the ac-

celeration RMS, we cross-correlated the RMS of the head 

acceleration with the zero-mean GFP using xcorr, tolerating 

a maximum lag of ±5 samples. Cross-correlations were nor-

malized so that the zero-lag autocorrelation was 1. We then 

squared the highest obtained correlation to obtain a measure 

of explained variance (R2). We assumed that the GFP of the 

gait ERP was linked to the gait cycle and the RMS of head 

acceleration before artifact attenuation. We expected the cou-

pling to be weakened by artifact attenuation 1 and to a greater 

extent by artifact attenuation 2. This pattern should be re-

flected by decreased R2 values.

2.4.3.2 | B. Explained variance across frequencies

As a consistently high coupling over a broad frequency range 

may well serve to indicate EEG data of non-neural origin, we 

correlated the time courses of all frequency power profiles 

(4–60 Hz, 1 Hz steps) with each other. We then obtained the 

mean correlation across frequencies. To do so, the correla-

tion matrix was Fishers Z-transformed to approximate a nor-

mal distribution (Fisher, 1915). We subsequently calculated 

the mean correlation of the upper triangle, thus, excluding 

autocorrelations. The resulting mean correlation was inverse 

transformed and squared to get the coefficient of determina-

tion (R2). R2 here indicates the amount of variance in the time 

course of one frequency explained by the other frequencies. 

We assumed a decreased value after artifact processing if the 

broadband activity was reduced and frequency band-specific 

changes emerged. A smaller decrease was expected for arti-

fact attenuation 1 than 2.

2.4.3.3 | C. Lateral to all channel power ratio

We summed each channel's ERSP across time and frequency. 

We then aggregated the power of 50% of the more lateral 

electrodes (Fpz, Fp1, Fp2, AF7, AF8, F7, F8, F9, F10, FT7, 

FT8, FT9, FT10, T7, T8, TP7, TP8, TP9, TP10, P7, P8, P9, 

P10, PO7, PO8, PO9, PO10, Oz, O1, O2, I1, and I2) and 

calculated their share of the total power of all electrodes. 

This ratio should decrease after artifact attenuation because 

much of the activity on these channels may be generated by 

non-cortical activity, which should be reduced after artifact 

attenuation. A weaker reduction was expected for artifact at-

tenuation 1 than 2.

2.4.3.4 | D. Neck channel power ratio

We accumulated the power of subjects’ ERSPs across all 

frequencies and channels. We then extracted samples during 

double support and summed power of channels located at the 

neck contra- and ipsilateral to the previous heel strike (left 

neck: PO7, PO9, O1, I1; right neck: PO8, PO10, O2, I2). 

Subsequently, we subtracted the ratio of the ipsilateral to the 

contralateral neck power from 1. This ratio is zero if broad-

band power at ipsi- and contralateral neck channels are equal. 

It is greater than zero if the power of contralateral channels 

is greater than the power of ipsilateral channels and smaller 

than zero if the power of contralateral channels is smaller 

than the power of ipsilateral channels. If the asymmetry of 

EMG artifacts decreased after artifact attenuation, so should 

the value of this ratio. A smaller decrease was expected for 

artifact attenuation 1 than 2.

2.4.3.5 | E. Double support power ratio

We added the power of all frequencies and channels and 

extracted the summed power during the double support 

phase as well as the summed power of the whole gait cycle. 

Subsequently, the ratio of the power during the double support 

phase to the total power over the gait cycle was calculated. 

We expected both artifact attenuation pipelines to reduce this 

ratio, but pipeline 1 to a smaller degree than pipeline 2.

2.4.3.6 | F. Standing/walking power ratio

We adapted the established walking/sitting power ratio 

(Oliveira et  al.,  2016b) to a standing/walking power ratio. 

We calculated the ratio of standing EEG power to walking 

EEG power and subtracted the resulting value from 1 to at-

tain a similar scale to the remaining proposed features. The 

resulting value is zero when the power during standing is the 

same as during walking. Positive values result from power 

during walking being higher than during standing, which 

can be expected for non-artifact attenuated data. After ar-

tifact attenuation, event-related alpha and beta power de-

creases (i.e., desynchronization) during walking compared 

to standing have been reported (Seeber, Scherer, Wagner, 

Solis-Escalante, & Müller-Putz, 2014), potentially resulting 

in decreased broadband power during walking compared to 

standing and again, a smaller value of this feature. We rea-

soned that artifact attenuation 2 might decrease this feature 

stronger than artifact attenuation 1.

2.4.3.7 | G. ROI source activity

We suggest that source estimation identifies relatively more 

prominent activity in cortical areas associated with walking 

(e.g., the premotor area and the SMA) compared to the re-

maining cortex. We used a gait initiation task to identify a leg 

motor control region of interest (ROI) in each hemisphere in 

the same sample (for details see supplemental material). This 

ROI was located over the central part of the precentral gyrus 

and the posterior part of the superior frontal gyrus, reach-

ing into the interhemispheric cleft. Source activity was ex-

tracted from this ROI as well as from the remaining cortex 
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and accumulated over the whole gait cycle. Both values were 

then normalized by the number of included vertices (ROI: 

350 vertices, remaining cortex: 14,652 vertices). The per-

vertex activity of the remaining cortex was then divided by 

the activity per vertex of the ROI. A similar average activity 

in both areas results in a value of 1. Whereas if the activity 

at the ROI is higher than at the remaining cortex, the value 

decreases, which indicates greater estimated activity at the 

chosen ROI than the remaining cortex. Hence, if artifact at-

tenuation largely reduced activity outside of the ROI than 

within this value would decrease. This decrease might be 

stronger following artifact attenuation stage 2 than stage 1.

