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Abstract

Many multivariate time series observed in practice are second order nonstationary, i.e. their covariance properties vary over
time. In addition, missing observations in such data are encountered in many applications of interest, due to recording failures
or sensor dropout, hindering successful analysis. This article introduces a novel method for data imputation in multivariate
nonstationary time series, based on the so-called locally stationary wavelet modelling paradigm. Our methodology is shown
to perform well across a range of simulation scenarios, with a variety of missingness structures, as well as being competitive
in the stationary time series setting. We also demonstrate our technique on data arising in a health monitoring application.
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1 Introduction

Time series data arise in a variety of different areas includ-
ing finance (Taylor 2007), biology (Bar-Joseph et al. 2003)
and energy (Alvarez et al. 2011; Doucoure et al. 2016). The
collection and recording of time series can be interrupted
due to various reasons, including human error or technical
faults with the recording equipment, inducing missingness
within the time series. Little and Rubin (2002) describe the
occurrence of missing values in data through a number of
“missingness mechanisms”:

1. Missing completely at random (MCAR)—The probabil-
ity of missingness is the same for all units, i.e. the missing
value is not dependent on other variables.
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2. Missing at random (MAR)—The probability of miss-
ingness depends only on available information, i.e. the
missing value depends on other variables.

3. Not missing at random (NMAR)—The missingness
probability depends on the variable itself, i.e. the missing
observation depends on other missing values.

Regardless of the type of missingness present, further anal-
ysis of the time series such as autocovariance or spectral
estimation can be difficult without first replacing the missing
data with appropriate estimates. This estimation process is
called imputation.

There exists a rich literature dedicated to the imputation
of missing values within stationary time series; see Pratama
et al. (2016) for an recent review of this literature. For uni-
variate time series, explicit consideration of the temporal
dependence (autocorrelation properties) is key for successful
imputation. Moritz and Bartz-Beielstein (2017) discuss var-
ious univariate time series imputation approaches, ranging
from simple methods that replace missing values with the
mean to more advanced approaches that involve spline inter-
polation or model fitting combined with the use of a Kalman
filter.

Popular techniques suitable for multivariate data such
as Multiple imputation (see, for example, Rubin (1987) or
Audigier et al. (2016)), hot-deck (Ford 1983) and
expectation—maximisation (EM) (Dempster et al. 1977)
make use of inter-variable correlations to estimate missing
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data. Most variants of the EM approach within the literature
are based on assumptions of Gaussianity (see, for example,
Junger and de Leon (2015), Honaker and King (2010) or
Honaker et al. (2011)). Alternative methods have also been
developed, combining EM with other modelling procedures
such as PCA fixed-effects models (Caussinus 1986) and
Gaussian Mixture Models (Ghahramani and Jordan 1994).
Other model-based methods for imputation within time series
make use of restrictive classes of statistical models to infer
missing values, such as those based on purely autoregressive
processes (Sridevi et al. 2011).

Other approaches to imputation include those based on
heuristics such as genetic algorithms (Lobato et al. 2015;
Tang et al. 2015), or those incorporating machine learning
methodology, ranging from support vector machines (Wu
et al. 2015) and random forests (Stekhoven and Biihlmann
2011), to more advanced techniques such as recurrent neural
networks (Cao et al. 2018; Che et al. 2018) or adversarial
networks (Luoetal. 2018; Yoon et al. 2018). The drawback of
many of these approaches is that they often require training on
previously seen complete data. However, in many contexts,
we only have access to a single observed multivariate series.

An alternative strategy for coping with missingness is to
estimate the spectral information of the series in some way. A
range of methods has been developed for spectral estimation
in stationary time series with missing values or irregularly
sampled observations within the time series and signal pro-
cessing literature. The Lomb-Scargle periodogram (Lomb
1976; Scargle 1982) estimates the Fourier spectrum from the
irregularly sampled data but can be subject to strong bias
which hinders its ability to describe slopes within the spec-
trum. Variants of this approach have been applied in arange of
different fields including astronomy (Wen et al. 1999), biol-
ogy (Van Dongen et al. 1999) and biomedical engineering
(Laguna et al. 1998). Other widely used techniques involve
fitting time series models directly to the unequally spaced
data and using this to estimate spectral information for sta-
tionary processes (Jones 1980; Bos et al. 2002; Broersen
2006).

In practice, however, the assumptions imposed by mod-
elling an observed time series as stationary can be restrictive
and unrealistic. Nonstationary time series, i.e. series with
time-varying second order structure, are observed in var-
ious fields including finance (Staricd and Granger 2005;
Fryzlewicz et al. 2006), life sciences (Cranstoun et al.
2002; Hargreaves et al. 2019) and oceanography (Killick
et al. 2013). Hence, the ability to impute missing val-
ues in multivariate, nonstationary time series has potential
widespread benefits. Many techniques have been developed
for modelling and analysing complete multivariate, nonsta-
tionary data including time domain approaches (Molenaar
et al. 1992; Wu and Zhou 2019), the locally stationary
Fourier model (Dahlhaus 2000), the smooth localised com-
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plex exponential (SLEX) model (Ombao et al. 2005) and the
multivariate locally stationary wavelet (mvLSW) framework
(Park et al. 2014) but the literature on how to deal with miss-
ingness within such data is sparse. In the univariate setting,
Knight et al. (2012) propose a method for estimating spec-
tral information of a LSW process containing missing values
where information is estimated at the observed time loca-
tions. However, the problem of spectral estimation within
multivariate, nonstationary time series has not been widely
studied.

In this article, we address the challenging problem of
imputation in the multivariate locally stationary time series
setting and, more specifically, where additional training data
are unavailable. We adopt a wavelet-based approach to this
challenge. Whilst there are many time domain imputation
techniques as noted above, we prefer a frequency domain
approach due to the ability of wavelet-based models to cap-
ture a range of localised nonstationary behaviour (via the
wavelet spectrum) and provide more accurate estimation and
detection of complex structures within series, see, for exam-
ple, Nason et al. (2000); Barigozzi et al. (2018). Our strategy
involves first estimating the local wavelet spectral matrix of a
mvLSW process with missing observations before forecast-
ing and backcasting the missing values of the time series
using a multivariate extension of the wavelet forecasting
approach of Fryzlewicz et al. (2003). As a final step, we
average the estimates obtained from the forward and back-
ward pass to obtain an overall estimate of the time series.
Through the use of simulated examples and a case study,
we demonstrate that our method performs well for a range
of realistic missingness scenarios in both the stationary and
nonstationary setting.

This work is organised as follows. Within Sect. 2, we
review existing methods for modelling locally stationary time
series and forecasting within this context. In Sect. 3, we intro-
duce the proposed imputation method. Section 4 contains
a simulation study evaluating the performance of the pro-
posed imputation method using synthetic examples. We also
describe a case study using a dataset arising from a carbon
capture and storage facility. Finally, Sect. 6 includes some
concluding remarks.

