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ABSTRACT

A novel algorithm is presented for hidden-surface removal in digitally synthetic holograms. The algorithm is
able to work with full-parallax holograms and remove obstructed fields in the object wave emitted from three-
dimensional (3-D) surface objects. This algorithm is initially discussed as a rigorous procedure to obtain fields
behind a tilted planar surface by using the rotational transformation of wave fields, and finally results in the
silhouette approximation for reduction of computation time. Reconstructions of holograms created by using the
algorithm are demonstrated.
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1. INTRODUCTION

Algorithms for hidden-surface removal found in literatures on digitally synthetic holograms are either the geo-
metrical method1, 2 or the wave optical method based on layered model.3 The former is suitable for the ray
tracing in the point-source model4, 5 as shown in Fig. 1 (a) but usually much time-consuming algorithm, and
therefore it can handle only horizontal-parallax-only holograms. The latter originated in A. W. Lohmann, of
which scheme is shown in Fig. 1 (b), has a definite advantage of relatively short computation time owing to
utilization of FFT for numerical propagation and is capable of removing fields behind obstacles in full-parallax
holograms. The major drawback of the conventional wave-optical method is that the objects must be sliced
in some planes parallel to the hologram, and therefore it is difficult to apply standard rendering algorithms
necessary for realistic reconstruction of 3-D objects, such as shading and texture mapping.

This report is intended to propose a novel wave-optical algorithm for hidden surface removal. The algorithm
is based on a technique to calculate complex amplitude upon tilted plane by the rotational transformation of wave
fields6 and makes it possible to reconstruct a 3-D image with natural overlapping and shading in full-parallax
holograms.

2. THE WAVE FIELD BEHIND A TILTED SURFACE

2.1. Lohmann’s layered hologram

The principle of Lohmann’s layered hologram and the coordinate system used in this work is shown in Fig. 2. In
the coordinates, a hologram is placed in the plane (x̂, ŷ, 0) and ẑ-axis corresponds to the direction of the object
wave. It is assumed that incidnet light on a plane V, which is parallel to the hologram at ẑ = ẑ0, is given as
h(x̂, ŷ). Furthermore, a binary function m̂(x̂, ŷ) shows whether a location (x̂, ŷ) on the plane V is included inside
the object or not, and is defined as a mask function:

m̂(x̂, ŷ) =
{

0 (inside object)
1 (otherwise) (1)
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Figure 1. Conventional algorithms for hidden-surface removal in digital holograms; (a) geometrical methods; (b) the
layered method.
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Figure 2. The principle of the layered method and the coordinate system used in this work.

This function represents a section of the object. As the incident fields is masked with the section on the plane
V, the field behind V is obtained as

ĥ′(x̂, ŷ) = m̂(x̂, ŷ)ĥ(x̂, ŷ). (2)

Moreover, when it is assumed that the section of object emits the light o(x̂, ŷ), the amount field behind the plane
V is given by ĥ′(x̂, ŷ) + o(x̂, ŷ). One can calculates incident fields upon next plane including the next section of
object by calculating propagation of the total field ĥ′(x̂, ŷ) + o(x̂, ŷ). Thus, when this procedure is started from
the farthest section from hologram and iterated plane by palne to the hologram, we can calculate the object
wave without the field propagating inside the object or hiding behind obstacles.

2.2. Obstruction of field propagation by tilted planes

It is necessary to handle obstruction of a field by a tilted plane for removing hidden surface of surface-modeled
objects composed of small planar surfaces. To consider the procedure for calculating the obstructed field, let us
assume that a tilted planar fragment P, which is a part of object surface, hides an incident light ĥ(x̂, ŷ) behind
the P. We can calculate the obstructed light ĥ′(x̂, ŷ) by the following procedure, as shown in Fig. 3.
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Figure 3. The basic procedure for hidden surface removal by employing a wave-optical method. The incident field is
obtained upon the object surface by the coordinate rotation in Fourier domain (a) and masked behind the fragment (b).
Finally, the fields obstructed are calculated on a plane parallel to the hologram (c).

Step 1: Calucation of the incidnet field in a tilted coordinates

h(x, y) as well as ĥ(x̂, ŷ) is an incident field but it is given in a tilted coordinates (x, y, z), in which the fragment
P is laid upon the (x, y, 0) plane. A method reported in Ref.6 can be used to obtain the fields h(x, y) from the
source fields ĥ(x̂, ŷ) given on the plane parallel to the hologram as summarized bellow.