2.4.4 | Specificity analysis

The presence of a non-gait–related signal can be evaluated 

before and after artifact processing to assess the specificity 

of any artifact attenuation pipeline. It was not our goal to 

identify the most powerful artifact reduction strategy, as this 

may depend on the specific research questions. We, there-

fore, performed the specificity analysis following artifact at-

tenuation stage 2, exploring whether the neural activity of 

interest remained unchanged by the correction of unwanted 

signals. A specific artifact handling would retain the signal of 

interest while reducing the noise, thus, improving the SNR. 

Here, the MRCP of self-paced thumb button presses during 

walking, and the auditory evoked potential (AEP) N1 fol-

lowing the feedback tone elicited by the button press, were 

used. The change in signal following artifact attenuation 

was evaluated by comparing morphologies, topographies, 

and SNRs of all three ERPs (MRCP left thumb, MRCP right 

thumb, and AEP N1). Accordingly, the following pipeline 

was performed twice, once with only preprocessed EEG data 

and once with preprocessed and artifact attenuated EEG data 

following ASR and ICA (see Figure 2). First, EEG data were 

low-pass filtered at 45 Hz (zero-phase FIR filter, order: 84). 

Button presses that were less than 800 ms apart from each 

other were removed, to not interfere with the AEP response, 

and allow for an appropriate baseline for the next button 

press epoch. Epochs were extracted from −500 to 500  ms 

around each button press and baseline corrected from −500 

to −300  ms. Epochs with artifactual activity, identified by 

values exceeding a joint probability of SD = 3, were rejected. 

From 342 (range: 149 to 563) button presses with both 

thumbs, on average 120 (range: 25 to 225) left thumb and 

124 (range: 20 to 195) right thumb button presses remained 

before artifact attenuation. After artifact handling, on average 

109 (range: 22 to 208) left thumb and 110 (range: 18 to 171) 

right thumb button presses remained in the data per subject. 

Sources of the artifact-attenuated button-press ERP averaged 

across subjects were calculated with Brainstorm for illustra-

tive purposes. We used the default anatomy provided by the 

software, a three-layer BEM, and a noise covariance com-

puted from the ERP baseline (−500 to −300  ms). Sources 

were estimated using dSPM with MNE and a fixed orien-

tation. Source activity was smoothed with a 3 mm FWHM 

kernel.

2.5 | Statistical analysis

Statistical analyses were performed in R (version 3.4.2, R Core 

Team, 2017). Shapiro–Wilk tests assessed normality (of dif-

ferences), before performing Student's t tests. Where indicated, 

a non-parametric alternative, i.e., the Wilcoxon signed-rank 

test, was used. Alpha levels were kept at 0.05. p-values were 

Bonferroni–Holm corrected for multiple comparisons. Effect 

sizes were provided as Cohen's d (t test) or R (Wilcoxon).

2.5.1 | Sensitivity analysis

Euclidean distance values between the footprint feature vec-

tor before and after artifact attenuation stage 2 and between 

artifact attenuation stage 1 and 2 were calculated. Their de-

viation from zero was tested with one-sided, one-sample 

Student's t tests. Single features were statistically compared 

before and after artifact attenuation (stage 2) with two-sided, 

dependent samples Student's t tests or, if indicated, with 

Wilcoxon signed-rank tests for dependent samples. Pearson's 

correlation coefficients between the features were calculated 

before and after artifact attenuation to evaluate whether they 

provide redundant information.

2.5.2 | Specificity analyses
Both the MRCP and the N1 of the button presses were evalu-

ated using three different measures. First, topographies of all 

three ERPs were compared before and after artifact attenu-

ation. Topographies were created by averaging data points 

centered on the peak response (MRCP: −110 to −10  ms, 

N1: 150 to 170 ms). Topographies before and after artifact 

reduction were correlated and the Fisher Z-transformed val-

ues submitted to a two-sided, one-sample Student's t test. 

Secondly, time courses of all three ERPs at the respective 

ROI (MRCP left: C2, CP2, C4, CP4; MRCP right: C1, CP1, 

C3, CP3; N1: Fz, FC1, FC2, Cz) were correlated before 

and after artifact attenuation. This was done from −100 to 

300 ms including the MRCP and the AEP. Correlations were 

Fisher z-transformed. A two-sided, one-sample Student's t 

test was used to test whether the obtained values differed 

significantly from zero, which would indicate that the ERP 

morphology before and after artifact processing was sig-

nificantly correlated. Thirdly, the ERP SNR in decibel (dB) 

was calculated as follows: SNR=10∗ log10(
signal

noise
). Signal 
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strength was estimated as the mean voltage of the corre-

sponding time window (MRCP: −110 to −10 ms, N1: 150 

to 170 ms) and ROI. The noise was estimated on the ERP 

averaged over the corresponding ROI as the standard devia-

tion of the baseline from −500 to −300 ms before a button 

press. SNRs before and after artifact processing were com-

pared using a two-sided, dependent-samples Student's t test.