2 Background

In this section, we provide a brief overview of recent work
modelling locally stationary time series. For a comprehen-
sive review of nonstationary time series more generally, see
Dahlhaus (2012). The section is organised as follows; we
first review existing methods for modelling locally station-
ary time series using the LSW framework both in a univariate
and multivariate context in Sect. 2.1 before looking at one-
step ahead forecasting in this setting in Sect. 2.2.
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2.1 Modelling locally stationary wavelet processes

Within the univariate setting, the locally stationary wavelet
(LSW) framework introduced by Nason et al. (2000) pro-
vides a flexible model for nonstationary time series that
captures the changing second-order structure of such series.
Nason et al. (2000) define a LSW process {X,,7},_o 7_

T =2’ > 1 to be a sequence of (doubly-indexed) stochastic
processes that can be represented as

o0

X =Y Y Witk/T)Wji k& (1)
i=1 k

The vectors ¥ = {¥j.0, Vj1,.... }[fj,Nj_l} are discrete

non-decimated wavelets associated with a low-/high-pass fil-
ter pair, {{, G}. The elements of ¥; can be calculated using
the following expression:

Yin = Zgn—ZkSO,k =g, forn=0,1,...,N; — 1,
k

Yjtin = Zhn—zklﬁj,k
3

In the equations above, o x is the Kronecker delta function
and N; = (2j — 1) (Nn — 1) + 1 where Nj, is the number
of nonzero elements of the filter H = {li}rcy. {sjvk}j,k
is a sequence of zero-mean, orthonormal random variables
and {W;(k/T)} is a set of amplitudes on which a number
of assumptions are imposed to control the behaviour of the
LSW process (see Nason et al. (2000) for further details).

Park et al. (2014) introduced the multivariate locally
stationary wavelet (mvLSW) processes as a multivari-
ate extension to the LSW framework. Following Park
et al. (2014), a P-variate locally stationary wavelet process
{Xe.7},01..7—1» T =27 = 1 has the following represen-
tation

Xir =Y Y Vik/T)Wj iz )

j=1 k

where T = 27 > W —k}jkx is a set of discrete non-
decimated wavelets constructed according to Nason et al.
(2000) and V j (k/T) is the transfer function matrix. The ran-
dom vectors z; ; are uncorrelated and have mean vector 0
and variance—covariance matrix equal to the P x P identity
matrix. The transfer function matrix consists of Lipschitz
continuous functions with Lipschitz constants, L ;, that sat-
isfy Z;x;l 2jL5.p’q) < oo for each pair of channels (p, g).
The conditions imposed upon the transfer function matrix
control the time-varying contribution to the variance made
by each channel at a particular scale.

fOI‘I’l=O,1,...,Nj_H—1.

The local wavelet spectral (LWS) matrix is an impor-
tant quantity within the mvLSW framework as it provides
a scale-dependent decomposition of the variance and cross-
covariance between channels at a particular (rescaled) time
z. Given a mvLSW signal X; with transfer function matrix
V;(k/T), the LWS matrix is given by

$;@=V;@V,;@" 3)
for scale j and rescaled time z. Following Park et al. (2014),

the local auto-covariance and cross-covariance between
channels p and ¢ are defined as

PPy, 1) = Z S;p'p) W)¥j(7), “)
j:l

POy, 7) = Z S;p’q)(u)‘l’j(f) ®)
j=1

where S;p P) (u) and S](.p @) (u) denote the spectra and cross-
spectra, respectively, of the series, and ¥;(7) is the discrete
autocorrelation wavelet defined by ¥ (t) = >, ¥« ¥ k-t
for j € Nand t € Z (Eckley and Nason 2005).

In practice, the LWS matrix and local auto- and cross-
covariance are unknown for an observed multivariate series
and need to be estimated. In the complete data case, where
there are no observations missing, the LWS matrix of a
multivariate signal can be estimated by first calculating the
empirical wavelet coefficient vector d;;x = Y, X/ k.
The raw wavelet periodogram matrix is then defined as
L= d,,kd;k.

Park et al. (2014) show that the raw wavelet periodogram
is a biased and inconsistent estimator of the true LWS matrix,
S;(z). The bias within the raw wavelet periodogram can
be removed using the inverse of the inner product matrix
of discrete autocorrelation wavelets, A. The elements of
A are given by A;, = Y _W;(v)¥(r) where ¥;(1) =
DV ik (0)¥ ik (T) (see Eckley and Nason (2005) or Nason
et al. (2000) for further details). To obtain consistency, the
resulting estimate must be smoothed in some way, for exam-
ple using a rectangular kernel smoother (Park et al. 2014).
The local auto- and cross-covariance can then be estimated
by substituting the estimated LWS matrix S into Egs. (4) and
(5), respectively. The LWS matrix and the local auto- and
cross-covariance structure are important quantities within the
imputation method we propose in Sect. 3 as they are used
within the prediction step to estimate missing values. See
Taylor et all. (2019) for further details and an introduction to
software that implements the mvLSW estimation scheme.

In the missing data setting, there exist some time points
for which we do not have an observed value, X, for one or
more channels of the P-variate series. Due to this, we cannot
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directly apply the above approach for estimating the wavelet
periodogram and have to modify the method to allow us to
obtain estimates of the wavelet coefficients at all scales and
locations. This will be discussed further in Sect. 3.

2.2 Forecasting multivariate locally stationary
wavelet processes

Asoutlinedin Sect. 1, akey element of the imputation scheme
that we introduce in Sect. 3 is the ability to perform one-step
ahead forecasts in a locally stationary setting. Fryzlewicz
et al. (2003) introduce a one-step ahead predictor in the uni-
variate LSW setting which uses the autocovariance structure
of an LSW process to form generalised Yule-Walker equa-
tions. Our approach is a straightforward extension of the
foregoing work to the multivariate setting that makes use
of the mvLSW model outlined in Sect. 2.1.

Due to the separable structure of the mvLSW model,
we can form one-step ahead prediction equations for each
channel combination (p, ¢) using the local auto- and cross-
covariance defined in Egs. (4) and (5), respectively. The
multivariate prediction equations are defined by

t—1
s+n n+t
th(i’lq_) T C(p’q) A s n =c(p’q) DY t—nj.
s, 2T 2T

s=0
(6)

As Fryzlewicz et al. (2003) describe in the univariate setting,
the coefficients b;p 9 that solve the prediction equations can

be shown to minimise the mean square prediction error

&(P.q) v (p.g)y _ &(p.q) (p.9))\2
MSPE(Xt,T ’Xt,T )_E(Xt,T _Xt,T )
P DT (.9, (p:q)

— bzp q Et,qu blp q i

where b7 = "0 PP —1) and £8P s the

covariance matrix of X((){’}q), e, Xt(f"T’q).

The one-step ahead predictor of X; r given previous mul-
tivariate observations Xo 7, ..., X;—1,7 is then given by the
m-observation clipped predictor

-1
o (p) (r.q) (q)
Xt,pT = Z Z btfqus;TXsf{T (7)
q€{l,...,P} s=t—m
for p € {1, ..., P}, where m is the number of recent obser-

vations used in prediction.

Our proposed imputation approach (introduced in the next
section) uses the one-step ahead prediction in the mvLSW
setting outlined above to replace missing values in a multi-
variate locally stationary time series.

@ Springer

3 Imputation for multivariate locally
stationary wavelet processes

In this section, we introduce our multivariate imputation
method which uses the local auto- and cross-covariance
structure of a nonstationary time series to estimate missing
observations. The key challenge in this context is that the
usual mvLSW spectral estimation process cannot be used
due to the presence of missingness. For this reason, the first
step of the algorithm involves estimating the wavelet peri-
odogram of a mvLSW process with missing observations,
and this will be discussed in Sect. 3.1. Using the estimate
of the LWS matrix, we then form the local auto- and cross-
covariance structure and carry out a forward pass of the data
where we forecast missing values. To obtain more accurate
estimates of the time series at missing locations, we also
implement a backward pass of the data where we backcast
the missing values. We then average the series obtained from
the forward and backward pass in order to get an overall esti-
mate. The forecasting and backcasting steps will be described
in Sects. 3.2 and 3.3, respectively. A complete overview of
the steps carried out in one iteration of the method can be
found in “Appendix A” section.