Spectrum of the field in the tilted plane is obtained as

H(u, v) = R{Ĥ(û, v̂)}, (3)

where Ĥ(û, v̂) is Fourier spectrum in the source parallel plane and given as

Ĥ(û, v̂) = F{ĥ(x̂, ŷ)}, (4)

and R{·} stnads for change of variables for coordinates rotation as follows:
⎛
⎝ û

v̂
ŵ

⎞
⎠ = T

⎛
⎝ u

v
w

⎞
⎠ , T =

⎛
⎝ â1 â2 â3

â4 â5 â6

â7 â8 â9

⎞
⎠ . (5)

It is noted that the Fourier frequencies are not independent for each other and the relations are given as

ŵ(û, v̂) =
√

λ−2 − û2 − v̂2, (6)

w(u, v) =
√

λ−2 − u2 − v2. (7)

Complex amplitudes h(x, y) on the tilted plane can be obtained by the following inverse Fourier transformation
by using the paraxial approximation.6

h(x, y) = F−1{H(u, v)}. (8)

As a result, the rotational transformation of the incident fields is rewritten as

h(x, y) = F−1RF{ĥ(x̂, ŷ)}. (9)

Consequently, twice FFT and once change of variable are necessary for a rotational transformation of the field.
It is noted that the change of variable for rotational transformation requires an interpolation of the field because
the transformation causes distortion of the equidistant sampling grid.
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Figure 4. Synthesis of the object wave with a wave-optical masking in the silhouette approximation.

Step 2: Masking the incident field on the tilted plane

As shown in Fig. 3(b), the fields behind the fragment P is given in the tilted plane as follows:

h′(x, y) = h(x, y)m(x, y), (10)

where the mask function m(x, y) is again zero in a location included in the fragment P and unity in otherwise.

Step 3: Inverse rotational transformation of the masked field

Object waves that propagate almost along ẑ-axis and reach the hologram are significant for synthesis of object
wave. Thus, the field h′(x, y) must be rotated inversely so as to obtain a field upon the plane parallel to the
hologram. As a result, the fields obstructed by the fragment P is given by

ĥ′(x̂, ŷ) = F−1R−1F{h′(x, y)}
= F−1R−1F

{
F−1RF{ĥ(x̂, ŷ)}m(x, y)

}
,

(11)

where R−1{·} stands for change of variables for inverse rotation.

2.3. The silhouette approximation
Computation time is too long to apply all steps described above to each fragment of the object surface, because
four times FFT and twice interpolation is required for handling a fragment. It appears as if it is possible to
integrate Step 1 and 3, which is rotation and inverse rotation of a field, and reduce computation time. However,
the integration is not easy because of non-linearity of eqs. (6) and (7). Therefore, an approximation should be
introduced to the integration.

Fourier frequency ŵ(û, v̂) is expanded into power series of λ−1.

ŵ(û, v̂) � λ−1[1 − (λû)2/2 − (λv̂)2/2] + · · · (12)

If the sampling distance of hologram is much lager than the wavelength, i.e., if the spectral bandwidth of ĥ(x̂, ŷ)
is far narrower than λ−1, the field is considered to propagate in almost ẑ direction. Therefore, it can be assumed
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Table 1. Parameters used to synthesize object waves and fabricate holograms.

Number of pixels 8192 × 4096
Pixel size 2 µm × 4 µm
Reconstruction wavelength 632.8 nm

that û, v̂ � λ−1 and eq. (12) approximate to ŵ(û, v̂) ∼ λ−1. In that cases, the field behind the fragment is given
on a plane parallel to the hologram as follows (see Appendix A):

ĥ′(x̂, ŷ) = m(â1x̂ + â4ŷ, â2x̂ + â5ŷ)ĥ(x̂, ŷ). (13)

This equation means that the incident field is simply masked by m(â1x̂ + â4ŷ, â2x̂ + â5ŷ), which corresponds
to a silhouette of the fragment given on a plane parallel to the hologram. We refer to this as the silhouette
approximation.

3. RECURRENCE FORMULA FOR SYSNTHESIZING THE OBJECT WAVE

As shown in Fig. 4, assume that there are planar fragments P1, · · · , PN in object space where the index is assigned
in the order in which the farther fragment has smaller index, and also assume that there are planes V1, · · · , VN

parallel to the hologram at ẑ1, · · · , ẑN , which intersect corresponding fragments with same index. When mask
functions Sn(x̂, ŷ) are defined as silhouettes of fragments given upon Vn, and the subtotal field emited from
fragments located further than Vn, i.e. incident field to Vn, is given as hn(x̂, ŷ) upon the plane Vn, the field
right behind the silhouette mask is obtained by

h′
n(x̂, ŷ) = Sn(x̂, ŷ)hn(x̂, ŷ). (14)

On the next plane Vn+1, the field on(x̂, ŷ) emitted from the surface fragment Pn itself is superimposed on
the field Fdn{h′

n(x̂, ŷ)}, which is the numerically propagated field of h′
n(x̂, ŷ). Here, Fd{·} denotes a propagation

operator for a distance of d and dn = |ẑn+1 − ẑn|. As a result, the next subtotal field on Vn+1, including all field
emitted from fragments located further than zn+1, is wirtten as

hn+1(x̂, ŷ) = Fdn{h′
n(x̂, ŷ)} + on(x̂, ŷ) (15)

= Fdn{hn(x̂, ŷ)Sn(x̂, ŷ)} + on(x̂, ŷ).