3 |  RESULTS

3.1 | Participants

In total, N = 10 subjects were excluded from the analysis 

for the following reasons: problems with the recording soft-

ware (n = 5), failure to send the synchronization triggers 

appropriately (n  =  1), not meeting the inclusion criteria 

(n = 1), and failure to comply with task instructions (n = 3). 

Task instructions were not followed by performing button 

presses too fast (less than 20 trials ≥0.8 s apart, n = 2) or 

initiating gait not at least 20 times with each leg, n = 1). 

After exclusion, n = 16 participants (age 24 ± 4 years, 14 

females) were available for the statistical analyses.

3.2 | Preprocessing

Per participant, on average 1.5 (range: 0 to 4) channels were 

removed and 28 (range: 18 to 32) independent components 

remained after artifact attenuation stage 2. After preprocess-

ing, on average 712 gait cycles (range: 501 to 787) remained 

per subject. After ASR 667 gait cycles (range: 494 to 790) 

and after subsequent ICA 696 gait cycles (range: 509 to 803) 

remained on average per participant.

3.3 | Sensitivity analysis: gait-artifact–
related footprint

We compared the footprint as a multidimensional evaluation 

of gait-related artifacts before and after two artifact attenua-

tion stages. A composite score of the footprint, namely, the 

Euclidean distance between all feature vectors, confirmed 

significant differences before and after artifact process-

ing using ASR and ICA (M = 0.82, SD = 0.22, t15 = 14.58, 

p < .001, d = 3.65). Furthermore, footprints following only 

ASR and footprints following ASR and ICA were different 

(M = 0.32, SD = 0.14, t15 = 9.18, p <  .001, d = 2.29, see 

Figure  3). Means and standard deviations before and after 

artifact reduction following ASR and ICA can be found in 

Table 1 and are illustrated in Figure 3a. The results of each 

feature are described in the following.

Before artifact attenuation feature B was correlated with 

feature E (r =  .74, p =  .022, R =  .55). After artifact atten-

uation using ASR and ICA, none of the features remained 

significantly correlated (Figure 4).

3.3.1 | A. EEG activity explained by head 
acceleration

As expected, the RMS of the head acceleration and the 

EEG GFP were systematically coupled to the gait cycle. 

RMS of head acceleration showed a distinct pattern over 

F I G U R E  3  (a) All features of the proposed footprint at different 

processing stages: before artifact attenuation (dashed line), after 

artifact subspace reconstruction (ASR; stage 1, dotted line), and after 

ASR and independent component analysis (stage 2, solid line). Smaller 

values indicate reduced gait-related artifacts. (b) Euclidean distances 

of footprint feature vectors of preprocessed data to data at stage 2 

(dark grey) and of data at stage 1 to stage 2 (light grey). Dots represent 

single subjects 
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the averaged, time-normalized gait cycle, peaking during 

double supports independent of the side of the heel strike 

(see Figure 5). Another smaller peak occurred during the 

single support phases. The pattern of the GFP of the time-

normalized, uncorrected gait ERP looked similar. After ar-

tifact processing, the GFP was reduced in amplitude and 

did not show a systematic variation with the gait cycle 

anymore as reflected by the significant reduction in ex-

plained variance (Mdiff = −0.42, SDdiff = 0.22, T15 = −7.64, 

p < .001, d = −2.29). Using ICA after ASR did not change 

obtained values of feature A (Mdiff = −0.05, SDdiff = 0.12, 

T15 = −1.54, p = .143).

3.3.2 | B. Explained variance across 
frequencies

Time courses of frequencies from 4 to 60 Hz behaved in a simi-

lar manner across the averaged, time-normalized gait cycle (see 

Figure 6). Compared to a standing baseline, their power peaked 

during double supports before, as well as after artifact attenua-

tion. After artifact handling, amplitudes of all frequencies were 

reduced. Yet, the amount of variance in any frequency that was 

explained by the variance in other frequencies did not decrease 

in the artifact-corrected data (Mdiff  =  −0.02, SDdiff  =  0.03, 

T15 = −0.88, p = .393). Correspondingly, using ICA after ASR 

did not change the obtained values of feature B significantly 

(Mdiff = 0.00, SDdiff = 0.02, T15 = −3.22, p = .054).

3.3.3 | C. Lateral to all channel power ratio

Lateral channels captured median (Mdn)  =  0.64 of the total 

power before artifact attenuation, as illustrated in Figure 7. This 

was particularly evident at channels located near the subjects’ 

neck. After artifact reduction, power was generally reduced, 

and only Mdn = 0.57 of power originated from lateral channels. 

F I G U R E  4  Pearson correlation 

matrices of the footprint features before (a) 

and after artifact subspace reconstruction 

and independent component analysis 

artifact attenuation (stage 2, b). Significant 

correlations (padjusted < .05) marked with 

asterisks

F I G U R E  5  Grand mean RMS of head acceleration (a) as well 

as GFP (b) before (dashed line) and after artifact attenuation (stage 2, 

solid line) over the time-normalized gait cycle. Shaded areas indicate 

plus–minus 1 standard deviation across subjects. Gait events are 

indicated by vertical lines (right heel strike (RHS), left toe-off (LTO), 

left heel strike (LHS), and right toe-off (RTO)) 

F I G U R E  6  Grand mean time courses of all frequency scales 

before (dashed line) and after (stage 2, solid line) artifact reduction. 

