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Abstract 

Current models of the cochlea can be characterised as being either based on the assumed 

propagation of a single slow wave, which provides good insight, or involve the solution of a 

numerical model, such as in the finite element method, which allows the incorporation of 

more detailed anatomical features. In this paper it is shown how the wave finite element 

method can be used to decompose the results of a finite element calculation in terms of wave 

components, which allows the insight of the wave approach to be brought to bear on more 

complicated numerical models. In order to illustrate the method, a simple box model is 

considered, of a passive, locally reacting, basilar membrane interacting via three-dimensional 

fluid coupling. An analytic formulation of the dispersion equation is used initially, to 

illustrate the types of wave one would expect in such a model. The wave finite element is 

then used to calculate the wavenumbers of all the waves in the finite element model. It is 

shown that only a single wave type dominates the response until this peaks at the best place 

in the cochlea, where an evanescent, higher order fluid wave can make a significant 

contribution. 
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I Introduction 

Most descriptions of the mechanical response of the cochlea involve the forward propagation 

of a single, “slow”, wave (Zwislocki, 1950; Zweig et al., 1976; de Boer, 1996). This wave is 

generated by the interaction between the inertia of the fluid in the chambers of the cochlea 

and the stiffness of the basilar membrane, BM, and can be reproduced with simple one-

dimensional box models (de Boer, 1996). At low sound pressure levels the amplitude of this 

wave is amplified by a number of active processes within the organ of Corti, but the basic 

description of slow wave propagation is valid even when the cochlea is passive, as it is for 

high sound pressure levels. Since the properties of the cochlea, particularly the BM stiffness, 

vary along its length, the properties of this slow wave are position-dependent when excited at 

a given driving frequency. These properties can be characterised at each position along the 

cochlea by a complex wavenumber, whose real part determines the wave speed and whose 

imaginary part determines the spatial attenuation of the wave. If the wavenumber distribution 

along the cochlea can be calculated from a model, or inferred using an inverse method from 

measurements (Shera, 2007), the mechanical response of the cochlea can then be calculated 

using the Wentzel–Kramers–Brillouin, WKB, method (Zweig et al., 1976). 

The WKB method has a number of inherent assumptions, however, such as that the wave is 

only travelling in one direction. This implies that no backward travelling wave is generated 

by the normal hearing function of the cochlea, even though such waves are believed to be 

responsible for other phenomena, such as otoacoustic emissions for example. Another 

assumption is that the wavenumber does not vary too rapidly with position, as compared with 

the wavelength (de Boer, 1996), although this assumption does not appears to limit the 

applicability of the WKB method in cochlea modelling as much as one would expect (de 

Boer and MacKay, 1980). Another inherent assumption is that only a single type of wave is 

responsible for the mechanical response of the cochlea.  
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The discussion of multiple wave types in the cochlea is not new. Steele and Taber (1979a) 

and Taber and Steele (1981), for example, used a Lagrangian approach to derive a dispersion 

relation, corresponding to the eikonal equation in the WKB method, for waves in the passive 

cochlea. For 2D and 3D fluid coupling, the effective height of the fluid chamber is a 

transcendental function of the wavenumber and this leads to an infinite number of 

wavenumbers that satisfy the dispersion equation, and hence multiple wave types. These 

authors note that the most difficult part of their numerical computation is the extraction of 

“the necessary root” of this equation that corresponds to the travelling wave solution that they 

are seeking. Their WKB solutions are then constructed from this single wave type. Similarly 

de Boer and Viergever (1982) derive dispersion equations for 2D and 3D fluid coupling, 

noting that they have multiple roots and describe methods by which a single wavenumber 

may be selected corresponding to “the correct solution”.  

Both these authors, and Steele and Taber (1979a), note a difference between the WKB 

solution for the distribution of the complex BM motion along the cochlea and the full 

numerical solution, just apical of peak response. de Boer and Viergever (1982) suggest that 

this is because the “wrong” solution of the dispersion equation has been chosen. Chadwick et 

al. (1996) describe an analytic model of a slice of the cochlea having subpartitions and four 

fluid chambers. They also derive a dispersion equation, which in their case is quartic and so 

yields four roots. It is noted that some roots represent non-propagating waves and a single 

wavenumber is chosen for a given model to represent the propagating wave in their 

asymptotic formulation. Steele (1999) also describes how multi-chamber models give rise to 

multiple modes. Cai et al. (2003, 2004) discuss how a more detailed numerical model of 

slices of the cochlea can be used to describe wave propagation. In this case a finite element 

(FE) model of the 2D cross-section was constructed and used to calculate multiple values of 

the wavenumber, from which the one with the least-negative imaginary part is selected for a 
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WKB solution over the length of the cochlea. In each of these models it has been assumed 

that a single wave type dominates the overall response of the cochlea. Watts (2000) returned 

to the observed difference between the numerical and WKB solutions beyond the peak and 

discussed how it could be explained with a second wave mode, which is necessary to satisfy 

the fluid coupling equation. There has also been recent interest in mode conversion in a two 

chamber model of the cochlea (Lamb and Chadwick, 2011). 

