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Abstract A wavelet-based attempt is made to estimate

the nonlinear interactions for wind wave spectra using Haar

wavelets. The nonlinear interactions have been synthesized

using the orthogonal basis of the Haar wavelets. The analy-

sis of the nonlinear interactions using wavelets provides an

easy way of computing the transfer integral in the Webb–

Resio–Tracy’s (WRT) method. The one-dimensional and

two-dimensional results confirm the applicability of the

wavelets to the nonlinear wave–wave interactions and the

approach of multi-resolution analysis ensures the conver-

gence and the accuracy.

Keywords Nonlinear interaction · Wave model · Haar

wavelets · Multi-resolution analysis · Quadruplets · Action

density

1 Introduction

The energy conservation for wind generated waves in deep

water is stated as

dE

dt
= Sinp + Snl + Swcap, (1)

where E denotes the two-dimensional energy spectrum with

respect to the wave number
−→
k at the spatial position and
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time t , Sinp is the energy input by wind, Snl is the nonlinear

quadruplet wave–wave interactions and Swcap is the energy

dissipation by white capping, see e.g., (Hasselmann 1960)

[that gives Eq. (1)]. In the theoretical description of growth

and decay of wind waves, nonlinear wave–wave interactions

play an important role, which results in a continuous trans-

fer of energy between the components of the wave field. A

full solution of Snl is time consuming because of its complex

functional form and therefore it is impractical for implemen-

tation in operational wave models (Cavaleri et al. 2007).

Phillips (1960) studied interactions between waves of

arbitrary lengths and directions and found that under cer-

tain circumstances resonance occurs in the system from third

order, resulting in growth of some components at the expense

of others. Hasselmann (1962) derived an expression which

describes the irreversible energy transfer between four water

waves in resonant mode. This expression is known as the

Hasselmann’s equation or Boltzmann equation. Hasselmann

(1963a) simplified the Boltzmann equation and discussed

some of its properties. Hasselmann (1963b) evaluated the

Boltzmann equation for a Neumann spectrum on deep water

and obtained the positive–negative–positive three lobe struc-

ture of the transfer rate within the spectrum. Hasselmann

and Hasselmann (1985a, b) developed Discrete Interaction

Approximation (DIA) method which is computationally effi-

cient. It has several shortcomings which are reported in Van

Vledder (2000). Extensions and modifications to the DIA

method are done by Hashimoto and Kawaguchi (2001) and

Tolman (2004, 2013a, b). Despite its shortcomings, DIA is

employed in third generation wave models such as WAM

(see Hasselmann et al. 1988). Webb (1978) employed Dirac

delta function properties and analytically removed the δ

functions of Hasselmann’s equation. Masuda (1980) per-

formed detailed analysis of the kernel function and tested

its scheme with different types of spectra. Young and Van
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Vledder (1993) gave a review of the role played by non-

linear wave–wave interactions in operational wave models.

Lavrenov (2001) used Gauss–Legendre quadratures to treat

the singularities arising from the manipulation of Boltzmann

integral. This work was further developed by Gagnaire-

Renou et al. (2010). Benoit (2005) compared the results of

nonlinear wave–wave interactions with two exact methods

(Webb 1978; Lavrenov 2001) and approximate techniques.

Cavaleri et al. (2007) summarized the phenomenon and mod-

elling of nonlinear four wave interactions.

A computationally fast and accurate method being con-

sidered currently on the nonlinear problem, focuses on the

improvement of the Webb’s method. This method called the

WRT method is based on the method of Webb (1978) with

contributions from Tracy and Resio (1982) and Resio and

Perrie (1991). A detailed description of the WRT method

can be found in Van Vledder (2006) who suggested several

filtering techniques in both radial and directional resolutions

to reduce the computational time. In that paper, Trapezoidal

rule is applied to the inner integral, whereas the importance

of higher-order quadrature methods such as the Gauss–

Legendre quadrature is also indicated. The method has been

implemented in various operational wave prediction mod-

els such as Wave Watch III (Tolman 1991), SWAN (Booij

et al. 1999), CREST (Ardhuin et al. 2001) and PROWAM

(Monbaliu et al. 1999).

In the present work, the WRT method is considered for

the calculation of the nonlinear source term. Siraj-ul-Islam

et al. (2010) and Imran et al. (2011) urge that wavelets are well

suited for evaluating the integrals. Further, through numerical

examples they proved that Haar wavelets are computation-

ally efficient over the quadrature methods. The aim of this

paper is to employ Haar wavelets to the inner integral, which

needs the calculation of nodes alone as the weights are con-

stant. Through multi-resolution analysis, the convergence

and accuracy of the method is substantiated.