Gait events are indicated by vertical lines (right heel strike (RHS), left 

toe-off (LTO), left heel strike (LHS), and right toe-off (RTO)) 
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This was a significant decrease (T = 136, p < .001, R = −1.04). 

Nonetheless, an inspection of isopotential lines still hinted at 

a residual activity at lateral regions, especially near the neck. 

Performing ICA after ASR further reduced values of feature C 

(Mdiff = −0.02, SDdiff = 0.02, T15 = −4.34, p = .013, d = −0.5).

3.3.4 | D. Neck channel power ratio

In line with Severens et al. (2012), electrodes located over 

neck muscles showed strong power increases following con-

tralateral heel strike compared to a standing baseline (see 

Figure 6a). As this may primarily reflect EMG activity, this 

feature should be reduced by artifact attenuation. Before ar-

tifact reduction the power ratio was positive (Mdn = 0.57), 

indicating that during the double support phases electrodes 

placed on the side of the neck contralateral to the previous 

heel strike captured more power than electrodes placed ip-

silaterally. After artifact attenuation, this value dropped 

significantly (Mdn = 0.16, T = 129, p = .010, R = −.86) but 

remained positive (see Figure 8). Obtained values remained 

when ICA was performed after ASR (T = 95, p = 1).

3.3.5 | E. Double support power ratio

Compared to a standing baseline, a strong, broadband power 

increase, in particular in the higher frequency range, can be ob-

served during double support in the grand mean ERSP, prob-

ably largely reflecting artifacts (see Figure  9a). Compared to 

a standing baseline, the largest power increase during the av-

eraged gait cycle was observed during double support phases. 

This increase was most pronounced at higher frequencies, ech-

oed by the double support power ratio of M = 0.42 (SD = 0.07), 

although double support covered only 32% of the time-normal-

ized gait cycle. After artifact attenuation, power was attenuated 

across all frequencies and time points (see Figure 9b), as was the 

power ratio, which decreased to Mdiff = −0.06, SDdiff = 0.04, 

T15 = −5.74, p < .001, d = −0.37. Obtained values of feature 

e further decreased when using ICA after ASR (Mdiff = −0.01, 

SDdiff = 0.021 T15 = −5.41, p < .001, d = −0.23).

3.3.6 | F. Standing/walking power ratio

EEG recorded during walking also showed greater broadband 

power than EEG recorded during standing before artifact attenu-

ation, as shown in Figures 7 and 9. Before artifact handling, the 

standing/walking power ratio was greater than zero (M = 0.20, 

SD = 0.25, see Figure 10), confirming that, on average, power 

during walking was higher than power during standing. On 

F I G U R E  7  Power change to standing baseline before (a) 

and after (stage 2, b) artifact reduction. Electrodes defined as 

lateral are marked by an asterisk

F I G U R E  8  Grand mean topographies of mean power change (dB) to a standing baseline from 4 to 60 Hz before (a) and after (stage 2, b) 

artifact attenuation. The neck channel ratio was calculated during double support. Marked by asterisks are the channels contralateral to heel strike, 

which were compared to the power of the ipsilateral neck channels. Shaded areas specify durations during which the respective foot was on the 

ground. Gait events are indicated right heel strike (RHS), left toe-off (LTO), left heel strike (LHS), and right toe-off (RTO) 
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a single subject level, only 1 of 16 participants had less EEG 

power during walking than standing. After artifact attenuation, 

the power ratio value dropped (Mdiff  =  −0.26, SDdiff  =  0.20, 

T15 = −5.28, p <  .001, d = −1.11), demonstrating that EEG 

power was very similar between standing and walking now, as 

could be expected. Performing ICA after ASR did not further 

decrease the values of feature F (Mdiff = −0.02, SDdiff = 0.11, 

T15 = −0.56, p = 1).

3.3.7 | G. ROI source activity

Source activity in a ROI around M1 leg representation 

areas was estimated before and after two stages of artifact 

attenuation. Before artifact attenuation, the estimated source 

activity of the dorsal cortex peaked around the interhemi-

spheric cleft, starting around the central sulcus and spanning 

over the central part of the parietal cortex (see Figure 11). 

The estimated source activity at the ROI, edged in black, was 

higher than at the surrounding cortex, resulting in a value of 

M = 0.75. After artifact attenuation, the amplitude of the es-

timated source activity decreased and the above-mentioned 

patterns diminished. Yet, the value of the corresponding fea-

ture remained the same after artifact attenuation using ASR 

and ICA (Mdiff = 0.21, SDdiff = 0.34, T15 = 2.51, p = .192). 

Conducting ICA after ASR also did not influence this feature 

(Mdiff = 0.18, SDdiff = 0. 24, T15 = 3.10, p = .084). Implying 

that the average activity per-vertex at the ROI was unchanged 

compared to the values of the remaining cortex after any 

stage of artifact attenuation than before. Descriptively, this 

feature increased with subsequent artifact attenuation stages.

