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�e aim of the paper is to propose an e�cient and stable algorithm that is quite accurate and fast for numerical evaluation of
the Fourier-Bessel transform of order ], ] > −1, using wavelets. �e philosophy behind the proposed algorithm is to replace the
part ��(�) of the integral by its wavelet decomposition obtained by using CAS wavelets thus representing �

]
(�) as a Fourier-Bessel

series with coe�cients depending strongly on the input function ��(�). �e wavelet method indicates that the approach is easy to
implement and thus computationally very attractive.

1. Introduction

�e Fourier-Bessel transform (also designated as Hankel
transform) is a very useful tool of mathematical physics [1].
It is a very useful instrument in a wide range of physical
problems which have an axial symmetry. It is particularly
important in optics and two-dimensional image processing,
it naturally occurs in image reconstruction from projections
or from re�ected pulses, and it is a useful tool in the analysis
and synthesis of three-dimensional wave 	elds. �e present
development is essentially motivated by optics application.
�e in�uence of the Laplacian on a function in cylindrical
coordinates is equal to the product of the squared parameter
of the transformation and the transform of the function [2]

( �2��2 + 1� ���)� (�) ←→ −�2�0 (�) ,
( �2��2 + 1� ��� − 1�2)� (�) ←→ −�2�1 (�) .

(1)

�ere are two types of the Hankel transform. �e 	rst
one is de	ned on the semi-in	nite interval. In this case the
direct and inverse transforms of the ]th kind are represented
as a symmetric pair. When we are dealing with problems
that show circular symmetry, Hankel transforms may be

very useful [3, 4]. Laplace’s partial di�erential equation in
cylindrical coordinates can be transformed into an ordinary
di�erential equation by using the Hankel transform. Because
the Hankel transform is the two-dimensional Fourier trans-
form of a circularly symmetric function, it plays an important
role in optical data processing [5–7]. In optics, the Hankel
transform appears in many contexts, not the least of which is
the propagation of cylindrically symmetric laser beams.Most
classical optical systems likemirrors or lenses are axially sym-
metric devices. Hankel transform also proved to be extremely
useful in problems associated with seismology, geophysics
[8, 9], electroscattering, acoustics, hydrodynamics, image
processing [10], time dependent Schrodinger equation, and
so forth.

Mathematical Background.�e Fourier-Bessel transformmay
be de	ned by the following expression:

�
]
(�) ≡ �

]
{� (�)} ≡ ∫∞

0
�� (�) �

]
(��) ��, (2)

� (�) = �−1
]
{�

]
(�)} ≡ ∫∞

0
��

]
(�) �

]
(��) ��, (3)

where �
]
is the ]th-order Bessel function of the 	rst kind.
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In the case of the 	nite Hankel transform only a direct
transform has an integral form. Without loss of generality its
expression is

�
]
(�) = ∫1

0
�� (�) �

]
(��) �� (4)

(see [11]). Practical calculation of direct and inverse Hankel
transform is connected with two problems.�e 	rst problem
is based on the fact that not every transform in the real
physical situation has analytical expression for result of
inverse Hankel transform. �e second one is the determi-
nation of functions as a set of their values for numerical
calculations. �e classical trapezoidal rule, Cotes rule, and
other rules connected with the replacement of the integrand
by sequence of polynomials have high accuracy if integrand
is a smooth function. But ��(�)�

]
(��) (or ��

]
(�)�

]
(��)) is a

quick oscillating function if � (or �) is large. �ere are two
general methods of the e�ective calculation in this area. �e
	rst is the fast Hankel transform [12]. �e speci	cation of
thatmethod is transforming the function to the logarithmical
space and fast Fourier transform in that space. �is method
needs a smoothing of the function in log space. �e second
method is based on the separation of the integrand into
product of slowly varying component and a rapidly oscil-
lating Bessel function [13]. But it needs the smoothness of
the slow component for its approximation by lower-order
polynomials.