The structure of the paper is as follows: Sect. 2 contains

a brief description of the WRT method used for solving

the nonlinear source term, and Sect. 3 deals with (i) the

basics of multi-resolution analysis, (ii) the application of

Haar wavelets to the transfer integral in the WRT method

and (iii) a comparative study of the results for the nonlinear

source term using the present WRT method with the earlier

results of Resio and Perrie (1991) and benchmark results of

the WRT method. Finally, the applicability and advantages

of the present method is summarized in Sect. 4.

2 Webb–Resio–Tracy’s method

The nonlinear source term in the wave model (Hasselmann

1962),

∂n1

∂t
=

∫∫∫

G(
−→
k1 ,

−→
k2 ,

−→
k3 ,

−→
k4 ) × δ(

−→
k1 + −→

k2 − −→
k3 − −→

k4 )

×δ (W ) × D(
−→
k1 ,

−→
k2 ,

−→
k3 ,

−→
k4 ) d

−→
k2 d

−→
k3 d

−→
k4 , (2)

describes the rate of change of action density n1 at a particular

wave number
−→
k1 due to all the wave resonating quadru-

plet interactions involving in it. Here, G and δ(·) denote

the coupling coefficients and Dirac delta function, respec-

tively. The term W is defined by W = ω1 + ω2 − ω3 − ω4,

where ωi is the angular frequency corresponding to the i th

wave number ki (i = 1, . . . 4) and ni = n(
−→
ki ) represent

the action density spectrum which is related to the wave

number spectrum by ni = F(
−→
ki )

ωi
. The expression for G can

be found in Webb (1978). The density term containing the

product of action densities is a cubic expression given by

D(
−→
k1 ,

−→
k2 ,

−→
k3 ,

−→
k4 ) = [n1n3(n4 − n2) + n2n4(n3 − n1)].

The contribution to the integral in Eq. (2) comes from the

set of all three wave number vectors {−→k2 ,
−→
k3 ,

−→
k4 } interacting

with
−→
k1 due to the presence of the delta functions. In other

words, this contribution is obtained from the set of all four

wave vectors {−→k1 ,
−→
k2 ,

−→
k3 ,

−→
k4 } each satisfying the following

resonance conditions

−→
k1 + −→

k2 = −→
k3 + −→

k4 (3)

and

ω1 + ω2 = ω3 + ω4. (4)

The linear dispersion relation relating the angular frequency

ω and the wave number k is expressed as

ω2 = gk tanh(kd), (5)

where g is the acceleration due to gravity and d is the water

depth.

The δ-function over the wave numbers in Eq. (2) is elim-

inated by integrating over
−→
k4 , to form

∂n1

∂t
=

∫

T (
−→
k1 ,

−→
k3 ) d

−→
k3 , (6a)

with the transfer integral T (
−→
k1 ,

−→
k3 ) given by

T (
−→
k1 ,

−→
k3 ) =

∫

G × D(
−→
k1 ,

−→
k2 ,

−→
k3 ,

−→
k4 ) × δ (W ) d

−→
k2 .

(6b)

In the present work, the entire domain is considered and no

filtering technique is used.

An important step in the WRT method is to find the

wave resonating quadruplets {−→k1 ,
−→
k2 ,

−→
k3 ,

−→
k4 }. This can be
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achieved by fixing two wave number vectors. Thus, for input

vectors
−→
k1 and

−→
k3 , the locus of

−→
k2 traces out an egg-shaped

closed curve. For the case when the magnitudes of the input

vectors are the same, the locus of
−→
k2 is a straight line. The

locus of
−→
k4 can then be constructed using Eq. (3).

Further,
−→
k2 is segregated into tangential-normal coordi-

nate system (
−→
s ,

−→
n ) as

−→
k2,s and

−→
k2,n . Using the properties

of the Dirac delta function and integrating along the normal

component
−→
k2,n , the nonlinear transfer integral in Eq. (6b)

reduces to a line integral of the form

T (
−→
k1 ,

−→
k3 ) =

∮

G × D(
−→
k1 ,

−→
k2 ,

−→
k3 ,

−→
k4 ) × J × ds. (7)

Here J =
∣

∣

dW
dn

∣

∣

−1
is the normal derivative term or Jacobian.