3.1 Spectral estimation

Suppose we have a P-variate time series of length 7 = 27
containing missing values which we wish to impute. The first
step of the mvL.SWimpute algorithm involves estimating the
LWS matrix of the time series. The presence of missing val-
ues means that we cannot use the usual estimation procedure
and have to modify our approach.

First, we calculate the empirical wavelet coefficient vector,
d; «, for the time series ensuring that any wavelet coefficients
at scales and locations affected by the initial missing data
will also be missing. The Haar wavelet is used within the
calculation of the empirical wavelet coefficient vector as this
will ensure that more levels of the wavelet transform will
contain information. From this, we can form the raw wavelet
periodogram matrix as described in Sect. 2.1. Since the raw
wavelet periodogram will also have entries missing, we need
to perform an intermediate step to fill in these missing values
before smoothing and correcting as described in Sect. 2.1 to
obtain an estimate of the LWS matrix. We note here that other
wavelets could be used in the calculation of the coefficients;
for further discussion of the choice of wavelet in the LSW
context, we refer the reader to Gott and Eckley (2013).

In order to fill in the missing values, for each spectra and
cross-spectra, we linearly interpolate the periodogram values
at those levels which feature missing values, but which con-
tain periodogram values available to use in the interpolation.
For the coarsest levels of the periodogram where the coeffi-
cients are all missing, we replace them in a different manner.
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To do this, we take the coarsest level of the periodogram that
contains information and recursively apply the wavelet filter
equations. This process generates coefficients that allow us to
replace the values in the coarsest levels of the periodogram.

To obtain an estimate of the LWS matrix, we correct the
periodogram by multiplying by A~! and then smooth the
result using a running mean smoother with window length
[T |, implemented in the mvL.SW R package (Taylor et al.
2017). This estimate can then be substituted into Egs. (4) and
(5) to form the local auto and cross-covariance which are used
in the forecasting and backcasting steps of the algorithm.

3.2 Forecasting

In order to replace missing data in the time series, we first
carry out a forward pass of the series where we use the
one-step ahead multivariate wavelet forecasting approach
outlined in Sect. 2.2. A missing index is defined to be a time
point at which one or more channels of the P-variate time
series have missing values present.

For each missing index i, we forecast the missing values
sequentially in the following way. First, calculate the local
auto- and cross-covariance using the estimated spectra from
time 1 to time i — 1 and Egs. (4) and (5).

For each channel combination (p,q) where p,q €
{1,..., P}, form the prediction equations using the local
auto- and cross-covariance at certain locations and lags, as in
Eq. (6). Solving the prediction equations allows us to obtain
b(P-9) vectors used to predict the values of the series at time
i using the one-step ahead predictor defined in Eq. (7). The
channels of the multivariate time series that contain miss-
ing data at time i are then replaced by the corresponding
predicted values from the forecasting step.

It is important to note that, for efficiency, we use a clipped
predictor in the forecasting step in which only the most recent
m observations are used in the prediction, similar to Fry-
zlewicz et al. (2003) in the univariate setting.

3.3 Backcasting

After carrying out the forward pass of the data, the next step is
to backcast the missing values sequentially. This backcasting
step is included in order to improve the accuracy of the impu-
tation method since this allows us to incorporate information
from both sides of the missing observation in our estimation.
Similar to the approach of Trindade (2003), we can form
backward Yule—Walker equations in the mvLSW setting by
beginning at time 7" and again using the multivariate wavelet
forecasting approach from Sect. 2.2, but ensuring to order
the spectral values in this case. Note that the backward pass
is carried out independently to the forward pass and does not
depend on the imputed time series obtained in the previous
step.

For each missing index i (considered in descending order),
we proceed as in the forecasting case and form the local
auto- and cross-covariance using the estimated spectra from
time 7 to i + 1. As in the forward pass, for each channel
combination (p, g), we can solve the prediction equations
using the local auto- and cross-covariance to obtain the b(?:9)
vectors. However, the one-step ahead predictor has a slightly
different form in the backcasting step:

t+1

(p.q9) (q)
Z Z btf—lq—s;TXsf]T (8)

g€{l,..., P} s=t+m

for p € {1, ..., P}. The one-step ahead predictor in Eq. (8)
is then used to backcast the value of the time series at index
i, and then, any missing entries within channels are replaced
using their corresponding predicted values.

After carrying out the forward and backward pass inde-
pendently, we obtain two imputed time series which are then
averaged to get an overall estimate of the time series. The
process can then be iterated but from the second iteration
onwards the spectral estimation step no longer requires lin-
ear interpolation and the LWS matrix can now be estimated
using Eq. (3). The forecasting and backcasting steps remain
the same, and we again average to obtain an updated estimate
of the time series.

4 Simulated performance of mvLSWimpute

We now assess the performance of our proposed multivariate
imputation method through a range of simulated data exam-
ples. The generating series used within the simulation study
exhibit varying degrees of nonstationarity and dependence.
These have been chosen to test the ability of our method
to impute missing values in multivariate, nonstationary time
series. A number of different scenarios have been chosen for
the missingness structure in order to mimic situations arising
in practice.

For datasets containing missing entries, traditional anal-
ysis based on complete cases has proven to be reasonably
accurate provided that the amount of missing values is small
(Graham 2009). However, such methods yield poor results
when the proportion of missing entries increases. To evalu-
ate the performance of the proposed method as the amount
of missingness increases, we remove 10, 20, 30 and 40% of
values from the generating series at random, either from all
channels simultaneously or from one channel independently.
In practice, time series obtained from industrial applications
can contain gaps that may extend over hours or even days due
to faults in the recording equipment or human error. In order
to reflect this, we also consider the case where information
is missing from one or more variables of the time series for
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Fig. 1 Example realisations of generating processes for the differ-
ent scenarios used in the simulation study. (a), (¢) Slowly evolving
dependence, class changes at time 150 and 300; (b) Rapidly changing

a period of 20 consecutive time points. As a third scenario,
we also include the situation where the missingness occurs
in bursts up to length 20 before the signal returns to normal
for a set period of time.

For all missingness scenarios, the coefficients of the gen-
erating series randomly switch at set times in order to test
the ability of the imputation methods to deal with slowly and
rapidly evolving dependence within a signal. The time series
used in each case have the following forms:

e Slowly changing structure: Trivariate signal of length
T = 512, two changes in the generating coefficients of
the series, occurring at time 150 and 300.

e Rapidly changing structure: Trivariate signal of length
T = 512, four changes in the generating coefficients of
the series, occurring at time 100, 200, 300 and 400.

The first example we consider is a mvLSW process with
changing spectral structure, chosen in such a way that there
is strong coherence between channels of the signal. In this
case, the example consists of two underlying classes with
differing LWS matrices as defined below

5 forj=1,
Class 1 : S;l‘z)(z) =41—-6 forj=2,
—4 for j =5.
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Time

(d) Stationary vector moving average series

dependence structure, class changes at time 100, 200, 300 and 400; (d)
Stationary signal, no changes in the generating coefficient matrices of
the process

2 forj =23,
sV = !

—4 for j =4.
$3V(2) = —6for j =2.

-5 forj =1,

Class2:  S{'"P(@) =16 forj=2,

4 forj=S5.

8 forj =3,
5@ = .

4 forj=4.

sV (0) =6 for j = 2.