The purpose of this paper is to introduce a method of analysing a detailed numerical model of 

the cochlea into its constitutive wave components, using the wave finite element (WFE) 

method (Mace et al., 2005). Similar methods have previously been used to analyse wave 

propagation in uniform engineering structures, such as railway lines (Thompson, 1993) and 

tyres (Waki et al., 2009a). The wave finite element method is used here to calculate the 

position-dependent characteristics of the waves that are able to propagate through individual 

sections of a cochlear model. An advantage of this method over that described by Cai and 

Chadwick (2003), for example, is that these sections can have a finite length and hence 

internal structure, although this aspect of the method is not exploited here. The main 

difference between this and previous work, however, is that we are not seeking to select a 

single wave type, in order to improve the computational efficiency of the model by adopting 

a WKB approach, but are using the calculated properties of these different wave types to 

decompose the results of a full finite element analysis into individual wave components. The 

main aim of the method is thus to test the assumption that only a single wave propagates 

along the cochlea and quantify the extent to which this assumption is valid. In this initial 

paper the wave finite element method is described and its use in decomposing the results of a 

full finite element model into wave components is discussed. In order to compare the results 

with the previous models described above, only a simple passive cochlear model is 

considered. We show that the results of the full finite element model can be accurately 
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represented over most of the cochlear length by the forward propagation of a single slow 

wave. The response beyond the peak can involve multiple wave types, however, as predicted 

by Watts (2000), which are identified here as higher order acoustic waves in the fluid 

coupling. Although the method is illustrated only for the passive model, whose wave 

behaviour is reasonably well understood, it has general applicability to more complicated 

numerical models, provided they are linear. The importance of the wave finite element 

method is thus its generality. The approach can be used on more detailed finite element 

models of the cochlea, in order to systematically investigate the importance, for example, of 

more complicated fluid coupling, longitudinal coupling along elements of the organ of Corti 

or electrical coupling between the hair cells. 

An analytic model of wave propagation in the cochlea is briefly reviewed in Sec. II, since this 

provides an idea of the properties of the additional wave types that we would expect to 

encounter in our model of the passive cochlea. In Sec. III, the response of a passive 3D box 

model of the cochlea is predicted from a full finite element model, in order to describe the 

fluid-structural coupling and issues of meshing. The wave finite element method is 

introduced in Sec. III and used to analyse the types of wave that could propagate in the 

cochlea.  This method is then used in Sec. IV to decompose the results of the full finite 

element model into individual wave components. 

II Wavenumber Analysis 

Before using the wave finite element method to calculate the properties of the waves that can 

propagate in the cochlea, we first review an analytic approach to obtain their wavenumber 

distributions. This will help in the interpretation of the numerical results. We assume a box 

model for the cochlea, as shown in Fig. 1, in which the two symmetrical fluid chambers are 
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separated by a rigid partition that includes the flexible BM on one side. To calculate the fluid 

coupling, the BM is assumed to vibrate as a single mode, so that its displacement is 

    BM
, sin ,

v x y
w x y

i B




  (1) 

where x and y are the longitudinal and radial variables, B is the BM width and  BMv x  is the 

complex modal velocity of the BM (Elliott et al., 2011). 

 

Fig. 1  The box model of the cochlea in which two fluid chambers, connected at the helicotrema, are separated 

by a partition that includes the flexible basilar membrane (BM). 

We also define the modal pressure acting on the BM as 

    d

0

1
, sin ,

B
y

p x p x y dy
B B


   (2) 

where  d ,p x y  is the distribution of complex pressure difference acting on the BM. By 

assuming that a wave with complex wavenumber k propagates in the cochlea, the modal 

pressure for this wavenumber can be related to the corresponding modal BM velocity by a 

wavenumber-dependent fluid coupling impedance (Steele and Taber, 1979; Elliott et al., 

2011) 

 
 
   FC .

P k
Z k

V k
  (3) 

If we assume that the BM is locally reacting, so its velocity response at position x only 

depends on the pressure at this position, we can also write the modal BM velocity as 
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BM

( )
( ) ,

( )

p x
v x

Z x
   (4) 

where the negative sign indicating that positive pressure difference generates negative BM 

velocity, and BM ( )Z x  is the local impedance of the BM. Although BMZ  must vary with 

position, at a given frequency, for the normal functioning of the cochlea, it is assumed that 

this variation is slow compared with the wavelength, so that in the wavenumber domain it can 

be taken to be constant. By combining Eq. (3) and (4) the dispersion equation for the wave is 

then obtained as 

  FC BM 0,Z k Z   (5) 

which is a special case of the formulation of Chadwick and Dimitriadis (1996) for two fluid 

chambers. 

If only one-dimensional fluid coupling is assumed, then the fluid coupling impedance takes 

simple form (Steele and Taber, 1979; de Boer, 1996; Elliott et al., 2011) 

 
FC 2

2
,

i
Z

k h


  (6) 

where h is the effective height of the fluid chamber, given for the geometry in Fig. 1 by 

2 / 8WH B , where W and H are the physical width and height of the fluid chamber and B is 

again the BM width. The dispersion equation, Eq. (5), can be solved in this case to give an 

explicit solution for the wavenumber as 

 
BM

2
( ) ,

 ( )

i
k x

h Z x


   (7) 

where the slow dependence of BMZ , and hence k, on x has now been re-introduced, and the 

two roots correspond to forward and backward travelling waves. 

