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This paper introduces a wave propagation-based damage index which relies on the evaluation of the strain

energy distribution associated with propagating waves. The presence of localized damages typically

distorts the wavefield by causing reflections and diffractions. The evaluation of such distortions, in

reference to the wavefield corresponding to the undamaged structure, can be used as an indicator which

potentially locates, quantifies and classifies the damage.

The damage index formulation is first illustrated through a numerical model of a beam with a small

notch, modeled as a localized thickness reduction. The beam’s wave propagation response is simulated

through the combined application of perturbation techniques and the spectral finite element method. The

perturbation approach and a first order model for the beam capture the coupling between bending and

axial behavior caused by the damage, and allow the prediction of mode conversion phenomena. The

perturbation solution allows direct comparison between undamaged and damaged strain energy contribu-

tions, which are directly associated with perturbation solutions of different orders. The resulting damage

index locates the damage along the beam length and estimates its severity.

Experimentally, the damage index is implemented by considering full wavefield measurements ob-

tained through a scanning laser vibrometer. The undamaged reference response is derived directly from

measurements on the damaged component, through the application of a filtering procedure operating in

the wavenumber/frequency domain.

1. Introduction

The objective of a structural health monitoring (SHM) system is to identify anomalies or damages such

as cracks, delaminations, and disbonds in structures. The term identification includes the determination

of the existence of damages, their location, and their size as accurately as possible. In the literature, the

amount of information that can be obtained regarding a damaged structure is typically classified into five

levels: (1) identification of the presence of damage, (2) determination of the location of the damage, (3)

classification of the type of damage, (4) quantification of its extent, and (5) estimation of the remaining

life of the component under investigation. The definition of an effective measure of damage responds to

the requirements of the first 4 stages, and ideally provides inputs to step (5). Damage indices proposed in

the literature from an SHM perspective are meant to identify and locate the damage, and, in some cases,

to provide an indication regarding the extent of the damage and its progression.

Keywords: damage measure, damage index, notched beam, spectral finite element method, perturbation techniques, first order

beam theory.
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Many SHM techniques developed over the years are based on the detection of changes in the modal

behavior of the monitored components. A valuable review of the state-of-the-art in modal-based SHM

can be found in [Doebling et al. 1996]. The existing techniques vary on the basis of the type of dynamic

response signals used for the analysis, and on the features or parameters considered as damage indicators.

Examples include techniques based on changes in modal frequencies [Ostachowicz and Krawczuk 1991;

Kim and Stubbs 2003], in measured mode shapes and their spatial derivatives (curvatures) [Pandey et al.

1991; Lestari 2001; Luo and Hanagud 1997; Ho and Ewins 1999], in calculated mean modal strain

energies [Sharma et al. 2006; Choi and Stubbs 2004; Cornwell et al. 1999] and in measured flexibility

coefficients. Although effective, these methods generally are not sensitive enough to to detect small

damages, and often require comparisons with baseline measurements on undamaged specimens. Their

lack in sensitivity and their inability to discriminate damage from changes in the operating conditions

of modal-based methods can be overcome through the application of guided ultrasonic waves (GUWs)

inspections [Staszewski et al. 2004; Rose 2002; Raghavan and Cesnik 2007]. Guided waves, such as

Lamb waves, show sensitivity to a variety of damage types and have the ability to travel relatively long

distances within the structure under investigation. For this reason, GUWs are particularly suitable for

SHM applications, which may employ a built-in sensor/actuator network to interrogate and assess the

state of health of the structure [Staszewski et al. 2004; Rose 2002; Giurgiutiu et al. 2003; Giurgiutiu

2005; 2008]. Alternatively, full wavefield measurements can be obtained through scanning laser vi-

brometers, which allow the implementation of strain energy-based damage index [Sharma et al. 2006],

and of frequency/wavenumber filtering techniques for improved damage visualization [Ruzzene 2007].

Interaction of the ultrasonic waves with various scatterers that represent arbitrary thickness variation was

study by experimental techniques and was validated with analytical and numerical models such as hybrid

boundary element method [Cho and Rose 1996; Cho 2000], finite difference method and finite element

method [Kazys et al. 2006; Basri and Chiu 2004], local interaction simulation approach [Ruzzene et al.

2005] and acoustic wavefield imaging [Michaels et al. 2005].