To overcome these di�culties, various di�erent tech-
niques are available in the literature. Several papers have been
written on the numerical evaluation of the HT in general and
the zeroth order in particular [14–24]. �ere are two general
methods of the e�ective calculation in this area.�e	rst is the
fast Hankel transform [25]. �e speci	cation of that method
is transforming the function to the logarithmical space and
fast Fourier transform in that space. �is method needs a
smoothing of the function in log space. �e second method
is based on the separation of the integrand into product of
slowly varying component and a rapidly oscillating Bessel
function [26]. But it needs the smoothness of the slow compo-
nent for its approximation by lower-order polynomials. From
variety of algorithm, a potential user would probably 	nd it
di�cult to select any one algorithm that might be best for a
particular application. For an overview of these algorithms
and their numerical complexity, the reader is referred to [27–
31].

�e organization of the paper is as follows: Section 2
gives a brief description of the CAS wavelets followed by the
derivation of the algorithm in Section 3. �e e�ciency and
stability of the algorithm are shown by applying it to four
test functions with known analytical transform in Section 4.
At the end, a brief conclusion and future work are given in
Section 5.

2. Properties of CAS Wavelets

2.1. Wavelets and CAS Wavelets. Wavelets constitute a family
of functions constructed from dilation and translation of
a single function �(�) called the mother wavelets. When

the dilation parameter is 2 and the translation parameter is
1 we have the following family of discrete wavelets [32]:

��� (�) = 2�/2� (2�� − �) , (5)

where ��� form a wavelet orthonormal basis for �2(�).
CAS wavelets ���(�) = �(�, �,�, �) involve four argu-

ments �, �, �, and �, where � = 0, 1, . . . , 2� − 1, � is assumed
to be any nonnegative integer, � is any integer, and � is
normalized time. CAS wavelets are de	ned as [33]

��� (�)
= {{{

2�/2CAS� (2�� − �) , for
�2� ≤ � < � + 12� ,

0, otherwise,
(6)

where

CAS� (�) = cos (2�!�) + sin (2�!�) . (7)

An e�cient algorithm has been presented for the Fourier-
Bessel transform.

3. Outline of Algorithm

�e function �(�) representing physical 	elds either are zero
or have an in	nitely long decaying tail outside a disk of 	nite
radius �. Hence, in most practical applications either the
signal �(�) has a compact support or for a given " > 0 there
exists � > 0 such that | ∫∞� ��(�)�

]
(��)��| < ".

�erefore, in either case,

�̂
]
(�) = ∫�

0
�� (�) �

]
(��) ��

= ∫1
0
�� (�) �

]
(��) ��, (by scaling)

(8)

known as the 	nite Hankel transform (FHT), is a good
approximation of the HT as given by (2).Writing ��(�) = %(�)
in (8), we get

�̂
]
(�) = ∫1

0
% (�) �

]
(��) ��. (9)

We may expand %(�) as follows:
% (�) = ∞∑

�=0
∑
�∈Ζ

'����� (�) , (10)

where '�� = ⟨%(�), ���(�)⟩.
By truncating in	nite series (10) at levels � = 2� − 1 and� = /, we obtain an approximate representation for %(�) as

% (�) ≈ 2
�−1∑
�=0

	∑
�=−	

'����� (�) = 4
� (�) , (11)
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where the matrices 4 and � are given by

4 = ['0(−	), '0(−	+1), . . . , '0,	, '1(−	), . . . , '1	, . . . ,
'(2�−1)(−	), . . . , '(2�−1)	]
 ,

� (�) = [�0(−	), �0(−	+1), . . . , �0,	, �1(−	), . . . , �1	,
. . . , �(2�−1)(−	), . . . , �(2�−1)	]
 .

(12)

Substituting (11) in (9), we get

�̂
]
(�) ≈ 4
∫1

0
� (�) �

]
(��) ��. (13)

Taking/ = 1 and � = 1, (13) reduces to
�̂
]
(�) ≈ 4
 [∫1

0
�0(−1) (�) �] (��) ��,

∫1
0
�0,0 (�) �] (��) ��, ∫1

0
�0,1 (�) �] (��) ��, . . . ,

∫1
0
�1(−1) (�) �] (��) ��, . . . , ∫1

0
�1,1 (�) �] (��) ��]


 .
(14)

Now, we relabel and write (14) as

�̂
]
(�) ≈ ['10, '11, . . . , '42] [;0] , ;1� , . . . , ;11� ]
 , (15)

where ;�
]
’s are the ?th-place integral in (14).