The full three-dimensional form of the fluid coupling impedance takes the form of an infinite 

series of hyperbolic functions (Steele and Taber, 1979; Elliott et al., 2011), and so the 
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dispersion equation in this case has an infinite number of solutions (Taber and Steele, 1981). 

Insight into the form of these solutions can, however, be obtained by taking a polynomial 

approximation to this infinite series, the fourth order version of which can be written as (de 

Boer, 1998) 

 
2

FC 2 2

2 1
( ) ,

1

i ak
Z k

k h bk

  
   

 (8) 

where a and b are fitted parameters having the dimensions of length squared. The dispersion 

equation then takes the form 

 
4 2

BM BM( 2 ) 2 0,bhZ k hZ ai k i      (9) 

which has four roots, corresponding to two separate types of waves propagating in each 

direction. 

Figure 2 shows the spatial distribution of the real and imaginary parts of the wavenumbers for 

the two forward going waves at 1 kHz, obtained by solving Eq. (9). We have assumed that 

the passive BM dynamics can be represented by the single degree of freedom model 

 
BM

( )
( ) ( ) ( ),

s x
Z x i m x r x

i



    (10) 

where m(x), s(x) and r(x) are the mass, stiffness and damping, per unit area, at a given 

position along the cochlea. For purposes of illustration we have assumed that the fluid 

chambers have the same size all along the cochlea and that the BM mass per unit area is also 

constant, with a value of m0. This is taken as 0.03 kg/m
2
 for the 3D model, corresponding to a 

physically reasonable value of 30 μm for the mean BM and organ of Corti thickness. An 

additional added mass due to the fluid loading is also present in this case, which can be 

calculated by taking the limiting case of Eq. (8), as k tends to zero (Elliott et al., 2011). This 

is equal to 2ρ(ab)/h, or about 0.27 kg/m
2 

for the parameter values used here, so that in the 

1D case, where this additional mass must be included in the effective BM mass, m0 is taken 

as 0.3 kg/m
2
.  
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Fig. 2  The spatial distribution of the real and imaginary parts of the wavenumbers of the two forward going 

waves, wave 1 above and wave 2 below, when calculated from a model with an approximation to 3D fluid 

coupling at 1 kHz. The wavenumber of the first, slow, wave calculated using only 1D fluid coupling is shown as 

dashed. 

The local natural frequency of the BM,  n x , equal to    /s x m x , is assumed to vary 

exponentially along the cochlea, so that  

 
/

n B( ) ,x l
x e    (11) 

where B  is the natural frequency at the base and l is the length scale for the natural 

frequency variation. The stiffness distribution along the cochlea is thus given by 

   2 2 /

B 0 .x l
s x m e   (12) 

Also, by assuming a constant damping ratio for the BM, 0 , the damping distribution is 

given by 

   /

0 0 B2 .x l
r x m e    (13) 

The values of all the parameters used are listed in Table 1.  

The wavenumber distribution of the first wave in Fig. 2, denoted wave 1, is similar to that 

calculated using Eq. (7) from the 1D fluid coupling analysis, which is shown, as the dashed 

line, in Fig. 2. This corresponds to the conventional slow cochlear wave. For x less than about 

20 mm, the real part of the wavenumber gradually increases along the cochlea, showing that 
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the wave is slowing down, and the imaginary part of the wavenumber is small, indicating that 

it is not significantly attenuated. Beyond this position the imaginary part of the wavenumber 

is negative, with an almost constant value of order -1 mm
-1

, indicating that the wave is 

decaying exponentially with an exponential decay length of about 1 mm. This is in good 

agreement with the result obtained from Eq. (7) if the high frequency limit for  BMZ x  is 

taken in Eq. (10), so that it is equal to 0i m . 

Table 1  Assumed parameters of the passive cochlear model. 

Parameter Symbol Assumed value 

Total length 

Width of fluid chamber 

Height of fluid chamber 

Width of the BM 

Natural frequency length scale 

Effective height of fluid chamber 

Natural frequency at base 

1D BM mass 

3D BM mass 

BM damping ratio 

Parameter in 3D ZFC 

 

L 

W 

H 

B 

l 

h 

ωB 

m0 (1D) 

m0(3D) 

ζ0 

a 

b 

35 mm 

1 mm 

1 mm 

0.3 mm 

7 mm 

4.1 mm 

2π×20 kHz 

0.3 kg m
−2

 

0.03 kg m
−2

 

0.1 

5.5 ×10
-7

 m
2
 

1×10
-8

 m
2
 

 

The second wave, shown as wave 2 in Fig. 2, has a significant imaginary component even at 

the base, with a value of about (0.1 mm)
-1

. Using the definition of  FCZ k  in Eq. (3), and its 

assumed form in Eq. (8), we can derive an equation relating the pressure and velocities in the 

wavenumber domain as 

    2 2 2( ) 1 2 1  ( ).P k k h bk i ak V k    (14) 

If the BM were rigid, so that V(k) was equal to zero and the wave propagated in the fluid only, 

then k could either be zero, corresponding to a fast wave of infinite speed, or equal to 

1/i b . The later condition corresponds to an evanescent wave, with a decay length of 0.1 
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mm, for the value of b assumed here, which agrees well with the observed properties of the 

second wave near the base. If higher order approximations than Eq. (8) are used for the fluid 

coupling impedance, further evanescent higher-order fluid waves are generated.  