Figure la displays a dataset simulated from this process
using the different dependence structures described above.
The second example we examine is a time-varying vector
autoregressive moving average process with three different
classes defined by the following coefficient matrices

04 0.1 —-0.2
Class1: X, =| 0.1 03 —03]|X,_1+7Z+
—-0.2 -0.3 —-0.2
1 0.804
08 1 0.1]|Z,,
040.1 1
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-03-0.20.3
—02-030.1 ) X1 +7Z;+
03 0.1 0.2

1 —-0.6 03
—-06 1 —-03)Z
03 03 1

—-0.6 0.4 0.1
04 0203 | X1 +7Z,+
0.1 0.30.5

1 02-0.7
02 1 0.6
-0706 1

Class2: X; =

Class3: X; =

Z,

where Z, and Z;_| are zero-mean multivariate normal reali-
sations, distributed with class-dependent covariances

100 300
Y1=1010], Yr=X3=1030
001 003

for classes 1-3, respectively. The signal switches randomly
between each of the three classes at different times depending
on whether we are considering slowly or rapidly evolving
dependence. This ensures that the intra- and cross-channel
dependence of the process changes over time (see Fig. 1b).

The third example we consider is a time-varying vector
autoregressive process with two classes defined by the fol-
lowing coefficient matrices

03 02 —-02

Class1: X, =| 02 04 —-02]|X,_1+
—-0.2 —-0.2 —0.1
04 —-0.2 03
—-0.2 -04 0.1 | X;—2 + €
0.3 0.1 —0.2
02 —02 O

Class2: X;=|—-02 04 —-02]|X;1+
0 —-0.2 02
-01 0 O
0 —0403|X;2+e
0 0303

where the innovation vectors €; are zero-mean multivariate
normal realisations, distributed with per-class covariances

1020 5122
To=102101), z,=[12515
0 0.1 1 2155

A realisation of such a process can be seen in Fig. lc.
Within the simulation study, we compare our method to a
range of multivariate imputation approaches, some of which

assume that the data follow a (time-constant) multivariate
normal distribution. For this reason, we also include a sta-
tionary example where the coefficients of the moving average
process do not change over time. The coefficient matrices for
this process are defined as follows

1 05-02 1 —04 02

X, =Z,+[ 05 1 03 |z_+[-04 1 —06
0203 1 02 —06 1
1 01 —05

Zio+| 01 1 —03]|Z_3
~0.5-03 1

where Z;_1, Z;_» and Z;_3 are zero-mean, multivariate nor-
mal realisations, with covariances given by

200
020
002

Y =

An example of this stationary process can be found in Fig. 1d.

4.1 Competitor methods

In the simulation study, we compare our method with a
number of alternative multivariate imputation approaches,
suitable for one single realisation of a multivariate process.
Firstly, we consider the modified expectation—maximisation
(EM) approach of Junger and de Leon (2015) implemented in
the R package mt sdi (Junger and de Leon 2018). Within this
method, cross-channel correlations are taken into account
within the multivariate normal modelling structure and inter-
time behaviour is accounted for using a level estimation step
in which temporal behaviour of each of the univariate time
series is estimated. In the mt sdi package, a number of dif-
ferent methods are implemented for estimating the level of
the univariate time series. For all simulated examples, we
fit a cubic spline to each univariate component where the
number of degrees of freedom of each spline is chosen by
cross-validation.

Secondly, we compare against the multiple imputation
method that combines expectation—maximisation with boot-
strapping proposed by Honaker and King (2010), available in
the Amelia IT R package (Honaker et al. 2015), see also
Honaker et al. (2011) for implementation details. As this
is a multiple imputation approach, the method produces m
completed datasets which are then averaged to obtain a final
imputed dataset. Within the simulations, we choose m = 5
as this is suggested to be suitable unless the rate of missing-
ness is very high (Schafer and Olsen 1998; Honaker et al.
2011). As both of these methods assume that the data can be
modelled using a multivariate normal distribution, we would
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Fig. 2 Time series plots of the accelerometer readings for the three sensors (axes) over the same time period: (a) original series; (b) series with
induced missingness—red triangles show locations of missing datapoints. (Color figure online)

expect them to perform poorly in cases where the underlying
time series is highly nonstationary.

As we wish to impute missing values in a multivariate,
nonstationary time series, it is important to compare our
method to a range of other model-based approaches avail-
able in the literature. Specifically, we apply the iterative PCA
multiple imputation method of Audigier et al. (2016), which
is available in the mi ssMDA R package; see Josse and Hus-
son (2016) and Husson and Josse (2018) for more details.
Within the simulations, we apply the regularised iterative
PCA algorithm with the number of random initializations
set to 10 and the default parameters. In addition, we com-
pare to the nonparametric random forest imputation method
(Stekhoven and Bithlmann 201 1) implemented in the R pack-
agemissForest (Stekhoven 2013) where again we use the
default parameters.

Since our method involves using a one-step ahead fore-
casting and backcasting step within the mvLSW framework,
as adirect comparison to this we also apply the vector autore-
gressive prediction approach from the R package MTS (Tsay
2015), described in the text Tsay (2013). For each missing
index, the approach fits a vector autoregressive process to
the available observations and then produces one-step ahead
forecasts to predict the missing values. In an attempt to ensure
fair comparison with our proposed method, we implement
the vector autoregression prediction performing a backward
pass of the data and combine the estimates from the fore-
casting and backcasting steps by averaging, similar to the
mvLSWimpute method. This is denoted VAR-fb. For com-
pleteness, we also include the results from applying one-step
ahead forecasting only within this setting (denoted VAR-
f). Our proposed mvLSWimpute method was implemented
using modifications to the code in the wavethresh (Nason
2016) and mvLSW (Taylor et al. 2017) R packages which per-
form estimation of multivariate LSW process quantities.
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Fig. 3 Imputation results for the first period of missingness in the
trivariate accelerometry signal from the case study: missing values
denoted by black dots; imputed values for the mtsdi, VAR-fb and
mvLSWimpute methods shown by red crosses (x), blue plusses (+)
and green triangles (a). (Color figure online)

4.2 Evaluation measures

For each of the missingness scenarios and dependence struc-
tures described in Sect. 4, K = 100 realizations of the test
signals are simulated and four different evaluation measures
are considered. In order to assess the performance of the
imputation methods, we consider a modified version of the
root-mean-square error (RMSE) and mean absolute error
(MAE). The majority of the simulated examples we con-
sider contain changes in variability over time; this volatility
affects the standard RMSE and MAE and makes it difficult
to directly compare results for slowly and rapidly evolving
dependence. For this reason, we scale the results over time
using the true standard deviation.

Let o;, p denote the true standard deviation of the signal
at time ¢ for channel P. The calculations of the modified
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RMSE and MAE only include the predicted values at the
missing time points and not the full time series. Let N denote
the total number of missing values across all channels and
time points, fnis = {f1, f2, . . .} contain the time points where
observations are missing and Pnis = {P, Ps,, ...} denote
the corresponding channels which are affected. Then, the
modified RMSE can be defined by

b 2
)
RMSE = Z Z Gor = Xor)” , )
be Pnmis S €mis
and the modified MAE as
I
MAE = Z Z (10)

bE Phis S €mis

In addition to this, we also rank the imputation methods
based on the modified RMSE and MAE results. For each of
the K = 100 realizations carried out, we track which of the
imputation methods gives the lowest scaled RMSE and MAE
and sum the results.