�e integrals arising in (14) are evaluated by using the
formulae

∫�
0
�
]
(�) �� = 2 lim


→∞


∑
�=0

�
]+2�+1 (@) ,

Re ] > −1
(16)

(see [34]) and are calculated with the help of Simpson’s one-
third rule, Simpson’s three-eighth rule, composite Simpson’s
one-third rule, and composite Simpson’s three-eighth rule,
respectively. In numerical analysis, Simpson’s rule and com-
posite Simpson’s rule are method for numerical integration,
the numerical approximation of de	nite integrals.

4. Numerical Results

In this section, we test the proposed algorithm (15) by eval-
uating the approximate Hankel transforms of 4 well-known
test functionswith known analyticalHankel transforms.Note
that in all the examples the truncation is done at levelA = 1,� = 1, and � = 60 in (15). We observed that the accuracy of
themethod is very high even at such a low level of truncation.

Example 1. Let �(�) = �] sin(!�2/4), 0 ≤ � < 1; then
�
]
(�)
= 1√2 (

!2 )
−]−1 �] [I

]+1 (!2 , �) − I]+2 (!2 , �)]
(17)
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Figure 1: �e exact transform, �
]
(�) (solid line), and the approxi-

mate transform,K
]
(�) (dotted line), where ] = 0.
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Figure 2: Comparison of the errors.

(obtained from [34] by putting @ = !/4, L = 1), whereI
]
(M, �) is a Lommel function of two variables,

= 1√2� [

∑
�=0

[(−1)� ( !2�)
2�

⋅ (�
]+2�+1 (�) − !2��]+2�+2 (�))]] as � U→ ∞.

(18)

�e comparison of the approximation K](�) (dotted line)
with the exact Hankel transform �](�) (solid line) is shown
in Figures 1, 3, and 5 and the error W(�) = K](�) − �](�) in
Figures 2, 4, and 6.

Simpson’s One-�ird Rule. See Figures 1 and 2.

Simpson’s �ree-Eighth Rule. See Figures 3 and 4.

Composite Simpson’s One-�ird Rule. See Figures 5 and 6.

Composite Simpson’s �ree-Eighth Rule. See Figures 7 and 8.

Example 2. �e following example was solved numerically by
[35].
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Figure 3: �e exact transform, �
]
(�) (solid line), and the approxi-

mate transform,K
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(�) (dotted line), where ] = 0.
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Figure 4: Comparison of the errors.
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Figure 5: �e exact transform, �
]
(�) (solid line), and the approxi-

mate transform,K
]
(�) (dotted line), where ] = 0.
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Figure 6: Comparison of the errors.
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Figure 7: �e exact transform, �
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(�) (solid line), and the approxi-

mate transform, �(�) (dotted line), where ] = 0.
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Figure 8: Comparison of the errors.

For

� (�) = X−�,
its HT is �0 (�) = 1

(1 + �2)3/2 .
(19)

We solve the above problem by the proposed algorithm and
observe that our method gives a result comparable to [35].

Note that �0(�) and �̂0(�) are indicated by �0(�) (solid line)
and �(�) (dotted line) in Figures 9, 11, 13, and 15 and the errorW(�) = �(�) − �0(�) is shown in Figures 10, 12, 14, and 16.

Simpson’s One-�ird Rule. See Figures 9 and 10.

Simpson’s �ree-Eighth Rule. See Figures 11 and 12.

Composite Simpson’s One-�ird Rule. See Figures 13 and 14.

Composite Simpson’s �ree-Eighth Rule. See Figures 15 and 16.

Example 3 (sombrero function). A very important and o�en
used function is the Circ function that can be de	ned as [22]

Circ( �@) =
{{{
1, � ≤ @,
0, � > @. (20)

�is function is quite common in optical problems where it
is used, for instance, to represent a circular pupil of radius @.
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Figure 9: �e exact transform, �0(�) (solid line), and the approxi-
mate transform, �(�) (dotted line).
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Figure 10: Comparison of the errors.

20 40 60 800

p

−0.2

0

0.2

0.4

0.6

0.8

1

F(p)
F0(p)

Figure 11: �e exact transform, �0(�) (solid line), and the approxi-
mate transform, �(�) (dotted line).
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Figure 12: Comparison of the errors.
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Figure 13: �e exact transform, �
]
(�) (solid line), and the approxi-

mate transform,K
]
(�) (dotted line).
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Figure 14: Comparison of the errors.
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Figure 15: �e exact transform, �0(�) (solid line), and the approxi-
mate transform, �(�) (dotted line).
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Figure 16: Comparison of the errors.
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Figure 17: �e exact transform, �0(�) (solid line), and the approxi-
mate transform, �(�) (dotted line).
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Figure 18: Comparison of the errors.