3.4 | Specificity analyses

We evaluated button-press ERPs before and after artifact re-

duction to assess whether a signal of interest remained after 

artifact attenuation. We compared morphologies, peak to-

pographies, and SNRs of the MRCPs preceding self-paced 

button presses as well as the AEP N1 on tones given as feed-

back to the button presses.

Time courses from −100 to 300 ms of the ERPs at the 

respective ROI before and after artifact attenuation showed 

significant correlations for both left and right thumb button 

presses (see Table 2). Averaged topographies from −110 to 

10 ms before the button press exhibited contralateral negativ-

ity over central electrodes before and after artifact attenuation 

(see Figure  12b). Before artifact attenuation, topographies 

additionally displayed a strong positive deflection at fronto-

polar electrodes. This activity could be reminiscent of eye-

blink artifacts. ERP amplitudes were higher before artifact 

F I G U R E  9  Grand mean ERSPs before (a) and after (stage 2, b) 

artifact attenuation. Power change (dB) relative to a standing baseline. 

Gait events are indicated by vertical lines (right heel strike (RHS), left 

toe-off (LTO), left heel strike (LHS), and right toe-off (RTO))

F I G U R E  1 0  Standing/walking ratio before (up) and after (down) 

artifact attenuation. Dots represent single subject values

F I G U R E  1 1  Grand mean source estimation of the gait ERP before 

(a) and after (b) artifact attenuation displayed on the default cortex used 

by Brainstorm. Borders of the region of interest are contoured
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processing. Subjects’ MRCP topographies before and after 

artifact attenuation were not significantly correlated (see 

Table 3), suggesting that the eye-blink dominance on the 

maps was removed by the artifact attenuation. Source esti-

mation of MRCPs revealed that activity was located in cen-

tral motor and parietal areas of the contralateral hemisphere 

(see Figure  12b). SNR of both MRCPs showed great vari-

ance before as well as after artifact handling, but their mean 

value remained unchanged (see Table 4). Notably, the mean 

SNR after artifact processing was negative (Mleft  =  −0.7, 

Mright = −0.3), implying that the signal estimate was smaller 

than the noise estimate.

The grand mean AEP at the frontocentral ROI (channel 

Fz, FC1, FC2, and Cz) showed an N1 peak around 150 to 

170 ms after the tone elicited by the button press, followed 

by a P2 around 230  ms (see Figure  12a). Before and after 

artifact attenuation, time courses from −100 to 300 ms of the 

AEP were significantly correlated (see Table 2). Averaged 

topographies from 150 to 170 ms after the button press ex-

posed negativity at the frontocentral ROI resembling the AEP 

N1 component (Hyde, 1997). In the artifact-corrected data, 

the negativity peaked at the ROI, whereas in the uncorrected 

data the peak negativity smeared out to frontopolar channels. 

Nonetheless, subjects’ N1 topographies before and after ar-

tifact attenuation were significantly correlated (see Table 3), 

suggesting that the AEP N1 was not completely shadowed by 

artifacts in the uncorrected dataset. Sources of the auditory 

N1 were estimated to be at the posterior part of the lateral 

fissure, nearby Heschl's gyri, the likely source of the AEP 

N1 (e.g., Debener, Hine, Bleeck, & Eyles,  2007; Hine & 

Debener, 2007). The SNR did not change after artifact atten-

uation, it was greater than 8 dB in both cases and its variance 

remained equally high before and after artifact correction 

(see Table 4).

4 |  DISCUSSION

Currently, there is no consensus on how to deal with 

gait-related artifacts in mobile EEG studies. To alleviate 

this problem, we propose a seven-dimensional footprint 

characterizing gait-related artifacts to compare objectively 

and comprehensively gait EEG before and after artifact at-

tenuation. To demonstrate the utility of the gait footprint, 

we applied the footprint on mobile EEG data captured dur-

ing free walking outdoors. We showed that features of our 

footprint reflect the sensitivity of two different artifact-

handling stages on gait-related artifacts. To further evalu-

ate the specificity of gait artifact handling, we measured 

how signals of interest remain after artifact processing 

(specificity).

4.1 | Sensitivity analysis: Gait-artifact–
related footprint

We adapted and developed seven features capturing gait-

related artifacts in multiple dimensions, such as time, time–

frequency, space, and brain source space. The proposed 

footprint changed with different artifact attenuation stages, 

thereby demonstrating its sensitivity. All but two features de-

creased following artifact attenuation, but only two features 

(C and E) further decreased when ICA was performed after 

ASR. This shows that the footprint can be used to compare 

artifact attenuation pipelines more thoroughly than what is 

possible when only one or two features are used. We adapted 

features to a similar scale, to facilitate a global, cross-fea-

ture comparison. Our results indicate that the employed ar-

tifact attenuation strategy successfully reduced gait-related 

artifacts, albeit not equally well in every investigated di-

mension. Interestingly, our results suggest that the applied 

artifact-processing pipeline may also have reduced some of 

the neural activity of interest captured with EEG. The lack 

of a further decrease when performing ICA after ASR hints 

at the fact that the chosen ASR threshold (SD = 7) was very 

strict. The threshold was chosen following a previous study 

(Nordin et  al.,  2020), but is lower than the current recom-

mendations for performing ASR to improve ICA decomposi-

tion (SD = 20 to SD = 30, Chang, Hsu, Pion-Tonachini, & 

Jung, 2018). Indeed, the footprint could also be used to iden-

tify suitable parameter values within a particular processing 

pipeline.