The imputation results for each of the examples described
above (as in Fig. 1) can be seen in Tables 1, 2, 3, 4, 5. For
each example, we consider 10, 20, 30 and 40% missingness
at random as well as chunks of 20 consecutive time points
missing and bursts of missingness up to length 20. A descrip-
tion of how the bursts of missingness are generated can be
found in “Appendix B” section. Note that we include the
results for the situation where the missingness occurs in all
channels simultaneously. In each case, we record the modi-
fied RMSE, modified MAE and rankings over the K = 100

T
100

200 500

Time

realizations based on these errors (as described above); the
numbers within the brackets represent the standard deviation
of these quantities.

When we consider rapidly evolving dependence within the
time varying vector autoregressive moving average setting
(Table 1), it can be seen that the mvL SWimpute method per-
forms well both in terms of the modified error measures and
the rankings when percentages of the data are missing at ran-
dom. On the other hand, the competitor methods which rely
on the assumption of an underlying stationary model cannot
cope with the changing dependence structure. Note that the
addition of a backcasting step into the vector autoregressive
prediction approach (VAR-fb) provides an improvement in
performance. However, it can be seen that the results weaken
when we look at more extreme missingness scenarios such
as bursts or chunks missing. When imputing missing values
in areas of a signal where consecutive time points are miss-
ing, perhaps unsurprisingly all methods struggle to accurately
reconstruct the dependence behaviour within these areas.

We next turn to consider the stationary moving average
process (Table 2). It can be seen that the
mvLSWimpute approach again produces more accurate
results followed by both VAR-fb and mtsdi. Despite the
competitor methods being designed for imputation within
stationary time series, the mvLSWimpute method outper-
forms them both in terms of the modified error measures and
the rankings.

As expected, for the mvLSW process exhibiting slowly
varying spectral structure the mvLSWimpute method per-
forms strongly across all evaluation measures. We report the
full results for this scenario in Table 3 of “Appendix B” sec-
tion. For the slowly evolving vector autoregressive series, the
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Table 1 Performance of the imputation methods over K = 100 real- scenarios occurring simultaneously across all channels, using the eval-
izations of vector moving average, autoregressive series with rapidly uation measures described in the text
changing dependence structure (Fig. 1b) for different missingness

Method 10% 20% 30% 40% Chunks Bursts

Scaled by true standard deviation—RMSE

mvLSWimpute-f 1.67 (0.13) 1.76 (0.10) 1.80 (0.10) 1.88 (0.10) 2.02 (0.52) 1.81 (0.16)
mvLSWimpute-fb 1.45 (0.11) 1.54 (0.09) 1.60 (0.09) 1.70 (0.09) 2.00 (0.52) 1.62 (0.14)
mtsdi 1.69 (0.12) 1.74 (0.11) 1.78 (0.10) 1.89 (0.11) 2.33 (0.64) 1.82 (0.18)
Amelia 2.40 (0.19) 242 (0.14) 241 (0.14) 2.44 (0.14) 2.36 (0.51) 2.37 (0.22)
VAR-f 1.75 (0.15) 1.84 (0.11) 1.90 (0.12) 1.98 (0.11) 2.05 (0.53) 1.84 (0.16)
VAR-fb 1.54 (0.12) 1.65 (0.09) 1.71 (0.10) 1.82 (0.09) 2.02 (0.52) 1.68 (0.16)
PCA 2.10 (0.18) 2.12(0.13) 2.11 (0.13) 2.15(0.13) 2.07 (0.53) 2.07 (0.20)
Random forest 2.19 (0.21) 2.19(0.14) 2.21 (0.15) 2.26 (0.18) 2.15(0.54) 2.16 (0.22)
Scaled by true standard deviation—MAE

mvLSWimpute-f 1.32 (0.10) 1.39 (0.08) 1.42 (0.08) 1.48 (0.07) 1.61 (0.43) 1.42 (0.13)
mvLSWimpute-fb 1.14 (0.09) 1.22 (0.07) 1.26 (0.07) 1.34 (0.07) 1.59 (0.43) 1.27 (0.11)
mtsdi 1.34 (0.10) 1.37 (0.09) 1.41 (0.07) 1.48 (0.08) 1.86 (0.52) 1.44 (0.14)
Amelia 1.89 (0.15) 1.91 (0.11) 1.91 (0.11) 1.92 (0.11) 1.90 (0.42) 1.87 (0.17)
VAR-f 1.38 (0.11) 1.45 (0.09) 1.50 (0.09) 1.56 (0.08) 1.64 (0.44) 1.46 (0.13)
VAR-fb 1.21 (0.09) 1.30 (0.07) 1.35 (0.08) 1.43 (0.07) 1.62 (0.43) 1.33 (0.13)
PCA 1.65 (0.14) 1.67 (0.10) 1.66 (0.10) 1.68 (0.10) 1.66 (0.44) 1.64 (0.16)
Random forest 1.72 (0.16) 1.72 (0.11) 1.74 (0.12) 1.78 (0.15) 1.73 (0.44) 1.71 (0.17)
Ranking—RMSE

mvLSWimpute-f 0 0 0 0 19 0
mvLSWimpute-fb 92 95 929 97 27 80

mtsdi 0 0 0 1 3 2

Amelia 0 0 0 0 2

VAR-f 0 0 0 0 11 0

VAR-fb 8 5 1 2 17 18

PCA 0 0 0 0 7 0

Random forest 0 0 0 0 14 0
Ranking—MAE

mvLSWimpute-f 1 0 0 0 20 1
mvLSWimpute-fb 90 98 98 929 28 77

mtsdi 0 0 0 1 3

Amelia 0 0 0 0 0

VAR-f 0 0 0 0 0

VAR-fb 9 2 2 0 15 19

PCA 0 0 0 0 7 0

Random forest 0 0 0 0 13 0

Numbers in brackets represent the standard deviation of estimation errors
Bold numbers indicate best result

mvLSWimpute method consistently performs better than  Again, we report the full results for this example in Table 4
the competitors. However, the VAR-fb approach also per-  of “Appendix B” section.
forms well in this setting due to the underlying model used Note thatin nearly all cases across the examples, mvLSWimpute
for the one step ahead predictions being designed for this  performs consistently well in terms of the error measures
scenario. In this case, the results produced are comparable to  considered, despite some of the competitor methods being
mvLSWimpute in terms of the modified RMSE and MAE.  designed specifically for imputation within those scenarios.

We also observe that the use of a backcasting step within both
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Table 2 Performance of the imputation methods over K = 100 realizations of stationary vector moving average series (Fig. 1(d)) for different
missingness scenarios occurring simultaneously across all channels, using the evaluation measures described in the text

Method 10% 20% 30% 40% Chunks Bursts

Scaled by true standard deviation—RMSE

mvLSWimpute-f 1.81 (0.12) 1.89 (0.09) 1.94 (0.07) 2.00 (0.07) 2.14 (0.26) 1.97 (0.15)
mvLSWimpute-fb 1.63 (0.11) 1.71 (0.09) 1.77 (0.06) 1.83 (0.07) 2.13 (0.25) 1.81 (0.14)
mtsdi 1.71 (0.11) 1.79 (0.10) 1.89 (0.10) 2.02 (0.12) 2.33(0.31) 1.94 (0.19)
Amelia 2.36 (0.15) 2.41(0.11) 2.42 (0.10) 2.42 (0.10) 2.41 (0.26) 2.43 (0.18)
VAR-f 1.83 (0.12) 1.91 (0.10) 1.96 (0.08) 2.03 (0.08) 2.19 (0.26) 2.01 (0.16)
VAR-fb 1.66 (0.11) 1.75 (0.09) 1.81 (0.07) 1.89 (0.08) 2.16 (0.26) 1.85(0.14)
PCA 2.15(0.14) 2.21(0.10) 2.21 (0.08) 2.22 (0.10) 2.20 (0.25) 2.20 (0.16)
Random forest 2.30 (0.19) 2.37 (0.18) 2.35(0.17) 2.37 (0.16) 2.39 (0.35) 2.35(0.23)
Scaled by true standard deviation—MAE