The interaction between the BM and the fluid becomes more significant for this wave further 

along the cochlea, but for x less than about 20 mm, the two waves can be identified as a 

coupled slow wave, as predicted by the 1D fluid coupling case, and an evanescent fluid wave, 

which physically corresponds to a cut off higher-order acoustic mode in the fluid chamber 

(Elliott et al., 2011). 

III The Finite Element Model 

a) Full Finite Element 

A finite element version of the cochlear box model is obtained by dividing its length into 512 

elements, in the x direction, and each fluid chamber into an 8×4 grid of hexahedral elements, 

in the y×z directions. Using symmetry it is only necessary to include a single fluid chamber in 

the numerical model. The BM within each of the 512 elements is modelled as a 4 element 

thin plate strip, with no longitudinal coupling between each plate. Each plate thus vibrates 

independently in the absence of the fluid and provides a locally reacting model of the BM, 

consistent with the model in Sec. II. The displacement of the all plate elements is represented 

by the vector w , so that their undamped dynamics can be written in the matrix form 

 , Mw Kw Sp  (15) 

where M  and K  are the mass and stiffness matrices for the plate, w  represents 2 2/ t w  

and p  is the vector of pressures in the elements of the fluid chamber, which drive the plate 

via the coupling matrix S . 

The dynamic response of the fluid can also be represented in finite element form (Fahy and 

Gardonio, 2007) as 
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 ,f   Qp Hp Rw q  (16) 

where Q  and H  are acoustic inertia and stiffness matrices, q  is proportional to the external 

fluid displacement due to the motion of the stapes, f
  is the fluid density and R denotes how 

the pressure is driven by the displacement of the plate elements, which is equal to S
T
. For the 

coupled system these two equations can be combined to give 

 .
f

         
          

        

M 0 w K S w 0

R Q p 0 H p q
 (17) 

For single frequency excitation, proportional to i t
e
 ,  

 

2

2 2
,

f


  

      
            

K M S w 0

R H Q p q
 (18) 

where damping can now be incorporated by using complex elements in the stiffness matrix. 

This equation can also be written as a generalised dynamic stiffness matrix, 

 
11 12

21 22

.
     

     
    

D D w 0

D D p q
 (19) 

The solution of the full finite element method is obtained in the usual way by inversion of the 

dynamic stiffness matrix in Eq. (19), to give the vector of pressures and displacements at 

every node. The sparseness of the matrix can be used to develop efficient ways of inverting it, 

although these were not necessary for the relatively modest sized model used here. The 

modal BM velocity, defined in Eq. (1), can be obtained from a continuous BM displacement 

distribution, w(x, y), using an equation analogous to Eq. (2) as 

    BM

0

2
, sin .

B
i y

v x w x y dy
B B

 
   (20) 

The finite element model provides the BM displacement in discrete form, as elements of the 

vector w, which can be written in terms of the radial BM velocity distributions at each 

longitudinal slice along the cochlea as 
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       T
T T T1 2 ,N   w w w w  (21) 

where  nw  is the radial BM displacement due to the plate motion at the n-th longitudinal 

element, and N is the number of longitudinal elements, which is 512 in this case. 

The modal BM velocity at the n-th position can then be estimated from the radial BM 

displacement distribution at this position using a discrete approximation to Eq. (20), 

    T

BM BM2 ,v n i n s w  (22) 

where 
T

BMs  is the vector of normalised values of the mode shape, sin(πy/B), at the nodal 

locations across the BM. 

Figure 3 shows the distribution of modal BM velocity along the cochlea, calculated from the 

full finite element analysis, when driven by a tone of 1 kHz at the stapes. Damping is 

included in the plate by introducing an imaginary component in each element of stiffness 

matrix, adjusted to give a damping ratio of 0.1, as in Sec. II. The plate elements had a mass 

per unit area of 0.2 kg·m
-2

, which is rather larger than that used for the 3D fluid coupling case 

in Sec. II, as discussed below. Also shown in the figure is the modal BM velocity predicted 

using the WKB method from the wavenumber distribution of the slow wave calculated using 

the wave finite element analysis, as also discussed below.  

 

Fig. 3  The amplitude and phase of the modal BM velocity at 1 kHz, calculated from the full finite element 

model and the WKB method using the wavenumber distribution for the slow wave, wave 1, calculated using the 

wave finite element method. 
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b) Wave Finite Element 

In the present model of the cochlea, the BM is assumed to react only locally, so that 

longitudinal coupling only occurs via the pressure in the fluid chambers. The finite element 

of a single slice, or segment, at the n-th position along the cochlea, which in this case is a 

single element thick, can be written, following Eq. (19), as  

 
   
   

 
   

11 12

21 22

.
nn n

n n nn

    
    

     

w 0D D

D D qp
 (23) 

where  nq  is now the vector of fluid displacements at the interface of this segment of the 

FE model. This FE model can then be “condensed” by writing the first of the coupled 

equations in Eq. (23), as 

        1

11 12 ,n n n n
 w D D p  (24) 

so that the second coupled equation can be written as 

            1

22 21 11 12 ,n n n n n n
   D D D D p q  (25) 

where the term in square brackets can be written as a single condensed dynamic stiffness 

matrix  nD . A similar method can be used to condense any internal degrees of freedom 

within the segment if it is more than one element thick (Mace et al., 2005; Duhamel et al., 

2006). 