This paper extends the approach in [Ruzzene 2007], by introducing a wave propagation-based damage

index which relies on the estimation of the strain energy associated with waves reflected by damage.

The approach is illustrated through numerically simulated data which are obtained from the model of

a notched beam. The model considers damage as a small, localized thickness reduction, which allows

the application of perturbation techniques [Apetre et al. 2008; Lestari 2001]. The resulting perturbation

equations are solved in the frequency domain using the spectral finite element method (SFEM) [Doyle

1997; Lee et al. 2000]. SFEM, developed from matrix structural methods [Przemieniecki 1968], is using

a discrete Fourier transform to translate a problem to the frequency domain where an exact solution can

be found.

In the field of SHM, the SFEM has been previously used for example in [Kumar et al. 2004] to describe

the behavior of a first-order shear deformable beam with a transverse crack. Also, the SFE model of

a cracked Timoshenko beam is presented in [Krawczuk et al. 2003], where a massless spring, with

bending and shear flexibilities computed using Castigliano’s theorem and the laws of fracture mechanics

is used to model the crack. A review of damage detection using SFEM is presented in [Ostachowicz

2008]. The perturbation approach applied herein leads to a set of linear equations for increasing order

of the perturbation parameter. In this context, the separation between the response of the undamaged

structure (zero order perturbation solution) and the changes introduced by damage (first order perturbation
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solution) is immediate. The proposed damage index formulation is defined as the ratio of the strain energy

distribution associated with perturbations due to damage and the strain energy of the undamaged structure,

which in the numerical model respectively correspond to the first order and zero order solutions. The

formulation can be easily extended for the analysis of full-field experimental data according to procedures

outlined in [Ruzzene 2007].

The paper is organized as follows. Section 2 describes the numerical model of the notched beam,

while Section 3 presents the damage index formulation and a set of illustrative numerical examples. The

experimental implementation of the concept with the simultaneous application of frequency/wavenumber

filtering procedures are presented in Section 4. A summary of the main results of the work is finally

presented in Section 5.

2. Wave propagation model for notched beams

Damage description. A detailed derivation of the governing differential equations for a notched Euler-

Bernoulli beam is presented in [Apetre et al. 2008]. Here for completeness, a short summary of the

derivation is given. The dynamic behavior of the notched beam shown in Figure 1 is described by a set

of governing equations derived through the Hamilton principle. The defect is modeled as a reduction

in thickness of depth hd , extending over a length 1l, placed at the distance xd . As seen in the figure,

x ∈ [0, L] denotes the horizontal coordinate, whereas the vertical coordinate z varies in the interval

z ∈
[

−h

2
,

h

2
(1 − 2εγd(x))

]

, (2-1)

where ε = hd/h, and where γd(x) = H(x −(xd −1l))− H(x −xd) is a damage function with H denoting

the Heaviside function. Both the stiffness and the mass loss due to the edge notch are considered. The

moment of inertia at the damage location is truncated at ε order as

Id = I (1 − ε)3 ≈ I (1 − 3ε), (2-2)

where I is the moment of inertia of the undamaged beam. Thus the expressions for the stiffness and

mass distribution along the beam are [Lestari 2001]

EId(x) = EI [1 − 3εγd(x)] and md(x) = m[1 − εγd(x)], (2-3)

where EI and m are the stiffness and the mass of the undamaged beam.

x,u

z,w

xd

h

hd

L

∆l

Figure 1. Beam geometry.
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Perturbation equations. The governing equations for the notched beam and the appropriate set of bound-

ary conditions are derived using Hamilton’s Principle. The required kinetic and strain energies, and the

work of external forces are formulated using the first-order approximation

u(x, z, t) = u(x, t) − z
∂w

∂x
, w(x, z, t) = w(x, t), (2-4)

where u(x, t) and w(x, t) are the axial and transverse displacements in the reference plane z = 0, respec-

tively. Application of Hamilton’s Principle yields the following set of differential equations:

[

E Au,x +
(

−u,x + w,xx

h

2

)

E Aγd(x)ε
]

,x
− m

[

1 − εγd(x)
]

ü − mh

2
εγd(x)ẇ,xx = f1(x, t), (2-5)

[

−EIw,xx +
(

−u,x + w,xx
h

2

)

E
Ah

2
γd(x)ε

]

,xx
+ mh

2

[

üεγd(x)
]