Now, Eq. (6a) is written in terms of polar coordinates as

∂n (k1, θ)

∂t
=

∫∫

T (
−→
k1 ,

−→
k3 ) k3 dθ3 dk3. (8)

Following Tracy and Resio (1982), the double integral

in Eq. (8) is evaluated. Having computed
∂n(k,θ)

∂t
, Snl ( f, θ)

is retrieved using the relation Snl ( f, θ) = 4πω4

g2
∂n(k,θ)

∂t
. The

one-dimensional nonlinear source term Snl ( f ) is determined

by integrating Snl ( f, θ) with respect to θ .

3 Multi-resolution analysis and Haar wavelets

The application of wavelets to the nonlinear wave–wave

interactions starts with the approximation of the integrand

in the transfer integral using Haar wavelets through multi-

resolution analysis and ends up with the integration scheme.

3.1 Multi-resolution analysis or multi-level

representation of function

The aim of multi-resolution analysis is to develop represen-

tation of a function f (x) at various levels of resolution. To

this end, we seek to expand f (x) ∈ L2 (R) in terms of basis

functions called scaling function φ(x) and the wavelet func-

tion ψ(x) which can be scaled to give the multiple resolution

of the function.

A multi-resolution analysis (MRA) of the set of square

integrable functions denoted by L2(R), equipped with the

standard inner product (·, ·), is a chain of closed subspaces

indexed by all integers

. . . V−1 ⊂ V0 ⊂ V1 . . .

such that

(i)
⋃

n

Vn = L2(R)

(ii)
⋂

n

Vn = {0}

(iii) f (·) ∈ Vn ⇔ f (2·) ∈ Vn+1

(iv) Letφ(·)be a scaling function such that {φ(· − k) : k ∈ Z}
constitutes a complete orthonormal basis of V0.

To obtain an MRA, it suffices to construct the scaling func-

tion φ(·). The entire space chain can then be reconstructed

from φ(·) according to (iii) and (iv). Since V0 ⊂ V1 and

from (iii) and (iv), it is easy to see that φ(·) must be a lin-

ear combination of φ(· − k) : k ∈ Z , leading to the two scale

relation

φ(·) = 2
∑

k∈Z

hkφ(2 · −k),

for a suitable set of coefficients (. . . , h−1, h0, h1, . . .).

Let W0 denote the orthogonal complement of V0 in V1.

A function ψ(·) whose integer translates {ψ(· − k) : k ∈ Z}
constitutes an orthonormal basis of W0 is called a wavelet.

This wavelet function ψ(·) satisfies the two scale relation

ψ(·) = 2
∑

k∈Z

gkψ(2x − k),

for a suitable set of coefficients (. . . , g−1, g0, g1, . . .). From

(i)–(iv) it is clear that

φ j,k(·) = 2 j/2φ(2 j · −k; j, k ∈ Z).

and

ψ j,k(·) = 2 j/2ψ(2 j · −k; j, k ∈ Z).

form an orthonormal bases of L2(R), where j and k are the

scaling and translating parameters. For the well-known Haar

wavelet, the scaling and wavelet functions are given by

φ(x) =

{

1, 0 ≤ x < 1,

0, otherwise,

ψ(x) =

{

1, 0 ≤ x < 1
2
,

−1, 1
2

≤ x < 1.

Figure 1 shows the relationship between scaling and

wavelet functions at different levels, i.e., Vn = Vn−1⊕Wn−1.

For any function L2(R), define PJ : L2(R) −→ VJ to be

the projection of f onto the resolution space VJ by
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Fig. 1 Relation between V j and W j
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Fig. 2 MRA for x2

f (x) =
∑

k∈Z

c0,k( f )φ0,k(x)

+
∑

0≤ j≤J

∑

0≤k≤2 j −1
k∈Z

d j,k( f )ψ j,k(x), (9)

where

c0,k =
∫

f (x)φ(x − k) dx (10)
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Fig. 3 MRA for x2 at J = 5

and

d j,k =
∫

f (x)ψ j,k(x) dx . (11)

The parameter J denotes the maximum level of resolution

of Haar wavelets to represent the function f (x). The analysis

of the function can be done using the scaling coefficients c0,k

and the wavelet coefficients d j,k . These coefficients are also

called the average and detailed coefficients of the correspond-

ing function. Consider

f (x) =

{

x2, 0 ≤ x < 1,

0, otherwise.