If the vector of fluid displacements and the vector of pressures are now partitioned into 

components of the left and right hand side of the segment, as shown in Fig. 4, so that 

  
 
 

 
 
 

L L

R R

, ,
n n

n n
n n

   
    
      

p q
p q

p q
 (26)(27) 

then we can write 

 
   
   

 
 

 
 

L LLL LR

R RRL RR

.
n nn n

n nn n

     
     

    

p qD D

p qD D
 (28) 
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where LLD , LRD , RLD  and RRD  are the partitioned sub-matrices of the condensed dynamic 

stiffness matrix D . The terms of this equation can be re-arranged to express the fluid 

displacements and pressures on one side of the n-th segment in terms of those on the other 

side, so that 

 
 
     

 
R L

R L

,
n n

n
n n

   
      

p p
T

q q
 (29) 

where the transfer matrix for the n-th segment is equal to 

        
           

1 1

LR LL LR

1 1

RL RR LR LL RR LR

.
n n n

n
n n n n n n

 

 

 
     

D D D
T

D D D D D D
 (30) 

We now assume that a particular distribution of pressures and volume velocities, due to the 

m-th mode, on the right hand side of the segment is equal to that on the left hand side of the 

segment, apart from a complex constant of proportionality m , so that 

 
 
 

 
 

R L

R L

, ,
.

, ,
m

n m n m

n m n m


   
      

p p

q q
 (31) 

This distribution would thus propagate as a wave with an unaltered shape along a uniform 

cochlea, with a wavenumber, km, determined by 

 ,mik

m
e    (32) 

where  is the length of the segment. The right hand side of Eq. (31) must now be equal to 

the right hand side of Eq. (29), and so m, and the corresponding distribution of pressures and 

fluid displacements, must be an eigenvalue, and the corresponding eigenvector, of the 

transfer matrix for this segment.  
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Fig. 4  An elemental segment of the cochlea used in the wave finite element method showing the pressure and 

displacement on the left hand and right hand side of this element. The internal structure of the cochlea is not 

shown. 

Using the wave finite element method, the wavenumbers are thus obtained directly from the 

eigenvalues of the transfer matrix for the 3D finite element model of the segment, rather than 

eigenvalue problem for a finite element model of a 2D slice of the cochlea being used to 

deduce a polynomial dispersion equation, which then has to be solved to give the 

wavenumber (Fuhrmann et al., 1987; Chadwick et al., 1996; Steele, 1999). The analysis of a 

2D slice is called the semi-analytic finite element method in the engineering literature, which 

dates back to the 1970’s, as discussed by Bartoli et al. (2006) for example, or the spectral 

finite element method (Finnveden, 2004), and has also been extended to deal with fluid-

structural problems, by Nilsson and Finnveden (2008) for example. An advantage of the 

wave finite element method over the semi-analytic finite element method is that the same 3D 

finite element models used to calculate the properties of the segments can also be joined 

together to form the full FE of the whole cochlea, as in Sec. III (a). It is also possible to 

analyse segments of finite thickness using the wave finite element. In the context of cochlear 

mechanics, each segment could incorporate finite element models of several layers of hair 
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cells. It would be also possible to incorporate asymmetries into the structure, by slanting the 

hair cells in the longitudinal direction, for example. 

The wave finite element analysis becomes a little more complicated than for uniform 

structures when the structural parameters of the cochlea vary along its length, as considered 

by Ni et al. (2010). In this case the eigenvector corresponding to a specific type of wave is 

not exactly the same when passing from one segment to the next. If the longitudinal variation 

in parameters is gradual, however, the change in the mode shape corresponding to this 

eigenvector will not be very large from one element to the next. By calculating the inner 

products of the left eigenvectors for one element with the right eigenvector for the adjacent 

element (Ni, 2012), it is then possible to track which eigenvalue, and hence which 

wavenumber, is associated with each mode travelling along the cochlea. Figure 5 (a) and (b), 

for example, shows the variation with longitudinal position of the real and imaginary parts of 

the wavenumber associated with some of the different waves that can propagate along the 

discrete cochlear model at 1 kHz. These waves have negative imaginary wavenumbers and 

are thus forward travelling waves. The first five have been chosen as the waves with the 

least-negative imaginary component of the wavenumber and the fifth wave has been selected 

because its radial BM motion corresponds to a higher order bending mode. The BM velocity 

distribution associated with each of these waves, close to the position with the largest real 

component of the wavenumber, is plotted in Fig. 5 (c). The associated pressure distributions 

in the two fluid chambers at x=20 mm are plotted for these waves in Fig. 6.  
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Fig. 5  (a-b) Wave number distribution of 5 of the forward going waves, calculated using the wave finite 

element model of the cochlea at 1 kHz. Also shown, (c) is the normalised BM velocity in the radial direction 

associated with the 5 selected waves, calculated at the place where the real part of their wavenumber is largest 

(colour online). 