,x
− m

[

1 − εγd(x)
]

ẅ = f2(x, t), (2-6)

where E is the Young’s modulus, A is the lateral area, h is beam thickness, m is the mass per unit

length, and f1(x, t), f2(x, t) denote the applied distributed generalized loads, assumed for simplicity to

be applied along the reference plane z = 0. The important feature of equations (2-5), (2-6) is the coupling

between the axial and transverse displacement resulting from the damage description considered. It is

noted that in the absence of damage, the small parameter ε becomes zero and equations (2-5), (2-6)

reduce to the classical uncoupled equations governing bending and axial behavior of a symmetric beam.

The governing equations can be conveniently expressed in the frequency domain through the applica-

tion of the Fourier transform, by letting the applied generalized loads f j (x, t) (with j = 1, 2) be

f j (x, t) =
∑

k

f̂ jk (x, ωk)e
iωk t , (2-7)

where i =
√

−1, and f̂ jk (x, ωk) denotes the harmonic component of the generalized load at frequency

ωk [Doyle 1997]. Accordingly, the beam’s axial and transverse displacements can be written as

u(x, t) =
∑

k

ûk(x, ωk)e
iωk t , w(x, t) =

∑

k

ŵk(x, ωk)e
iωk t , (2-8)

where ûk(x, ωk), ŵk(x, ωk) are the displacements corresponding to the kth harmonic component. In the

remainder of the paper, the subscript k is dropped to simplify notation, so that ωk =ω, ûk(x, ωk)= û(x, ω),

ŵk(x, ω) = ŵ(x, ω).

Next, the axial and vertical displacements of the beam in the reference plane are expanded as pertur-

bations (in terms of a small parameter ε) of the axial and vertical displacement of the undamaged beam

û(x, ω) = û
(0)

(x, ω)− εû
(1)

(x, ω)− O(ε2), (2-9)

where û = {û ŵ}T . Substituting (2-8), (2-9) into the differential system (2-5), (2-6) and collecting the

coefficients of ε0 and ε1 results in the set of differential equations

ε0 : Mû
(0)

(x, ω)+ E1û
(0)
,xx(x, ω)+ E2û

(0)
,4x(x, ω) = f̂

(0)
(x, ω), (2-10)

ε1 : Mû
(1)

(x, ω)+ E1û
(1)
,xx(x, ω)+ E2û

(1)
,4x(x, ω) = f̂

(1)
(x, ω), (2-11)
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where

M =
[

mω2 0

0 mω2

]

, E1 =
[

E A 0

0 0

]

, E2 =
[

0 0

0 −E I

]

, (2-12)

where A = bh and I = bh3/12. In (2-11), f̂
(1)

(x, ω) is the load on the first order perturbation equation,

which is a function of the zero order displacement û
(0)

and is responsible for the axial-bending coupling.

Its explicit expression can be found in [Apetre et al. 2008].

Spectral finite element discretization. The equation for the ε0 term corresponds to the uncoupled gov-

erning equation for the undamaged beam in the frequency domain, while the first order perturbation

equation has the same form, with an applied generalized load that is a function of û
(0)

. A common

strategy for the solution of the equations (2-10), (2-11) is based on their formally identical form. Each

of the equations can in fact be written in matrix form as

Mû(x, ω)+ E1û,xx(x, ω)+ E2û,4x(x, ω) = q(x, ω), (2-13)

where coefficients are 2 × 2 matrices. We assume that the beam can be divided into finite elements

where an element j of length L j connects two nodes (Figure 2). The behavior of each node is de-

scribed by 3 degrees of freedom, so that the element’s vector of degrees of freedom is defined as

d j = {û1 j , ŵ1 j , ŵ1 j,x , û2 j , ŵ2 j , ŵ2 j,x}T . The displacement û(x, ω) within element j is obtained

as an interpolation of the nodal degrees of freedom d j

û(x, ω) = N j (x, ω)d j (ω), (2-14)

where N j (x, ω) is the matrix of dynamic shape functions, which are obtained from the solution of the

homogeneous governing equation [Doyle 1997]. The application of the dynamic shape functions as

interpolation functions is the main feature of the SFEM, which otherwise maintains the formalism of

conventional FEs as demonstrated by the theoretical description of this section. Accordingly, the dynamic