The starter value of this recurrence formula, which is the field emitted from the furthest fragment, is given as

h2(x̂, ŷ) = o1(x̂, ŷ). (16)

The object wave is calculated by the recurrence formula (15) in sequence from the starter value, and final field
upon the hologram is given as follows:

hHologram(x̂, ŷ) = F|ẑN |{hN(x̂, ŷ)SN (x̂, ŷ)} + oN (x̂, ŷ), (17)

where N is the number of fragments constructing the object and ẑN+1 = 0.

4. FABRICATION AND OPTICAL RECONSTRUCTION

Some holograms, of which object waves were synthesized by using eq.(15), were fabricated and optically recon-
structed. The common parameters used for calculation and fabrication is shown in Table 1.

Fig. 5 (a) shows a reconstruction of the hologram of a cube placed at ẑ = 100[mm]. The width of the object
is 12mm. In synthesis of the object wave, the object field on(x̂, ŷ) is calculated by the point source method in
a density of 2500 point/cm2. Fig. 5 (b) is of three-dimensional characters “KU”, of which total width is 12mm
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Figure 5. Optical reconstruction of holograms of 3-D objects, in which hidden-surfaces are removed by the proposed
method; (a) a cube, (b) 3-D characters “KU”.
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Figure 6. Optical reconstructions of the hologram of a torus.
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Figure 7. Optical reconstructions of a 3-D object constructed of many small planes.

again, but the characters are placed at ẑ = 50[mm] and the density is 10000 point/cm2. Noted that all of the
objects are shaded by flat shading method.

Fig. 6 (a)–(d) show optical reconstructions of the identical hologram of a torus placed at ẑ = 150[mm], of
which diameter is 10mm. The object is constructed of 256 planar fragments and all fragments are composed
of point sources in 10000 point/cm2. Heights of the viewpoint is increasing in (a) to (d) and the reconstructed
image varies with the heights of the viewpoint, i.e., the reconstructed image has vertical parallax. Fig. 7 (a) and
(b) also show reconstructions of a three-dimensional object constructed of many small planar fragments. The
height of the viewpoint in (a) is different from that in (b) again.

APPENDIX A. THE SILHOUETTE APPROXIMATION

Spectrum of the masked field in tilted coordinates is given by Fourier transform of eq.(10):

H ′(u, v) = F{h′(x, y)}
= R{Ĥ} ∗ M(u, v), (18)

where M(u, v) is spectrum of the mask function. As Step 3 of Sec.2.2 shown in Fig. 3(c), complex amplitudes of
the field on the plane parallel to the hologram is obtained by rotating the spectrum.

ĥ′(x̂, ŷ) = F−1R−1{H ′(u, v)}
= F−1R−1{R{Ĥ} ∗ M(u, v)}. (19)

When the inverse matrix of eq.(5) is defined as

T−1 =

⎛
⎝ a1 a2 a3

a4 a5 a6

a7 a8 a9

⎞
⎠ , (20)

and assume that only the lowest order in the expansion (12) is significant i.e. higher orders can be ignored, the
change of variables is written as follows:

u = α(û, v̂) = a1û + a2v̂ + a3/λ

v = β(û, v̂) = a4û + a5v̂ + a6/λ. (21)

Moreover, the inverse functions are given as

û = α(u, v)−1 = â1u + â2v + â3/λ

v̂ = β(u, v)−1 = â4u + â5v + â6/λ. (22)
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Eq.(19) is rewritten by use of above functions.

ĥ′(x̂, ŷ) =
∫ ∫

Ĥ(α−1(u′, v′), β−1(u′, v′))

×
∫ ∫

M(α(û, v̂) − u′, β(û, v̂) − v′) exp[i2π(ûx̂ + v̂ŷ)] dûdv̂du′dv′. (23)

The variables (û, v̂) of the integration is changed with

u = α(û, v̂) − u′,
v = β(û, v̂) − v′, (24)

and furthermore, (u′, v′) is changed to (û′, v̂′) by eq. (21). As a result, the field on the plane parallel to the
hologram is given by

ĥ′(x̂, ŷ) = |a1a5 − a2a4||â1â5 − â2â4|
×

∫∫
M(u, v) exp[i2π[(â1x̂ + â4ŷ)u + (â2x̂ + â5ŷ)v]]dudv

×
∫ ∫

Ĥ(û′, v̂′) exp[i2π(x̂û′ + ŷv̂′)]dû′dv̂′

= m(â1x̂ + â4ŷ, â2x̂ + â5ŷ)ĥ(x̂, ŷ). (25)
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