mvLSWimpute-f 1.44 (0.10) 1.51 (0.08) 1.54 (0.06) 1.59 (0.06) 1.73 (0.23) 1.56 (0.11)
mvLSWimpute-fb 1.29 (0.09) 1.36 (0.07) 1.40 (0.05) 1.45 (0.06) 1.72 (0.22) 1.43 (0.11)
mtsdi 1.36 (0.09) 1.43 (0.08) 1.49 (0.07) 1.58 (0.08) 1.86 (0.25) 1.52 (0.14)
Amelia 1.89 (0.13) 1.93 (0.09) 1.93 (0.07) 1.93 (0.09) 1.94 (0.24) 1.94 (0.16)
VAR-f 1.45 (0.10) 1.52 (0.08) 1.56 (0.06) 1.61 (0.07) 1.78 (0.23) 1.59 (0.12)
VAR-fb 1.32 (0.09) 1.39 (0.07) 1.44 (0.05) 1.50 (0.07) 1.76 (0.23) 1.47 (0.11)
PCA 1.72 (0.12) 1.76 (0.09) 1.76 (0.06) 1.77 (0.09) 1.79 (0.23) 1.76 (0.14)
Random forest 1.84 (0.16) 1.90 (0.15) 1.88 (0.14) 1.90 (0.13) 1.95 (0.31) 1.88 (0.20)
Ranking—RMSE

mvLSWimpute-f 1 0 0 0 26 1
mvLSWimpute-fb 67 79 84 95 31 71

mtsdi 12 8 6 0 11 14

Amelia 0 0 0 0 0 0

VAR-f 0 0 0 0 5

VAR-fb 20 13 10 5 13 13

PCA 0 0 0 0 3 0

Random forest 0 0 0 0 11 0
Ranking—MAE

mvLSWimpute-f 1 0 0 0 25 1
mvLSWimpute 63 78 920 92 30 68

mtsdi 12 9 5 4 10 17

Amelia 0 0 0 0 0 0

VAR-f 0 0 10

VAR-fb 24 13 5 4 10 14

PCA 0 0 0 0 4 0

Random forest 0 0 11

Numbers in brackets represent the standard deviation of estimation errors
Bold numbers indicate best result

the mvLSW and VAR imputation methods improves their ~ ingness in one channel only was also considered and similar
performance, justifying its inclusion. However, it should be =~ performance was observed. The results for the vector autore-
noted here that the VAR-f and VAR-fb methods struggled  gressive moving average setting are included in Table 5 of
with fitting models when missingness occurs near the start ~ “Appendix B” section.

(respectively, end) of the series, due to the number of observa-
tions available for parameter estimation; this limits practical
use of these techniques in many contexts and reflects simi-
lar experiences remarked by other authors, see, for example,
Knight et al. (2020). For the scenarios discussed above, miss-

5 Case study

In the previous section, we evaluated the performance of our
multivariate imputation method against a range of alterna-
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tives for a variety of simulated scenarios. We now consider
an application related to health-related motion analysis.

The reduction in cost and size of accelerometers over the
pastdecade has led to the use of these devices in many areas of
scientific research, e.g. sport science (Troiano et al. 2014),
engineering component calibration (Yin and Huang 2014)
and computer security (Mayrhofer and Gellersen 2009).
Accelerometer data are particularly useful in cases when the
measurement of other meaningful physiological signals is
difficult or obtrusive. As such, they have gained popular-
ity in disease-related assessment, for example, analysis of
sleep disorders (Van Hees et al. 2015), obesity and other car-
diometabolic biomarkers (Brocklebank et al. 2015; Augustin
etal. 2017) and post-diagnosis changes in physiology (Sekine
et al. 2004; McDonald et al. 2019).

The benefits of wavelet-based accelerometry analysis
have been well established in the scientific literature, see
Bidargaddi et al. (2007) or Godfrey et al. (2008), since
accelerometry data often represent movements at differ-
ent frequencies over time. It is also acknowledged that
accelerometry signals are nonstationary in nature (Preece
et al. 2009a, b).

It has been suggested in many studies that attempts to
draw conclusions from accelerometer signals can be hindered
by the presence of missingness within the data, and miss-
ing entries should be replaced with suitable estimates before
further analysis can take place, particularly in the case of
such data collected from smartphones (Barnett et al. 2018).
Within this section, we focus on the problem of imputing
missing values in accelerometer data arising from an exper-
iment in which subjects were asked to perform a sequence
of predetermined activities or postures. Such gait and pos-
tural transition analyses are important in assessing patients’
balance after neurological episodes such as strokes (Janssen
et al. 2008). In particular, we consider recordings in a period
of high activity for the first subject in the HAPT smartphone
dataset (Reyes-Ortiz et al. 2016), obtained from the UCI data
repositoryl(Dua and Graff 2017). In what follows, we first
difference the data to remove any trend, as is commonplace
prior to secondary analysis (Ahrabian et al. 2017).

The resulting data we analyse are a trivariate signal of
length T = 2048. Accelerometer data are often blighted
by missingness, which usually occurs in bursts or chunks
across all axes (see, for example, Ae Lee and Gill (2018)
for a discussion of missingness patterns and imputation of
accelerometry in a different modelling setting). To this end,
we induce bursts of missingness of length / = 30 with spac-
ings of d = 350 according to the procedure in “Appendix B”
section. Figure 2a shows the accelerometer measurements
over time for three sensors, with locations of missingness
shown with red triangles (Fig. 2b).

I https://archive.ics.uci.edu/ml/datasets.php
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We apply the mvLSW-based imputation approach with
m = 2 points considered in the clipped predictor for both
the forecasting and backcasting steps. For comparison, we
apply the mtsdi method and the VAR-fb approach (with
p = 2) as, of the existing methods, these performed better
in the simulation study.

The imputation results for each of the methods are shown
in Fig. 3 for the first burst of missingness (between time
indices t = 50 and # = 80). Missing values are denoted with
black dots, whilst imputed values for mtsdi are denoted
by red crosses, those for the VAR-fb method are given in
blue “plusses” and those for the mvLSWimpute method are
denoted by green triangles.

It can be seen that whilst the imputation results for all three
methods are quite similar, the mvLSWimpute method pro-
duces the most visually reliable estimate for the missing data.
In particular, the mt sdi method does not track any variation
in the volatility of the series, the estimates being essentially
constant over time. The VAR-fb method, whilst better, tends
to produce some significantly over-/underestimated values
for the series. Our mvLSWimpute technique is able to strike
a balance between accurate imputation and the changing
dynamics of the data. We observed similar behaviour of the
methods for different axes and gaps.

Next, we consider the VAR-fb and mvLSWimpute meth-
ods with p = 2 and m = 2, respectively. However, in
some settings, accelerometer data will feature longer tem-
poral dependence, see, for example, the study in Khan et al.
(2013). When modelling the HAR dataset m > 2 for our
mvLSWimpute approach, we observed similarly accurate
results; on the other hand, the VAR-fb method suffered from
drastically variable data estimates for differing p, with the
error often increasing 100-fold.

The overall aim of an analysis with accelerometer data is
to, typically, perform activity recognition and analysis that
could be used to provide health interventions. It is therefore
important to be able to replace missing values with reasonable
estimates which will then allow further analysis to be carried
out. Our mvLSW imputation approach can be used as a first
step to infill any missing values before attempting to predict
activity levels or other secondary analysis tasks of interest.