�e Fourier-Bessel transform of (20) is the well-known
“sombrero function.”

�e zeroth-order Hankel transform of Circ(�/@) is the
sombrero function [29], given by

Y0 (�) = @2 �1 (@�)@� . (21)

�e exact and numerical transforms di�er very slightly but
the di�erences are hardly visible.

Simpson’s One-�ird Rule. See Figures 17 and 18.

Simpson’s �ree-Eighth Rule. See Figures 19 and 20.

Composite Simpson’s One-�ird Rule. See Figures 21 and 22.

Composite Simpson’s�ree-Eighth Rule. See Figures 23 and 24.

Example 4. Let�(�) = (2/!)[arccos(�)−�(1−�2)1/2], 0 ≤ � ≤ 1;
then,

�0 (�) = 2�
2
1 (�/2)�2 , 0 ≤ � ≤ ∞, (22)

a well-known result. �e pair (�(�), �0(�)) arises in optical
di�raction theory [36]. �e function �(�) is the optical
transfer function of an aberration-free optical system with
a circular aperture, and �0(�) is the corresponding spread
function.
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Figure 19: �e exact transform, �0(�) (solid line), and the approxi-
mate transform, �(�) (dotted line).
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Figure 20: Comparison of the errors.
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Figure 21: �e exact transform, �0(�) (solid line), and the approxi-
mate transform, �(�) (dotted line).
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Figure 22: Comparison of the errors.
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Figure 23: �e exact transform, �0(�) (solid line), and the approxi-
mate transform, �(�) (dotted line).
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Figure 24: Comparison of the errors

Barakat and Sandler [26] evaluated �0(�) numerically
using Filon quadrature philosophy but the associated error
is appreciable for � < 1, whereas our method gives almost
zero error in that range.

Simpson’s One-�ird Rule. See Figures 25 and 26.

Simpson’s �ree-Eighth Rule. See Figures 27 and 28.

Composite Simpson’s One-�ird Rule. See Figures 29 and 30.

Composite Simpson’s �ree-Eighth Rule. See Figures 31 and 32.

5. Conclusion

Since the basis functions used to construct the wavelets
are orthogonal and have compact support, it makes them
more useful and simple in actual computations. Also, since
the numbers of mother wavelet’s components are restricted
to one, they do not lead to the growth of complexity of
calculations. Our choice of wavelets makes themmore attrac-
tive in their applications in the applied physical problems
as they eliminate the problems connected with the Gibbs
phenomenon taking place in [30]. A good agreement between
the obtained solution and some well-known results has
been obtained. Four test examples are provided to show the
advantage of using wavelets.�ismethod is capable of greatly
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Figure 25: �e exact transform, �0(�) (solid line), and the approxi-
mate transform, �(�) (dotted line).
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Figure 26: Comparison of the errors.
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Figure 27: �e exact transform, �0(�) (solid line), and the approxi-
mate transform, �(�) (dotted line).
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Figure 28: Comparison of the errors.
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Figure 29: �e exact transform, �0(�) (solid line), and the approxi-
mate transform, �(�) (dotted line).
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Figure 30: Comparison of the errors.
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Figure 31: �e exact transform, �0(�) (solid line), and the approxi-
mate transform, �(�) (dotted line).
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Figure 32: Comparison of the errors.

reducing the size of calculations while still maintaining high
accuracy of the numerical solution.

Proposed wavelet method is very simple and attractive.
�e implementation of the current approach in analogy to
existingmethods ismore convenient and the accuracy is high.
�e numerical example and the compared results support
our claim.�e di�erence between the exact and approximate
solutions for each example was plotted graphically to deter-
mine the accuracy of numerical solutions.

5.1. Future Work. Since computational work is fully support-
ive of compatibility of the proposed algorithm, the same
may be extended to other physical problems also. A very
high level of accuracy explicitly re�ects the reliability of this
scheme for such problems. We would like to stress that the
approximate solution includes not only time information but
also frequency information due to the localization property
of wavelet basis; with some change we can apply this method
with the help of other wavelet bases.
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