shape functions N j (x, ω) provide a description of the displacement variation within an element, which

is as exact as the homogeneous distributed parameter model used for the description of the problem at

hand [Doyle 1997]. In the case considered here, it can be shown that the generalized load in the first

order (ε1) perturbation equations reduces to a concentrated nodal load if a node is placed at the damage

location. Then, the solution of the homogeneous beam equations and the proper description of nodal

loads corresponding to the presence of damage based on the formulation presented above can be used

to obtain exact dynamic shape functions and accurate representations of the beam’s displacements in

the frequency range corresponding to the applied load. This approach can also be applied when loads

are generally distributed along the element length. In this case the dynamic shape functions do not

reproduce exactly the displacement field within the element, and some approximation is introduced. The

x = Lj
û1j , N̂1jx = 0

û2j , N̂2j

ŵ1j,x , M̂1j
ŵ1j , Q̂1j ŵ2j , Q̂2j ŵ2j,x , M̂2j

Figure 2. Spectral finite element with nodal displacements and loads.
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application of nodes at damage and load locations do not cause a dramatic increase in the computational

cost, since only a node needs to be added at each damage and loading site, as opposed to the highly

refined meshes that are required for the accurate simulation of wave propagation phenomena with FEs

based on the polynomial interpolation of the nodal degrees of freedom. Therefore, the presented modeling

approach still represents an efficient tool for the analysis of wave propagation in the considered class

of damaged structures. Refinements of the formulation, allowing the accurate representation of general

load distributions and of damage locations within the element will be discussed in a forthcoming paper.

Based on the weak formulation of the governing equations (2-13), we can derive the equation

K j (ω)d j (ω) = f j (ω), (2-15)

where K j (ω) is the element stiffness matrix at frequency ω, defined as

K j (ω)=
∫ L j

0

{

NT
j (x, ω)MN j (x, ω)−NT

j,x(x, ω)E1N j,x(x, ω)+NT
j,xx(x, ω)E1N j,xx(x, ω)

}

dx, (2-16)

and where f j is the vector of applied nodal loads

f j (ω) =
∫ L j

0

NT
j (x, ω)q(x, ω)dx, (2-17)

Numerical results. The numerical model is used to simulate the response of beams with notches, and

specifically to illustrate mode conversion phenomena captured by the model considered. The results are

obtained by first transforming the time history of the applied load in the frequency domain through the

application of the fast Fourier transform (FFT) algorithm. The nodal displacements corresponding to the

various harmonic components are then computed through inversion of the dynamic stiffness matrix of

the structure according to (2-17). At each frequency, the displacements’ variation along the elements’

length is obtained through interpolation using the dynamic shape functions (2-14). Final application of

the inverse FFT provides the displacements’ variation in time.

An aluminum (Young’s modulus E = 70 GPa, density ρ = 2750 kg/m3) beam of length L = 1 m,

thickness h = 1 × 10−2 m and width b = 5 × 10−2 m is considered in the simulations. The beam has a

notch of length 1l = 1 × 10−2 m and depth hd , located at xd = 3L/4. The beam is modeled using two

spectral elements for a total of nine degrees of freedom (Figure 3). The applied load is a longitudinal tip

force whose variation in time is described by a Hanning modulated sine burst at 500 kHz (Figure 4).

Figure 5 shows the variation of the displacements in time and space, while Figure 6 shows snapshots

of the beam’s deformed configuration at three instants in time. The longitudinal wave generated by the

applied load propagates from the tip of the beam and gets partially reflected and converted when it reaches

the notch at xD = 3L/4. Mode conversion phenomena such as the one illustrated in this example are

xd xf = L

f (t)

0

Figure 3. Schematic of the clamped-free beam with a longitudinal tip load, modeled

using two spectral elements.
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Figure 4. Modulated sinusoidal pulse load in time and frequency domain.

Figure 5. Longitudinal (left) and transverse (right) displacement as functions of time

and longitudinal coordinate. Notch length 1l = 0.001 m.

very important as they may be exploited to increase the sensitivity of damage detection and interpretation

techniques.