6 Concluding remarks

In this work, we have introduced a wavelet-based imputation
method that can be used to replace missing values within
a multivariate, nonstationary time series. We compared the
performance of our method against existing imputation
approaches using simulated data examples and a smartphone
accelerometer dataset. The simulated data examples demon-
strate that the use of a backcasting step within imputation
can improve the performance of the prediction methods. The
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case study shows that our method can be used to success-
fully impute missing values within time series containing
both nonstationarity and seasonality, resulting in a more reli-
able imputation estimate compared to existing approaches.

In practice, we have found that, as with other competitor
methods, the performance of our approach suffers when we
have extreme scenarios such as chunks of consecutive time
points missing or bursts of missingness. An avenue for future
research could be to look at ways in which we could improve
the imputation results for these cases.

Acknowledgements Wilson gratefully acknowledges financial support
from EPSRC and Shell via the STOR-i Centre for Doctoral Training
(EP/L015692/1). Eckley also gratefully acknowledges the financial sup-
port of EPSRC Grant EP/N031938/1. An R package implementing the
imputation method in this article is available from the corresponding
author on request.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Overview of the mvLSWimpute algorithm

In this section, we provide an algorithmic overview of our
proposed imputation technique for multivariate nonstation-
ary time series. More specifically, Algorithm 1 outlines
the steps involved in one iteration of our mvLSWimpute
methodology.

1: Spectral estimation step
Estimate the LWS matrix of the signal containing missing data in
the following way:

(a) Estimate the raw wavelet periodogram keeping any missing
values intact; any wavelet coefficients affected by the initial
missing values will also be missing.

(b) For each spectra and cross-spectra, linearly interpolate the
missing wavelet coefficients by level of the periodogram.

(c) Recursively apply the wavelet filter equations to the coarsest
level of the periodogram that contains information to replace
any levels that consist solely of missing values.

(d) Smooth the periodogram using a running mean smoother and
correct using the inverse of the inner product matrix of discrete
autocorrelation wavelets A.

2: Forecasting step
For each missing index i, forecast the missing value in the
following way:

(a) Consider the spectra obtained in Step 1 from time 1 to time
i—1.

(b) Form the local auto- and cross-covariance by substituting
estimated spectra from time 1 to i — 1 into Equations (4) and
(5).

(c) For each channel combination (p, ¢), solve the prediction
equations given in Equation (6) to obtain b(?+9).

(d) Use b2 vectors along with the clipped predictor in Equation
(7) to estimate the value of the time series at missing index i.

3: Backcasting step
For each missing index i, backcast the missing value in the
following way:

(a) Consider the spectra obtained in Step 1 from time 7 to time
i+ 1.

(b) Form the local auto and cross-covariance by substituting
estimated spectra from time 7 to i + 1 into Equations. (4) and
).

(c) For each channel combination (p, g), solve the prediction
equations given in Equation (6) to obtain b4,

(d) Use b vectors along with the clipped predictor in Equation
(8) to estimate the value of the time series at missing index i.

4: Averaging step
Average the estimates of the time series obtained from the forward
pass described in Step 2 and the backward pass described in Step 3.

Alg. 1: One iteration of the mvLSWimpute algorithm.
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B Additional simulation results

In this appendix, we present the results for some of the
simulated examples in Sect. 4. Specifically, we include the
imputation results for slowly evolving mvLSW and vector
autoregressive series with missingness occurring simultane-
ously across all channels; these can be found in Tables 3
and 4, respectively. Finally, Table 5 contains the results for
vector moving average, autoregressive series with rapidly
changing dependence structure, where missingness occurs
across one channel only.

Bursts of missingness

Here, we describe how we generated bursts of missingness
for the examples in the main text. For all the simulations
described in Sect. 4, we generate 5 bursts of missingness that
have maximum length / = 20 and are a minimum of d = 70
time points apart. First, we randomly sample 50% of the
indices without replacement which form the set of candidate
locations for missing data. Next, we select the start location
for the first burst by sampling an index k between 30 and
70. The start locations s of the bursts are then defined by

Table 3 Performance of the imputation methods over K = 100 realizations of mvLSW process with slowly evolving dependence (Fig. 1(a)) for
different missingness scenarios occurring simultaneously across all channels, using the evaluation measures described in the text

Method 10% 20% 30% 40% Chunks Bursts
Scaled by true standard deviation—RMSE

mvLSWimpute-f 0.88 (0.06) 0.90 (0.05) 0.92 (0.04) 0.94 (0.04) 1.00 (0.14) 0.92 (0.08)
mvLSWimpute-fb 0.81 (0.06) 0.85 (0.04) 0.87 (0.04) 0.89 (0.04) 1.00 (0.14) 0.88 (0.08)
mtsdi 0.93 (0.06) 0.95 (0.05) 0.97 (0.04) 1.01 (0.07) 1.15(0.22) 0.97 (0.09)
Amelia 1.10 (0.07) 1.10 (0.06) 1.11 (0.05) 1.09 (0.04) 1.11 (0.15) 1.09 (0.09)
VAR-f 0.92 (0.06) 0.94 (0.05) 0.95 (0.04) 0.97 (0.04) 1.03 (0.15) 0.95 (0.08)
VAR-fb 0.86 (0.06) 0.88 (0.05) 0.90 (0.04) 0.92 (0.04) 1.02 (0.15) 0.89 (0.08)
PCA 1.00 (0.07) 1.00 (0.05) 1.00 (0.04) 0.99 (0.04) 1.02 (0.14) 0.99 (0.08)
Random forest 1.06 (0.09) 1.06 (0.09) 1.06 (0.07) 1.04 (0.05) 1.08 (0.15) 1.04 (0.09)
Scaled by true standard deviation—MAE

mvLSWimpute-f 0.70 (0.05) 0.72 (0.04) 0.73 (0.03) 0.75 (0.03) 0.81 (0.12) 0.73 (0.06)
mvLSWimpute-fb 0.65 (0.05) 0.67 (0.04) 0.69 (0.03) 0.71 (0.03) 0.80 (0.12) 0.70 (0.06)
mtsdi 0.75 (0.06) 0.76 (0.04) 0.77 (0.03) 0.80 (0.04) 0.93 (0.18) 0.77 (0.07)
Amelia 0.88 (0.06) 0.88 (0.05) 0.88 (0.04) 0.87 (0.03) 0.89 (0.12) 0.87 (0.07)
VAR-f 0.73 (0.05) 0.75 (0.04) 0.76 (0.03) 0.77 (0.03) 0.83 (0.13) 0.75 (0.06)
VAR-fb 0.68 (0.05) 0.70 (0.04) 0.71 (0.03) 0.73 (0.03) 0.82 (0.13) 0.71 (0.06)
PCA 0.80 (0.06) 0.80 (0.04) 0.81 (0.04) 0.79 (0.03) 0.82 (0.12) 0.79 (0.06)
Random forest 0.85 (0.07) 0.85 (0.07) 0.85 (0.05) 0.83 (0.04) 0.87 (0.13) 0.84 (0.07)
Ranking—RMSE

mvLSWimpute-f 3 1 0 0 29 10
mvLSWimpute-fb 90 91 97 98 32 67

mtsdi 1 0 0 0 7 4

Amelia 0 0 0 0 2 0

VAR-f 0 0 0 0 11 0

VAR-fb 6 8 3 2 12 19

PCA 0 0 0 0 3 0

Random forest 0 0 0 0 0
Ranking—MAE

mvLSWimpute-f 5 2 1 1 24 10
mvLSWimpute-fb 88 90 92 89 31 66

mtsdi 0 0 0 0 10 4

Amelia 0 0 0 0 3 0

VAR-f 1 0 0 0 11 0
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Table 3 (continued)