Some footprint features were significantly correlated be-

fore but not after artifact attenuation, indicating that proper-

ties of the EEG data changed due to artifact attenuation. Most 

of the moderate correlations are positive suggesting that they 

capture the same, multifaceted construct, i.e., gait-related ar-

tifactual activity. Feature F is adapted from a previous report 

investigating the walking/sitting ratio (Oliveira et al., 2016b). 

Before artifact attenuation, all moderate correlations of fea-

ture F with other footprint features were positive but remained 

insignificant (B, E). This supports the view that similar, yet 

non-redundant information was captured by the footprint fea-

tures, indeed.

T A B L E  2  Fisher Z transformed correlations of the ERP before 

and after artifact attenuation at the respective ROI

ERP M SD T df padj d

MRCP left 1.05 0.45 9.39 15 <.001 2.35

MRCP right 1.18 0.39 12.31 15 <.001 3.08

N1 1.53 0.43 14.22 15 <.001 3.56

Note: Two-sided, one-sample Student's t test. The effect size is given by Cohen's 

d.

Abbreviations: ERP, event-related potential; M, mean, SD, standard deviation.
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F I G U R E  1 2  (a) Grand mean event-related potential (ERP) of the N1 region of interest (ROI). Time windows of movement-related cortical 

potential (MRCP) and N1 are marked by grey shaded areas. (b) Topographies of MRCPs and N1 were averaged over intervals indicated in gray in 

A, before (top row) and after (below) artifact processing. The bottom row illustrates source estimates of the artifact-attenuated group mean response 
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4.1.1 | A. EEG activity explained by head 
acceleration

Head acceleration magnitude explained EEG activity before 

but not after artifact attenuation. Previous studies of treadmill 

walking observed that especially vertical head acceleration 

shares frequency characteristics with single-channel EEG 

raw data, evident at higher speeds (Castermans et al., 2014; 

Kline et  al.,  2015; Nathan & Contreras-Vidal,  2016). 

Moreover, information from 3D head acceleration has been 

used to reduce motion artifacts from EEG data using adap-

tive filtering (Kilicarslan & Contreras Vidal, 2019). We sup-

pose that including spatial information by using compounds 

of 3D head acceleration and multi-channel EEG amplitudes 

may provide more information, resulting in greater explained 

variance before artifact attenuation. Using this combined 

information approach should help to assess the influence of 

head acceleration on EEG activity better. As this feature can 

only be computed when head acceleration data are available, 

it should be investigated whether other measures of head mo-

tion (trajectory, angular velocity) yield similar results.

4.1.2 | B. Explained variance across 
frequencies

Power time courses of any frequency were largely predicted 

by time courses of all other frequencies in our walking data. 

After artifact attenuation, power time courses were still very 

similar across frequencies, hence, the decrease in this value 

remained insignificant. This may indicate either that some 

transient artifact influence remained after artifact processing 

or that the proposed feature is not particularly sensitive to 

artifact removal. This measure also displayed little variance 

across subjects. We did evaluate this feature only in walking 

data because we were particularly interested in the motion 

artifact influence. It may be interesting though to evaluate 

whether high correlations of frequency bands are also present 

in standing data. Comparing explained variance across fre-

quencies of EEG data captured during standing to EEG data 

captured during walking could provide a reference for future 

mobile EEG analysis.

4.1.3 | C. Lateral to all channel power ratio

Compared to a standing baseline, we observed a greater 

broadband power increase at lateral than central chan-

nels. This value decreased significantly after artifact han-

dling. However, the size of the effect was only moderate 

(d = −0.5). This may be linked to the artifactual activity 

captured by lateral EEG channels (e.g., due to EMG con-

tamination and/or electrode movement) being to a lesser 

extent captured by other channels, as due to the effect of 

volume conduction, channel recordings of EEG data are 

highly correlated (Buzsáki, Anastassiou, & Koch,  2012; 

Luck,  2014; Makeig et  al.,  2004). Hence, the same ar-

tifacts may influence contrasted channels resulting in 

greater values of this feature. Still, it seems evident that 

gait-related artifacts do not show evenly across the scalp 

(e.g., Castermans et al., 2014; Kline et al., 2015; Oliveira 

et al., 2016a), but which areas were most affected has not 

been described consistently. We found the greatest power 

increases to a standing baseline at lateral electrodes (see 

Figure 7). In line with our results, Kline et  al.  (2015) re-

ported the greatest gait-related artifacts at a frontal elec-

trode (this electrode would have been labeled as lateral in 

our case). Contrary to our results, Oliveira et al. (2016a) ob-

served the greatest artifact influence at channels close to the 

vertex using a moving phantom head. However, they inves-

tigated artifacts of cable and electrode movement and not 

artifacts caused by EMG contamination, which we assume 

drives the increased broadband power that we observed at 

lateral channels.