3. Wave-based damage index formulation

Theoretical background. The perturbation analysis is used to define a damage index (DI) which locates

the notch and estimates its severity. The definition is such that the DI has value 1 at undamaged locations,



1612 NICOLE APETRE, MASSIMO RUZZENE, SATHYANARAYA HANAGUD AND S. GOPALAKRISHNAN

0 0.2 0.4 0.6 0.75 1
−1

0

1
x 10

−4

0 0.2 0.4 0.6 0.75 1
−5

0

5
x 10

−5

L
o
n
g
it
u
d
in

a
l
d
is
p
la

ce
m

en
t

[m
]

t = 54.01 µs

0 0.2 0.4 0.6 0.75 1
−2

0

2
x 10

−5

Longitudinal coordinate [m]

t = 28.84 µs

t = 61.76 µs

0 0.2 0.4 0.6 0.75 1

−1

0

1

x 10
−6

t = 28.84 µs

0 0.2 0.4 0.6 0.75 1

−1

0

1

x 10
−6

T
ra

n
sv

er
se

d
is
p
la

ce
m

en
t

[m
]

t = 54.01 µs

0 0.2 0.4 0.6 0.75 1

−1

0

1

x 10
−6

Longitudinal coordinate [m]

t = 61.76 µs

Figure 6. Longitudinal (left) and transversal (right) displacements as function of longi-

tudinal coordinate, for three instants in time.

while it deviates from unity in the vicinity of the notch. The formulation is based on the estimation of the

distribution of strain energy associated with propagating and reflected waves. In the proposed approach,

which follows procedures previously applied on modal curvature data of notched plates [Sharma et al.

2006], the beam is divided into N segments, over which the strain energy is evaluated through integration

over the segment length. At a given instant of time t , the strain energy over segment p, defined by

x ∈ [x p, x p+1], is obtained by summing contributions from axial and bending deformations

1Up(t) = U (x p+1, t) − U (x p, t) = 1

2

∫ x p+1

x p

[

EAu2
,x(x, t) + EIw2

,xx(x, t)
]

dx, (3-1)

where u and w can be considered as superpositions of the solutions obtained for various orders of the

perturbation parameter of (2-9). Substituting the displacement expansions and truncating at the second

order yields the following approximate expression for the strain energy of the damaged beam

1Up(t) ≈ 1U (0)
p (t) − ε1U (1)

p (t) − O(ε2), (3-2)

where

1U (0)
p (t) = 1

2

∫ x p+1

x p

[

EA[u(0)
,x (x, t)]2 + EI [w(0)

,xx(x, t)]2
]

dx (3-3)

corresponds to the strain energy of the undamaged beam, and where

1U (1)
p (t) =

∫ x p+1

x p

[

EAu(0)
,x (x, t)u(1)

,x (x, t) + EIw(0)
,xx(x, t)w(1)

,xx(x, t)
]

dx (3-4)

is the contribution due to damage. In preparation for the analysis of experimental data, the integrals

are estimated numerically by using a set of spline functions. This leads to continuous strain energy

functions 1U (0)(x, t) and 1U (x, t). Based on (3-4) and the numerical results presented in the previous

section, displacement perturbations occur only when waves reach the notch location. Accordingly, the
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corresponding strain energy perturbation 1U
(1)
p (x, t) originates at the damage location, where it reaches

its maximum value [Sharma et al. 2006], to progressively decrease in value as the secondary wave

produced by the damage propagates away from the damage. The damage index can be thus defined as

a ratio between the strain energies associated with the 1st order perturbation, to the strain energy of the

undamaged beam, as quantified by the zero order solution

d(x, t) = 1U (x, t)

1U (0)(x, t)
≈ 1 − ε

1U (1)(x, t)

1U (0)(x, t)
. (3-5)

Equation (3-5) explicitly shows how the deviation from unity of the DI is directly proportional to the

perturbation parameter ε which defines the notch depth. The location of damage along the beam length

is instead identified by a peak of the 1U (1)(x, t)/1U (0)(x, t) function occurring at the damage site.

The above damage index is time-dependent, and it is convenient to consider its cumulative value over

a selected time interval

dc(x) =
∫

t

∣

∣d(x, t)
∣

∣dt (3-6)

to obtain a function depending uniquely on the spatial coordinate.