 

The finite element model for each of the 512 segments of the cochlea has 8 × 4 hexahedral 

elements to describe the fluid motion in each chamber, and 4 quadrilateral elements along the 

BM to describe its radial structural response as a beam. There are thus 9 × 5 nodes on each 

face of the fluid chamber slice, each having 1 degree of freedom, and 5 × 1 nodes on each 

edge of the BM slice, each having 3 degrees of freedom. The BM elements are assumed to be 
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separated from each other in the longitudinal direction, however, so that the degrees of 

freedom associated with the BM elements are all condensed, as described above, and the 

vectors in Eq. (29), for example, have 90 degrees of freedom. There are thus 90 eigenvalues 

of the transfer matrix T in Eq. (29) and hence the wavenumbers of 90 separate waves can be 

calculated. Only half of these will be propagating in the forward direction, however, and most 

of these have wavenumbers with large imaginary components and thus are heavily attenuated, 

even a short distance from the excitation position. In fact only the wave labelled 1 in Fig. 5 (a) 

has a small imaginary part to its wavenumber at the base, and is thus able to propagate any 

significant distance along the cochlea. 

 

Fig. 6  The pressure distribution in the fluid chambers associated with each of the selected waves at x=20 mm, 

normalised with respect to their maximum value. Note that an interpolation has been used to visualize the 

pressure distribution, which are only calculated for the 8×4 elements shown in Fig. 4. Only the distribution in 

one chamber has been calculated, since symmetry is assumed, the pressure distribution in the other chamber, 

which is the same with that calculated but with opposite sign, is also plotted for purpose of illustration. 

This wave has a radial BM velocity distribution that is similar to the first bending mode and a 

pressure distribution which is in phase across each fluid chamber, but of opposite sign in the 

upper and lower chambers. It thus corresponds to the conventional “slow wave” in cochlea 

mechanics, where the stiffness of the BM interacts with the inertia of the fluid in the 

chambers. The pressure distributions shown in Fig. 6 for waves 2 to 4 correspond to higher-
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order fluid modes, whose pressure distributions have both positive and negative components 

in each chamber. These waves are evanescent, since they have a significantly negative 

imaginary component in their wavenumbers. Wave 5 is due to the second bending mode of 

the BM, which cuts-on at more apical positions along the cochlea and has a positive and 

negative distribution along the face of the BM in Fig. 6. A wave not shown, which has a very 

small real wavenumber and no significant BM velocity, corresponds to the fast wave due to 

acoustic propagation within the fluid. This is present if both fluid chambers are modelled and 

the finite element model of the fluid is assumed to have a finite compressibility.  

One difference between the wavenumber distribution for wave 1 calculated using the WFE 

method, in Fig. 5, from that calculated analytically, in Fig. 2, is that the imaginary part of the 

wavenumber at apical positions is much more negative than for wave 2. This behaviour was 

found to be dependent on the BM damping, such that if the effective damping ratio were 

greater than about 0.14 in this WFE model, the imaginary part of wave 1 had a less negative 

imaginary part than wave 2 at apical locations, as observed in the analytic result. In fact a 

similar change in behaviour with damping can be seen in the polar plots of wavenumber 

shown in Fig. 4 of Watts (Watts, 2000), where the “cut-off mode” has a more negative 

imaginary component than the “travelling wave mode” at 400 Hz, where the BM is heavily 

damped, but the opposite is shown at 800 Hz, where the BM is less heavily damped. 

It is not strictly necessary in the passive case to use as many longitudinal elements in the 

finite element model as used above. The minimum wavelength of the slow wave is about 2.2 

mm, since the peak real wavenumber is about 2.9 mm
-1

, and so there are at least 32 elements 

per wavelength. Simulations have also been performed with 256 longitudinal elements and 8 

by 4 elements in each cross section, which gives results that are very similar to those shown 

here. There are, however, still potential numerical errors for waves with very large imaginary 

wavenumbers, since the decay length is then small compared to the size of an element (Waki 
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et al., 2009b). Since these waves make a negligible contribution to the full finite element 

results, however, such errors are not particularly significant in this application. The details of 

the wavenumber distributions in Fig. 5 are, however, dependent on the number of fluid 

elements used in the cross section. In order to correctly reproduce the near field fluid pressure 

very close to the BM a much denser grid of fluid elements would be required than has been 

used here. The only important property of this near field pressure for wave 1, however, is the 

added mass of the fluid. This is somewhat smaller for the FE grid used here than it was for 

the analytic model in Sec. II, so that the BM mass was increased to account for this effect, as 

mentioned above. Waves 2 to 4 correspond to higher order fluid modes, which have relatively 

simple cross-sectional mode shapes that can be accurately reproduced with the current grid 

density in the FE model. The most important aspect of these waves is the value of the 

negative part of the wavenumber in the basal region, and this is not significantly affected if 

the number of fluid elements is increased. The relatively coarse grid of fluid elements used 

here thus correctly predicts the important features of the wavenumbers in the WFE analysis. 