T A B L E  3  Fisher Z transformed correlations of the peak 

topographies before and after artifact attenuation

ERP M SD T df padj d

N1 1.05 0.52 8.07 15 <0.001 2.02

MRCP left 0.11 0.33 1.28 15 1.000 0.32

MRCP right 0.00 0.44 −0.04 15 1.000 −0.01

Note: Two-sided, one-sample Student's t test. The effect size is given by Cohen's d.

Abbreviations: ERP, event-related potential; M = mean, SD = standard 

deviation.

ERP

Before After

T df p dM SD M SD

MRCP left 2.12 3.80 −0.7 4.60 1.73 15 0.936 0.43

MRCP right 1.92 3.43 −0.3 3.59 1.68 15 0.936 0.42

N1 8.03 3.67 8.43 3.21 −0.8 15 1.000 −0.20

Note: Dependent samples, two-sided, Student's t test. The effect size is given by Cohen's d.

Abbreviations: ERP, event-related potential; M = mean, SD = standard deviation; SNR, signal-to-noise ratio.

T A B L E  4  SNR of different button 

press ERPs before and after artifact 

attenuation
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4.1.4 | D. Neck channel power ratio

Before as well as after artifact attenuation, it was evident that 

during the double support phases electrodes placed on the 

side of the neck contralateral to the previous heel strike cap-

tured more broadband power than electrodes placed ipsilater-

ally. This is in line with a previous report (Severens et al., 

2012). Keeping in mind the inconsistent results of preced-

ing studies examining EMG activity as captures by EEG it 

may be interesting to examine this feature in other datasets as 

well. We assume that this laterality is steered by systematic 

gait-phase–dependent neck EMG laterality, and, thus, a ratio 

close to zero would be desirable. Indeed, this ratio decreased 

after artifact attenuation, but it did not reach zero. Still, the 

observed decrease indicates the effect of artifact attenuation.

4.1.5 | E. Double support power ratio

Before artifact reduction, the largest broadband power in-

crease compared to a standing baseline occurred during 

double support phases. After artifact handling, we observed 

a small, but significant, decrease in this ratio, suggesting suc-

cessful artifact reduction. Previous studies have observed 

broadband power increases at regions associated with motor 

control (SMA, premotor cortex, sensory cortex, posterior pa-

rietal cortex) mainly during double support and contralateral 

toe-off (e.g., Nordin et al., 2019; Oliveira, Schlink, Hairston, 

König, & Ferris, 2017). Hence, we did expect greater power 

during double than single support phases also after success-

ful artifact handling. We suppose that the share of broadband 

power during double support is slightly higher than its dura-

tion in the gait cycle (here, i.e., 32%), after successful artifact 

handling. The double support ratio decreased after artifact 

attenuation to M = 0.37, which is close to a value that could 

be predicted.

4.1.6 | F. Standing/walking power ratio

Before artifact attenuation, broadband power across all chan-

nels was higher during walking than during standing. After 

artifact attenuation, this standing/walking power ratio de-

creased to values close to zero, indicating that average power 

during standing and walking was similar. Ratio values ranged 

from −0.35 to 0.59 before and from −0.56 to 0.24 after ar-

tifact processing. This result, and the fact that one subject 

already had a negative standing/walking ratio before artifact 

attenuation, illustrates the previously reported observation of 

fundamental inter-individual differences in gait-related arti-

facts (Kline et al., 2015). Our feature can be transformed into 

the previously described Walking/Sitting ratio if instead of 

EEG power of a standing baseline power of a sitting baseline 

is used (Oliveira et al., 2016b). Numerically, our values were 

comparable to previously reported values of overground 

walking before and after artifact attenuation using AMICA 

(Arad et  al.,  2018). Interestingly, we did not find a strong 

alpha/mu or beta power decrease relative to a standing 

baseline after artifact attenuation over M1 (i.e., at electrode 

Cz, see supplemental material, Figure S4). Such power de-

creases have been previously reported in overground (Storzer 

et al., 2016) as well as exoskeleton-assisted treadmill walk-

ing (Seeber et  al.,  2014, 2015). In another study of unas-

sisted treadmill walking, an alpha/mu and beta-band power 

decrease were only reported for one of two epilepsy patients 

using electrocorticography of M1 (McCrimmon et al., 2018). 

Hence, we argue that despite supporting evidence of the 

consistency of mu/alpha and beta power decreases during 

walking compared to standing is not known yet. Additional 

studies describing ERSPs relative to a standing baseline are 

required to determine the reliability of these power changes.

4.1.7 | G. ROI source activity

Per-vertex source activity of an ROI around M1 leg represen-

tation areas was compared to the remaining cortex before and 

after artifact attenuation. Contrary to our expectations, the 

estimated source activity of the leg motor ROI defined by us 

did not increase after artifact handling. This could be due to 

various reasons: firstly, the comparison to the remaining cor-

tical activity might have been misleading because it included 

areas in which EEG source estimation has been shown to not 

be very sensitive (Makeig et al., 2004) or seems to be prone 

to artifacts (e.g., ventral and inferior medial areas). Choosing 

reference areas with good sensitivity for EEG source estima-

tion that are not associated with cortical correlates of walking 

may be a more sensible choice in future studies. Secondly, 

some neural activity may have been removed by artifact 

handling, yielding low source activity without a clear repre-

sentative spatial distribution. Thirdly, EEG source estimates 

benefit from digitized channel location and subject-specific 

neuroanatomy (e.g., magnetic resonance imaging), which 

were not available in the present study. As obtaining these 

measures requires greater resources, it would have been ad-

vantageous to show that source estimation of gait EEG is fea-

sible without them. After all, this feature was also by far the 

most complex to calculate and the only one requiring an ad-

ditional MATLAB toolbox (Brainstorm) besides EEGLAB.