Numerical examples. Three examples are presented to demonstrate the effectiveness of the proposed

damage index formulation as a damage locator and estimator. In all the cases, the beam is simply

supported and is excited at a given point by a 5-cycle sinusoidal load. The beam is made of aluminum

with Young’s modulus E = 70 GPa and density ρ = 2750 kg/m3 and has length of L = 1 m, thickness h =
1×10−2 m and width b = 5×10−2 m. The simulation is performed over a time interval which corresponds

to the time required for the injected pulse to reach the boundary. The corresponding cumulative DIs are

calculated according to (3-6), and plotted in Figure 7. As expected, damage is highlighted by a clear

deviation from unity at the damage site. It is important to note how the DI values increase with the notch

depth hD and also shows a monotonic dependence upon the damage width 1l.

The first configuration considers a 5-cycle sinusoidal load applied in the longitudinal direction at

x f = 0.6L and a notch located at x f = 0.4L . According to this load configuration, w(0) ≡ 0, and the

damage index reduces to

d(x, t) = 1 − ε

∫

u
(0)
,x u

(1)
,x dx

∫

(u
(0)
,x )2 dx

. (3-7)

Figure 7, top left, shows that for a given notch depth hD , the DI increases with the damage width 1l.

The results for a transverse load shown in the top right part of the same figure also confirm the damage

index behavior. In this last case, the DI can be approximated as

d(x, t) = 1 − ε

∫

w
(0)
,xxw

(1)
,xx dx

∫

(w
(0)
,xx)2 dx

, (3-8)

since u(0) ≡ 0. The graph shows that for a given damage width 1l, the DI increases with the notch depth

hD .

In these two cases, the coupling between longitudinal and transverse displacements due to the damage

is of order O(ε2) so it is neglected. To include coupling at O(ε), the third configuration considers a 5-cycle

sinusoidal load applied in both longitudinal and direction at x f = L/2 and a notch located at x f = L/4.
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Figure 7. Cumulative damage index results for (left) a horizontal applied load, with

hd/h = 1/4 and varying damage length (1l = 0.005, 0.007, 0.01 m); and (right) a verti-

cal applied load, with 1l = 0.005 m and varying damage depth (hd/h = 1/6, 1/4, 1/2).
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Figure 8. Cumulative damage index results for both horizontal and vertical applied

loads, with 1l = 0.01 m and varying damage depth (hd/h = 1/20, 1/15, 1/10).

Both zero order longitudinal and transverse displacements are present and the DI is given by (3-6). The

resulting DI is plotted in Figure 8 for a given damage width 1l and for various notch depths hD . Once

more we see that the DI increases as hD increases.

4. Experimental implementation

This section presents the extension of the DI concept to the analysis of experimental data. The presented

results demonstrate the effectiveness of the DI as a damage indicator, and show its practicality as an

inspection tool. The case of a homogeneous plate with a transverse notch is considered. The results in
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this section therefore cannot be directly compared with those obtained analytically as the analytical results

are obtained for an Euler-Bernoulli beam. Refinements of the analytical formulation to include Lamb

modes thus allowing the accurate simulation of the experiments presented here are under development

and will be discussed in future papers. However, the objective is to illustrate the application of the

concept in a practical setting and to demonstrate how it may be applied to correctly identify the presence

of damage.

Experimental evaluation of the DI requires information regarding the undamaged response of the

component under investigation and of the perturbation of its response due to the presence of damage.

While in the numerical model such information was directly obtained as a by-product of the adopted

numerical approach, the effective analysis of experimental data requires the ability to separate these

two pieces of information. Preferably, this should be done without need to rely on historical data on

the undamaged part. This is here achieved through the application of simple filtering strategies in

the wavenumber/frequency domain, which are enabled by the elevated spatial resolution provided by

scanning devices such as a scanning laser Doppler vibrometer [Ruzzene 2007]. A summary of this

filtering approach, used to remove the reflections due to damage, is presented in the next section, which

is followed by the illustration of how the filtering procedure can be used in conjunction with the DI to

detect damage in a structure.

Filtering procedure for the estimation of undamaged response. The basic concept behind the filtering

technique under consideration is illustrated here for the case of propagating waves in a one-dimensional

rod. The data is obtained based on SFE model described in Section 2. Additional details, including

the application to two dimensional problems and a more in-depth description can be found in [Ruzzene

2007]. It is assumed that the clamped-free rod is excited at its free end by a modulated harmonic load,

which generates a wave. The injected wave interacts with the damage located at xd = L/2, again modeled

as a thickness reduction corresponding to hd/h = 0.1, where it is reflected.