Assuming that the slow wave propagates in isolation, the WKB method can be used with the 

wavenumber distribution of wave 1 in Fig. 5 (a), to calculate a longitudinal distribution of the 

BM velocity, whose magnitude and phase is shown in Fig. 3, along with the results of the full 

finite element method. The results of the full finite element model are thus in reasonable 

agreement with those predicted using only the slow wave up to about x=22 mm. The less 

rapid fall off in the results of the full finite element model just apical of the peak, compared 

those using the WKB method, has also been noted by Steele and Taber (1979), de Boer and 

Viergever (1982) and Watts (2000), as discussed above.  
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IV Decomposition into wave components 

We now consider a more systematic decomposition of the results of the full finite element 

analysis into wave components. We assume that the N × N transfer matrix has a linearly 

independent set of N eigenvectors, and express the eigenvalue, eigenvector decomposition of 

the transfer matrix for the n-th segment in the form 

        1 ,n n n n
T Q Λ Q  (33) 

where  nΛ  is the diagonal matrix of eigenvalues, the right eigenvectors of T(n) correspond 

to the columns of Q(n) and the left eigenvectors of T(n) correspond to the rows of Q
-1

(n). 

Using Eq. (33), Eq. (29) can also be written as 

    
       

 
R L1 1

R L

.
n n

n n n
n n

    
      

p p
Q Λ Q

q q
 (34) 

Since  nΛ  is diagonal, the inner product of each row of Q
-1

(n) with the state vectors on the 

right and left hand side gives an uncoupled set of equations of the form 

      R L, , ,
m

a n m n a n m  (35) 

where  R ,a n m  and  L ,a n m  can be interpreted as the complex amplitudes of the m-th wave 

on the right and left hand side of the n-th segment (Duhamel et al., 2006). The vector of all 

such wave amplitudes on the right hand side of this segment can be written as 
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where the fluid displacements can be calculated from the pressures using Eq. (25), and so the 

wave amplitudes in the n-th segment can be expressed entirely as a function of the vector of 

elemental pressures on the face of this segment, calculated from the full finite element model. 
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The state vector due to all of the wave amplitudes can be calculated by multiplying both sides 

of Eq. (36) by Q(n), so that the contribution to the state vector due to the m-th wave on the 

right hand side of the n-th segment can be defined as 
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r

q
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where  ,n mr  is the m-th column vector of Q(n) and  R ,a n m  is one element of  R na  in 

Eq. (36). 

The vector of elemental BM displacements due to the m-th wave,  R ,n mw , can then be 

calculated from the vector of elemental pressures using Eq. (24), from which the modal BM 

velocity due to the m-th wave on the right hand side of the n-th segment,  BM ,v n m , can be 

calculated using a modified form of Eq. (22) as 

    T

BM BM R, 2 , ,v n m i n m s w  (38) 

where 
T

BMs  is the vector of normalised values of the BM mode shape used in Eq. (22).  

The contributions to the overall modal BM velocity distributions, due to each of the forward 

going waves selected in Fig. 5, are plotted in Fig. 7. The WKB result for wave 1 is seen to be 

in reasonable agreement with the calculated contribution of this wave to the full finite 

element results. The contribution of wave 1, however, is significantly less than the overall 

result of the full finite element solution for positions beyond the peak response at this 

frequency, at about 22 mm along the cochlea, where the contribution of wave 2 begins to 

dominate the overall response. The contribution of wave 2, which is an evanescent higher-

order fluid mode, decays away on either side of this peak, as do the contributions of wave 3, 

4 and 5, although the amplitudes of these waves are too small to significantly affect the 

overall response.  
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Fig. 7  Decomposition of the modal BM velocity into components due to each of the forward travelling waves in 

Fig. 5, the WKB reconstruction of the slow wave and the modal BM velocity from the full finite element model 

are also shown (colour online). 

In principle the contributions of the backwards travelling waves can also be calculated using 

Eq. (37), using the columns of the eigenvector matrix corresponding to these waves. The 

amplitude of the backwards travelling slow wave, calculated using this method, is, however,  

only 10 dB to 20 dB below that of the forward travelling wave, and its phase, tellingly, is also 

very similar to that of the forward travelling wave. It is believed that this estimate of the 

backwards travelling wave component is significantly in error, however, because of the 

inherent assumption in the wave finite element method that the waves are propagating in a 

uniform system. The wave impedances, relating the pressure difference and longitudinal fluid 

velocity in the fluid ducts, are the same for both forward and backward going waves in such a 

uniform system, which is reflected in the similarity of the eigenvectors of the transfer matrix 

in Eq. (29), apart from the sign change associated with the direction of the fluid velocity 

(Mace et al., 2005).  

In fact if a WKB solution is taken for the pressure and fluid velocity of the slow wave in a 1D 

but non-uniform system, the ratio of these two quantities is given by 
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where the subscript + or  denotes the solution for forward and backward going waves. The 

current WFE method does not take the 
22

i k

k x




 term into account in the mode shape, since it 

assumes the system is uniform, and this generates spurious backward going components, 

even if only a forward going wave is, in fact, present. 