In order to approximate f (x) at the resolution level J =
1, the following coefficients have to be calculated using

Eqs. (10) and (11) as follows:

c0,0 =
∫ 1

0

x2φ(x) dx =
1

3
,

d0,0 =
∫ 1

0

x2ψ0,0(x) dx =
∫ 0.5

0

x2 dx −
∫ 1

0.5

x2 dx =
−1

4
,

d1,0 =
∫ 1

0

x2ψ1,0(x) dx =
∫ 0.25

0

x2 dx−
∫ 0.5

0.25

x2 dx =−
√

2

32
,
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(a) (b)

(c) (d)

Fig. 4 Approximation of locus results of
→
k2 for both deep and finite depths using Haar wavelets at different levels of resolution

and

d1,1 =
∫ 1

0

x2ψ1,1(x) dx =
∫ 0.75

0.5

x2 dx−
∫ 1

0.75

x2 dx =−
3
√

2

32
.

Using Eq. (9), f (x) ≈ [ 1
3
φ0,0(x)] + [−1

4
ψ0,0(x)] +

[−
√

2
32

ψ1,0(x) + −3
√

2
32

ψ1,1(x)].
The function approximation is shown in Fig. 2f. As

the level increases, the function approximation converges

towards the function f which can be seen from Fig. 3 with

J = 5.

For a detailed introduction to wavelet theory, refer to

Strang and Nguyen (1996) and Hernandez and Weiss (1996).

The evaluation of the definite integrals using Haar wavelets

can be carried out by

∫ b

a

f (x) dx =
b − a

2J+1

2J+1
∑

q=1

f (xq),

where xq = a + (b−a)(q−0.5)

2J+1 , with J representing the maxi-

mum level of resolution of Haar wavelets. More details can be

found in Siraj-ul-Islam et al. (2010) and Imran et al. (2011).
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3.2 Procedure for approximating the locus curve using

Haar wavelets

Let 	 be the locus of
−→
k2 in the Cartesian plane. Let 	

be approximated by a parametric cubic spline curve Ŵ:

(x(s), y(s)), where s is the normalized cumulative chord

length and x(s) and y(s) are the cubic splines (Hanna et al.

1986). The steps involved in this procedure are described

below.

Step 1 Obtain an ordered set of points {xi , yi }n−1
i=0 on the

locus of
−→
k2 , using a standard polar method such as the explicit

polar method presented in Van Vledder (2000), with starting

point on the symmetry axis.

The standard polar method consists of obtaining first the

end radial points (or minimum and maximum radial values)

of
−→
k2 on the symmetry axis and then obtaining the points on

either side of the locus for which the radial values of
−→
k2 vary

between this maximum and minimum values. In this method,

n number of points on the symmetry axis are chosen to give

2(n − 1) points on the locus. Thus, the number of points on

the locus of
−→
k2 is always even.

Step 2 Obtain the cubic splines x(s) and y(s) (Gerald and

Wheatly 2008) from the points of 	 as follows.

Let si denote the value of the normalized cumulative chord

length at the i th point on the locus 	. For the data {si , xi }n−1
i=0

and {si , yi }n−1
i=0 , obtain the cubic splines x(s) and y(s) using

not-a-knot end conditions, respectively. For a closed locus,

the parameter s varies from 0 to 1.

Step 3 By considering the discrete values of s to be the

nodes of the Haar wavelets and using the cubic spline approx-

imants x(s) and y(s) for the locus points, one can obtain a

new set of points on the locus of
−→
k2 . Since the nodes of the

Haar wavelets are equally spaced, the locus points are uni-

formly distributed.

The top panel of Fig. 4 shows the distribution of 32 and

64 points on the locus of
−→
k2 for an input pair of wave number

vectors
−→
k1 = (0.15, 0) and

−→
k3 = (0.2, 0.1). The locus curves

are approximated using Haar wavelets, corresponding to the

fourth and fifth levels of resolution. From this, it was found

that the new set of points are equispaced with the spacing

being 0.07, 0.036 and 0.018 approximately, corresponding

to J = 3, 4 and 5, respectively. The bottom panel of Fig. 4

shows the distribution of 32 and 64 points on the locus of
−→
k2 for an input pair of wave number vectors

−→
k1 = (0.1, 0)

and
−→
k3 = (0.15, 0.05) with depth 1.5 m. The locus curves

are approximated using Haar wavelets, corresponding to the

fourth and fifth levels of resolution. Here, it was found that

the new set of points are equispaced with the spacing being

0.07, 0.035 and 0.017 approximately, corresponding to the

levels 3, 4 and 5, respectively.