The graphs on the left on Figure 9 are snapshots of the rod response at instants of time before, during

and after the wave interaction with the notch. After the reflection, the rod’s displacement is given by

u(x, t) = u(i)(x, t) + u(r)(x, t), (4-1)

where one can consider u(i)(x, t) as the 0th order term in the perturbation solution. The two-dimensional

FFT in space and time of the rod response is also given by the superposition of contributions from incident

and reflected waves

û(k, ω) = û(i)(k, ω)+ û(r)(k, ω). (4-2)

Its representation in the frequency/wavenumber domain shown on the right in Figure 9 highlights the

presence of the main pulse propagating along the x > 0 direction, and of the reflected pulse propagating

in the opposite direction (x < 0). As a result, the two corresponding peaks of the two-dimensional

FFT appear centered at ω = ω0, k = ±k0. In particular, the reflected pulse has lower amplitude, it is

characterized by the same frequency, and appears in the k > 0 region of the wavenumber/frequency

domain. The two-dimensional representation hence effectively separates incident and reflected wave

components. This allows the application of simple filtering strategies, which remove the reflected wave

from the recorder signal, thus providing an approximation of the response of the structure in the absence

of the damage. For example, a two-dimensional Hanning window can be used to eliminate the reflected
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Figure 9. Left: Snapshots of rod deformed configuration at three instants of time. Right:

2D frequency/wavenumber domain representation; the solid box highlights the reflected

component, and the dashed box the incident component.

wave and to obtain the frequency/wavenumber spectrum shown in Figure 10, left. Mathematically, the

windowing process can be simply expressed as a function product between the wave’s two-dimensional

FFT and a two-dimensional window function

û(i)(k, ω) ≈
[

1 − H(k − k0, ω − ω0)
]

û(k, ω), (4-3)
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dimensional frequency domain (left), and the corresponding deformed configurations

at three instants of time (right).
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where H(k − k0, ω − ω0) denotes the windowing function centered at k0, ω0. The incident space-time

domain signal can then be reconstructed through inverse Fourier transformation. The incident signal

obtained upon filtering at the same instant considered in the left half of Figure 9 is shown in the right

half of Figure 10, to demonstrate how the windowing procedure removes the reflected propagating pulse

while leaving the response corresponding to the undamaged beam practically unaltered. The separated

incident and the total signals can be used for the damage index estimation according to the definition

provided above. The result in terms of cumulative damage index for the simple case discussed in this

section is plotted in Figure 11.

Experimental set-up for wavefield measurements. A schematic of the set-up is shown in Figure 12. The

experimental results are obtained using piezoceramic discs as actuators and a scanning laser Doppler

Function generator 1

Function generator 2
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&
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Plate
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Phase

information

Reconstructed
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Voltage Amplifier
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Figure 12. Schematic of experimental set-up for wavefield measurement.
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vibrometer (SLDV) as a sensor. The SLDV (Polytec PI, Model PSV400M2) allows frequency sampling

up to 1 MHz, which enables GUWs detection and visualization. In the wave propagation tests, the

piezodiscs are driven by a sinusoidal burst generated by a signal generator. The

resulting elastic waves are recorded at the measurement grid points defined on the

scanning system. The operation of the SLDV requires the generation of a pulse at

each grid point in order to record the corresponding response. Phase information is

retained by triggering the excitation signal through a low frequency signal (10 Hz),

which also defines the scanning rate. Upon completion of measurements at all

grid points, the recorded responses are postprocessed to obtain full images of the

propagating wavefield within the region of inspection.

Shown on the right is a detail top view of a typical test specimen: in this case,

an aluminum plate of dimensions 0.76 m × 0.76 m × 3.05 × 10−3 m. The damage

is a 27 × 10−3 m long and 1 × 10−3 m deep grove which was cut in the plate at

the location shown. The figure also shows a typical line of measurement points

(in the case presented below the number of points is 69). The wave is generated

by a surface bonded piezotransducer excited by a 5-cycle, 110 kHz sinusoidal

pulse. The responses at the grid points is recorded, stored, and converted for

postprocessing. In particular, the responses are interpolated using spline functions,

which can be conveniently differentiated for strain energy evaluation.