The WKB solution, however, assumes that, for a given wave with wavenumber km(n), the 

vector of pressures, p(n), varies as    1/2

m m
k n n


   c  and the vector of fluid velocity, q(n), 

varies as    1/2

m m
k n n   d , where the elemental thickness, Δ, is introduced to normalise 

the wavenumbers and cm(n) and dm(n) are the WKB components that vary only in phase. It is 

possible to re-formulate the transfer matrix in Eq. (29) so that it relates the components of 

cm(n) and dm(n) on the left and right hand side of the elements. The eigenvalues of this matrix 

are then equal to mik
e
 

, even if the system is not uniform. This new transfer matrix must be 

calculated for each individual mode using an iterative procedure, however, since it depends 

on the wavenumber distribution, km(n), which can, for example, be estimated using the 

normal WFE method. In practice the wavenumber distributions calculated from the 

eigenvalues of the transfer matrix for c(n) and d(n) are not significantly different from those 

calculated from the transfer matrix for p(n) and q(n). There is, however, a significant 

difference in the eigenvector structure of these two transfer matrices, which determines the 

mode shapes used to calculate the modal amplitudes in Eq. (37). The changes to these new 

eigenvectors hardly affect the estimated amplitudes of the forward going waves but 

significantly reduce the amplitude of the backward going wave, so that its amplitude are now 

about 100 dB less than that of the forward going waves and are thus negligible. The details of 

this new formulation are still under investigation. 
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V Discussion and Conclusions 

Our understanding of cochlea mechanics is largely based, either explicitly or implicitly, on 

the assumption that only a single type of “slow wave” propagates along its length. Some of 

the properties of this wave can be calculated from a simple model of the passive cochlea that 

includes a locally-reacting BM and 1D fluid coupling. A useful description of such a wave, at 

a given frequency, is the distribution of its complex wavenumber along the length of the 

cochlea. The real part of this wavenumber describes the change of phase with distance and 

determines the wave speed. The imaginary part of the wavenumber describes the change of 

amplitude with distance and must be negative for a forward travelling wave in the passive 

cochlea, since energy can only be dissipated. Assuming that the wavenumber does not change 

too rapidly with position, and that the wave travels without interference from other waves, the 

coupled response of the cochlea can be deduced from the wavenumber distribution using the 

WKB method. 

In general, however, there are many other mechanisms, apart from 1D fluid coupling, that 

give rise to longitudinal coupling in the cochlea, particularly the higher order modes 

associated with 3D fluid motion. A simple model of wave dispersion that includes such 

effects is considered, in order to calculate the wavenumber distributions of the additional 

waves that they generate. The wavenumber distribution derived from an approximation to 3D 

fluid coupling shows that, in the basal region, the additional wave in the coupled system has 

similar characteristics to a cut off acoustic mode, since the wavenumber is largely imaginary. 

Even though these additional waves may exist, it is not clear what role they play in normal 

passive cochlear function, particularly the extent to which they are excited when the cochlea 

is driven normally, via the stapes from the middle ear. 

The fully coupled response of the cochlea to middle ear excitation can be calculated using a 

numerical model, such as that obtained using the finite element method, although the insight 
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gained from the wave approach is then lost. The wave finite element, WFE, method is used 

here to predict the properties of as many types of waves as there are degrees of freedom 

across each cross section of the finite element model. Almost all of the forward travelling 

components of these waves have large negative imaginary components, indicating that they 

decay away very quickly. Examples of such evanescent waves include the higher order fluid 

modes and also modes associated with more complicated radial distributions of BM motion 

than is associated with the slow wave. 

The mode shapes associated with the waves predicted from the WFE analysis are then used to 

decompose the results of the full finite element model into wave components. In a uniform 

system there would be no coupling between the modes, which would propagate 

independently. Due to the variation of parameters along the cochlea, however, the 

wavenumbers are functions of longitudinal position, and in such non-homogeneous systems 

one wave is able to scatter into other types of waves. In the passive cochlea model used here, 

with a locally reacting BM, this is only seen to occur to a significant extent in the region 

where the slow wave is rapidly decaying, as previously considered by Watts (Watts, 2000).  

The framework provided by the WFE method also allows the analysis of more complicated 

models of the cochlear mechanics. If the BM dynamics were active, but still locally reacting, 

and the same approximation to the 3D fluid coupling were used as given by Eq. (8), the 

dispersion equation for the coupled response would still be given by Eq. (9). Although the 

properties of the slow wave will be modified by the active components of ZBM in this case, 

the other wave would still largely be determined by the evanescent higher order fluid mode. It 

is only when additional forms of longitudinal coupling are included in the model, that 

multiple propagating modes might be expected. There are a number of mechanisms for 

longitudinal coupling along the organ of Corti and BM and it is unclear how these might 

behave together, or interact with multiple fluid chambers, to determine the types of wave that 
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can propagate. These mechanisms include orthotropy in the BM (Meaud and Grosh, 2010), 

tectorial membrane elasticity (Zwislocki and Kletsky, 1979; Ghaffari et al., 2007) 

longitudinal electrical coupling between the hair cells (Ramamoorthy et al., 2007) and the 

feedforward action of the outer hair cells (Steele et al., 1993; de Boer, 1996). 

Finite element models have been used to investigate the effects of several of these 

longitudinal coupling mechanisms on the overall BM response (Cai et al., 2004; Parthasarathi 

et al., 2000; Baumgart et al., 2008). The wave finite element method provides the opportunity 

to analyse the types of wave that can propagate in such models and, more importantly, 

decompose the response of fully-coupled finite element models into the components due to 

each of these waves, in order to study how they interact. In this way the insight provided by 

the wave approach can be brought to bear on numerical models that incorporate various 

detailed features of the cochlea, and allow us to analyse their significance in the overall 

response.  
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