Start

Set the same polar grid for

the wave numbers
→

k1 and
→

k3

Find loci of
→

k2 and
→

k4, for each

input pair of vectors
→

k1 and
→

k3

Compute the Transfer function,

T
→

k1,
→

k3 , using Haar wavelets

Calculate Snl

→

k1

End

Fig. 5 Flow chart showing the computation of nonlinear transfer

Application of Haar wavelets to Eq. (7) yields,

T (
−→
k1 ,

−→
k3 ) =

L

2J+1

2J+1
∑

k=1

G(sk) × D (sk) × J (sk) , (12)

where sk are the Haar nodes along the locus of
−→
k2 , L is

the length of the closed curve and J is the maximum level

of resolution. For the lower limit of line integration, (a) is

always 0 and the upper limit (b) is L . Subsequently, Eq. (8)

is evaluated.

Figure 5 depicts the flow chart and further explanations

about the computation of nonlinear transfer.

To compute the nonlinear transfer, a polar grid with 60

different wave numbers and 36 different angles have been

considered. In these calculations, the directional resolution

is 10◦, ranging from 0◦ to 360◦, and the frequencies are geo-

metrically spaced. The input spectrum is chosen to be the

JONSWAP spectrum with −5 tail, and the shape parameters

are α = 0.01, f p = 0.3 Hz and σ =

{

0.07, f < f p

0.09, f ≥ f p.
.

The two-dimensional input frequency–direction spectra are

shown in Fig. 6.

Figure 7 shows the comparison of 1-D nonlinear transfer

results of Snl( f ) for the PM spectrum, JONSWAP spec-

tra with peak enhancement factor γ = 3.3 and γ = 7,

respectively, using the present WRT method with the ear-
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Fig. 6 Input

frequency–directional

distribution E( f, θ) for different

peak enhancement factors: a

γ = 1, b γ = 3.3 and c γ = 7
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lier results. In the present method, J is chosen to be 4 for the

PM spectrum, and 5 for the other two spectra. In the earlier

results of Resio and Perrie (1991), sector grid ranging from

−120◦ to 120◦ was considered for integration, whereas the

present method and the benchmark of the WRT results use

circular grid. It is clear from Fig. 7 that the present results

are comparable and in good agreement with earlier results.

Figure 8 depicts the 2-D nonlinear transfer results obtained

using the present method for the same input spectra and the

level of resolution J considered in Fig. 6.

The effect of the directional resolution on the directional

transfer rate Snl(θ), for the varying values of γ are shown

in Fig. 9. Here, θ ranges from 0◦ to 360◦ with 10◦ spacing.

As γ increases, the two positive lobes and the negative lobe

approach a narrow distribution.

Better accuracy of the nonlinear transfer results can be

achieved by increasing the maximum level of resolution J .

Figure 10 shows the convergence of the 1-D nonlinear trans-

fer Snl( f ) of the present method for the input PM spectrum

with increasing values of J . The adaptation of wavelets have

been explored by varying the number of locus points as 8,

16, 32 and 64, which fixes the resolution levels as 2, 3, 4 and

5, respectively. A detailed study has to be made regarding

the performance of the present method (accuracy vs compu-

tational time) and will be considered in our future work.

4 Conclusions

In this paper, the potential of Haar wavelets for the nonlin-

ear wave–wave interactions in the WRT method is examined

at different resolution levels. This is achieved by apply-

ing MRA using Haar wavelets for the transfer integral. The

advantage of applying Haar wavelets is that it involves con-

stant weights and equal spacing of the nodes. The adaptation

of wavelets have been explored by varying the number of

locus points which fixes the resolution level J . Variations of

nonlinear transfer with respect to both frequency and direc-
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Fig. 7 Comparison of 1-D nonlinear transfer results Snl( f ), using the

present WRT method (blue lines with dots) with benchmark of the WRT

results (pink line with dots) and the WRT results taken from Resio and

Perrie (1991) (straight line) for case 13, case 2 and case 15 of Hassel-

mann and Hasselmann (1981)
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tion are discussed. The one-dimensional nonlinear results

obtained through Haar wavelets are found to be compara-

ble with earlier results. The study of applying other wavelets

to the nonlinear wave–wave interactions through the WRT

method will be considered as a continuation of the present

work.
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