4.2 | Specificity analyses

We performed specificity analyses to evaluate whether 

signals of interest remain unchanged by a particular arti-

fact handling procedure. We observed that button-press 
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ERPs before and after artifact processing were correlated 

at central ROIs, indicating that they were similar. As the 

ERPs before artifact attenuation already showed a clear 

N1-P2 AEP following a self-elicited tone, we assume that 

the signal of interest was already evident before artifact 

attenuation and remained present afterward. Topographies 

of the investigated ERPs (MRCP left and right, N1) be-

fore artifact attenuation showed large influences of arti-

facts masking the signal, especially at frontal electrodes, 

probably due to blinks and eye movements. This changed 

after artifact attenuation. Now, ERP topographies looked 

as expected, that is, the MRCP showed focal negativity 

over contralateral central electrodes located over the pri-

mary motor cortex (e.g., Hallett,  1994) and the N1 AEP 

showed a peak negativity at frontocentral electrodes (e.g., 

Hine & Debener, 2007). As MRCP topographies changed 

with diminished artifacts, we expected a low correlation 

of the MRCP topographies before and after artifact han-

dling (Campos Viola et al., 2009). N1 topographies before 

and after artifact handling were significantly correlated, 

demonstrating that the AEP N1 had a good signal-to-noise 

ratio, resulting in a robust topography. Estimated sources 

of the MRCP and N1 were localized close to the cortical 

target regions. These are areas associated with hand motor 

control and auditory perception, respectively. We are, 

therefore, confident that signals of interest remained after 

artifact processing. Yet, the SNR did not change after arti-

fact attenuation. This may either indicate that the noise was 

not reduced or that the signal of interest was reduced in the 

same manner and, hence, the ratio did not change.

4.3 | Implications

The proposed footprint characterizes gait-related EEG data 

in various domains. A combination of all the proposed fea-

tures can be merged into a single value, to describe the 

attenuation of gait-related artifacts. As all features can be 

computed individually, one may also compare single fea-

tures directly. Contrary to other previously proposed fea-

tures (e.g., some features of Oliveira et  al.,  2016b), our 

footprint can be calculated for single-task walking with-

out any other ERP being present. Moreover, while some 

of the features may be universally applicable, other fea-

tures require detailed information about gait events. Here, 

we share the code that is needed to calculate the footprint 

features, facilitating the application of the proposed foot-

print in future work. Given the complexity of the topic, a 

well-defined processing pipeline describing gait-related ar-

tifacts independent of a particular research question seems 

a step forward in our view.

We demonstrate that the proposed footprint could discrim-

inate between two different artifact attenuation stages. Yet, it 

would be interesting to compare how well other artifact atten-

uation strategies perform when evaluated with the footprint. 

Processing pipelines may influence obtained values of foot-

print features allowing the optimization artifact processing 

by evaluating the proposed gait artifact footprint. Moreover, 

in the future, this footprint may be used to improve record-

ing setups or to assess differences in gait-related artifacts be-

tween subjects (as described by, e.g., Kline et al., 2015).

In the current study, we only tested two artifact attenua-

tion pipelines without trying to optimize any parameters. It 

is, therefore, possible that we did not achieve the best arti-

fact attenuation. Still, artifact processing was reflected in a 

changed footprint. Besides, we do not know which part of the 

processed EEG data was signal and which noise. Hence, the 

next step would be to investigate the proposed footprint on a 

dataset where the ground truth is known. This could be done 

using simulated data or phantom head recordings with known 

motion parameters, neck muscle, and neural source activities 

(e.g., Richer et al., 2019, 2020). However, while such studies 

provide necessary insights, they do not replace the careful 

description of gait-related artifacts in natural, mobile EEG 

studies. Moreover, the needed equipment is only accessible 

to certain laboratories, as it is not commercially available, 

but laboratories without these possibilities may be interested 

in acquiring mobile gait EEG. The proposed footprint offers 

them a possibility to assess gait-related artifacts only using 

EEG data with good spatial coverage and gait event markers 

that could be obtained from different sensors.

5 |  CONCLUSION

We conclude that the gait-related artifact footprint captures 

gait-related artifacts in mobile EEG data and is sensitive to 

artifact reduction methods. We chose artifact attenuation 

pipelines similar to commonly used ones, yet they may not 

represent the best ones available. However, the procedure 

serves as an example, showing that much of the gait-related 

artifact was suppressed in our dataset, whereas the neural ac-

tivity of interest remained present.

Established features are much needed to objectively quan-

tify the influence of gait artifacts on EEG data while walking. 

The proposed gait artifact footprint may serve as a valuable 

contribution to the growing community of mobile EEG re-

search, as it could be used to validate different hardware 

choices and different artifact processing pipelines, among 

other applications. Further optimizing recording setups and 

artifact attenuation pipelines will help to establish capturing 

human brain function in daily life.
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