Experimental results. The time-spatial variation of the plate response shows the presence of a low am-

plitude S0 mode, which propagates faster than the A0 mode (Figure 13). The significant difference

in amplitude recorded for the two modes is related to their polarization (S0 is mostly in-plane, while

A0 is mostly out-of-plane) and to the limitation of the currently available SLDV which only measures

out-of-plane displacement or velocity components. When the S0 mode reaches the crack location, it is

partially converted into A0, as well as reflected and transmitted. The detailed spatial information obtained

Figure 13. Space-time variation of recorded response showing multimodal wave propa-

gation, mode conversion and reflection at crack location.
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!"

#"

Figure 14. Left: Response at location A of Figure 13. Right: Filtered S0 response (thick

line) and reflected A0 mode (thin line).

from the SLDV can be used to effectively separate the S0 mode from the A0 mode through filtering in

the frequency/wavenumber domain. Proper design of the filtering window allows in fact the separation

of incident and reflected waves as well as the decoupling of different modes propagating at the same

frequency. Figure 14, left shows the time response recorded at location A, while the right half of the

same figure compares the two reconstructed signals corresponding to the S0 mode and the reflected A0

mode.

Figure 15 shows the variation of the plate incident and reflected responses in time and space as col-

ormap plots. Both responses contain both S0 and A0 modes.

Figure 15. Filtered incident (left) and reflected (right) response as function of time and

longitudinal coordinate.
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Figure 16. Left: Raw test data (transverse displacement) as function of longitudinal co-

ordinate at three instants. Right: Filtered incident (dotted line) and reflected (continuous

line) waves as function of longitudinal coordinate at the same three moments.

Figure 16 shows snapshots of the displacements’ variation along the beam at three instants of time as

raw data and also as filtered data. A very clear separation between the incident and the reflected waves

is presented in Figure 16, right.

Analytically the damage index was defined as the ratio of strain energies associated with damaged

and undamaged beams. Due to the mode conversion phenomena, the damage index obtained from the

experimental data is defined as the ratio of strain energies associated with the damaged beam and with

the incident S0 mode denoted by S I
0 (Figure 14, left)

d(x, t) = 1U (x, t)

1U (S I
0 )(x, t)

, (4-4)

where the stain energy associated with S I
0 is defined as

1U (S I
0 )(x, t) =

∫

[

w
(S I

0 )
,xx (x, t)

]2
dx (4-5)

and where w(S I
0 ) is the displacement associated with the S I

0 . As in the analytically defined damage

measure of (3-6), a cumulative damage index is considered and the result is plotted in Figure 17. Due

to the significant difference in amplitude recorded for the two modes the ratio d(x, t) gives very large

values. But the ratio still has a peak at the location of the damage (Figure 17). Refinements of the

proposed DI will be further investigated and in future papers.

5. Conclusions and future work

This paper presents a wave-based damage index and illustrates the model by applying it to both analytical

and experimental data. The formulation is first supported by a numerical method which simulates the

effects of a notch damage on a propagating elastic wave. The numerical technique combines the SFEM
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Figure 17. Cumulative damage index of experimental data.

and perturbation techniques and allows the prediction of reflections and mode conversion phenomena

associated with wave/damage interactions.

The damage index formulation is based on the distribution of strain energy within the structure. The

technique is implemented by estimating the undamaged response through a filtering process that operates

in the frequency/wavenumber domain to separate wave components propagating in opposite directions.

Numerical results, based on the developed numerical model, as well as experimental data, obtained

through a scanning laser vibrometer show the effectiveness of the proposed formulation and its potentials

for implementation as a practical inspection tool for detection of the damage location. Future work will

include results for the quantification of the damage that are missing in the current development. Also a

similar concept will be developed for the case of multimodal signals.

The objective of the paper is to illustrate the effectiveness of the damage index for both analytical and

experimental data. The experimental data cannot be validated with the present numerical model, due to

the model’s limitation to describe higher Lamb modes. Future work includes extensions of the analytical

formulation, allowing accurate simulation of the experiments.

Future work will also extend the concept to practical aerospace structures in the presence of structural

features such as holes, rivets, or localized impedance changes which complicate the wavefield and its

interpretation, and make the identification of the presence of damage much more challenging. The

authors are already successful in applying the same tool for two dimensional data in the presence of

multiple scatterers. In future work, the authors will demonstrate how multiple scatterers contributions to

the scattered field can be resolved to obtain the characterization of the individual scatterers.
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