Method 10% 20% 30% 40% Chunks Bursts
VAR-fb 6 8 7 10 11 20
PCA 0 0 0 2 0
Random forest 0 0 0 0 8 0

Numbers in brackets represent the standard deviation of estimation errors
Bold numbers indicate best result

Table4 Performance of the imputation methods over K = 100 realiza-

taneously across all channels, using the evaluation measures described

tions of vector autoregressive series with slowly evolving dependence in the text

structure (Fig. 1(c)) for different missingness scenarios occurring simul-

Method 10% 20% 30% 40% Chunks Bursts
Scaled by true standard deviation—RMSE

mvLSWimpute-f 1.10 (0.08) 1.13 (0.05) 1.14 (0.05) 1.16 (0.04) 1.14 (0.13) 1.14 (0.08)
mvLSWimpute-fb 1.04 (0.07) 1.07 (0.05) 1.08 (0.05) 1.11 (0.04) 1.13 (0.13) 1.09 (0.07)
mtsdi 1.14 (0.08) 1.17 (0.05) 1.18 (0.05) 1.19 (0.05) 1.21 (0.18) 1.17 (0.09)
Amelia 1.34 (0.09) 1.36 (0.07) 1.36 (0.07) 1.37 (0.05) 1.35 (0.25) 1.34 (0.09)
VAR-f 1.11 (0.09) 1.15 (0.05) 1.15 (0.06) 1.17 (0.04) 1.15 (0.14) 1.14 (0.08)
VAR-fb 1.06 (0.08) 1.09 (0.05) 1.10 (0.05) 1.13 (0.04) 1.15 (0.20) 1.10 (0.08)
PCA 1.16 (0.08) 1.17 (0.05) 1.16 (0.06) 1.17 (0.04) 1.17 (0.18) 1.17 (0.08)
Random forest 1.24 (0.12) 1.26 (0.12) 1.27 (0.11) 1.27 (0.10) 1.21 (0.17) 1.25 (0.12)
Scaled by true standard deviation—MAE

mvLSWimpute-f 0.88 (0.07) 0.90 (0.04) 0.91 (0.04) 0.92 (0.03) 0.94 (0.14) 0.90 (0.06)
mvLSWimpute-fb 0.82 (0.06) 0.85 (0.04) 0.86 (0.04) 0.88 (0.03) 0.93 (0.14) 0.86 (0.07)
mtsdi 0.91 (0.06) 0.93 (0.04) 0.94 (0.04) 0.95 (0.04) 0.97 (0.14) 0.93 (0.07)
Amelia 1.06 (0.07) 1.08 (0.05) 1.08 (0.04) 1.08 (0.04) 1.08 (0.20) 1.06 (0.08)
VAR-f 0.88 (0.07) 0.91 (0.05) 0.92 (0.05) 0.93 (0.03) 0.95 (0.15) 0.91 (0.06)
VAR-fb 0.84 (0.06) 0.87 (0.04) 0.87 (0.04) 0.89 (0.03) 0.94 (0.15) 0.87 (0.07)
PCA 0.92 (0.06) 0.94 (0.04) 0.93 (0.04) 0.94 (0.03) 0.95 (0.15) 0.93 (0.07)
Random forest 0.99 (0.10) 1.00 (0.09) 1.01 (0.08) 1.01 (0.08) 0.99 (0.20) 0.99 (0.10)
Ranking—RMSE

mvLSWimpute-f 0 0 0 0 22 2
mvLSWimpute-fb 68 66 72 73 17 57

mtsdi 0 0 0 0 12 1

Amelia 0 0 0 0 2 0

VAR-f 0 0 0 0 14 1

VAR-fb 32 34 28 27 21 38

PCA 0 0 0 0 3 1

Random forest 0 0 0 0 0
Ranking—MAE

mvLSWimpute-f 1 0 0 1 22 3
mvLSWimpute-fb 63 64 67 67 17 55

mtsdi 0 0 0 0 11 0

Amelia 0 0 0 0 2 0

VAR-f 1 0 0 0 14 2

VAR-fb 35 36 33 32 20 39

PCA 0 0 0 0 3 1

Random forest 0 0 0 0 11 0

Numbers in brackets represent the standard deviation of estimation errors
Bold numbers indicate best result
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Table 5 Performance of the imputation methods over K = 100 real- scenarios occurring across one channel, using the evaluation measures
izations of vector moving average, autoregressive series with rapidly described in the text
changing dependence structure (Fig. 1(b)) for different missingness

Method 10% 20% 30% 40% Chunks Bursts

Scaled by true standard deviation—RMSE

mvLSWimpute-f 1.63 (0.20) 1.64 (0.14) 1.67 (0.13) 1.70 (0.11) 1.91 (0.56) 1.72 (0.21)
mvLSWimpute-fb 1.40 (0.18) 1.44 (0.11) 1.45(0.11) 1.49 (0.09) 1.79 (0.48) 1.55 (0.18)
mtsdi 1.70 (0.21) 1.72 (0.13) 1.73 (0.12) 1.75 (0.11) 2.06 (0.58) 1.87 (0.23)
Amelia 2.29 (0.28) 2.24 (0.19) 2.25(0.18) 2.29 (0.16) 2.24 (0.55) 2.21(0.31)
VAR-f 1.73 (0.17) 1.72 (0.13) 1.74 (0.13) 1.79 (0.12) 1.96 (0.52) 1.80 (0.22)
VAR-fb 1.50 (0.16) 1.52 (0.11) 1.55 (0.11) 1.59 (0.10) 1.82 (0.49) 1.60 (0.17)
PCA 2.02 (0.22) 1.99 (0.16) 2.03 (0.16) 2.05 (0.16) 2.02 (0.50) 2.00 (0.29)
Random forest 2.07 (0.23) 2.07 (0.17) 2.09 (0.16) 2.14 (0.15) 2.13(0.47) 2.09 (0.30)
Scaled by true standard deviation—MAE

mvLSWimpute-f 1.30 (0.16) 1.30 (0.11) 1.32 (0.10) 1.36 (0.09) 1.49 (0.45) 1.36 (0.17)
mvLSWimpute-fb 1.12 (0.15) 1.14 (0.09) 1.15 (0.09) 1.18 (0.07) 1.45 (0.41) 1.23 (0.14)
mtsdi 1.36 (0.18) 1.36 (0.12) 1.37 (0.10) 1.39 (0.09) 1.64 (0.50) 1.49 (0.18)
Amelia 1.81(0.22) 1.79 (0.17) 1.79 (0.15) 1.82 (0.12) 1.85 (0.46) 1.76 (0.25)
VAR-f 1.39 (0.15) 1.39 (0.13) 1.40 (0.11) 1.41 (0.09) 1.61 (0.45) 1.42 (0.16)
VAR-fb 1.19 (0.14) 1.21 (0.10) 1.22 (0.10) 1.24 (0.09) 1.47 (0.43) 1.28 (0.13)
PCA 1.60 (0.18) 1.59 (0.16) 1.62 (0.12) 1.65 (0.12) 1.58 (0.41) 1.60 (0.23)
Random forest 1.64 (0.19) 1.64 (0.13) 1.66 (0.13) 1.69 (0.12) 1.67 (0.39) 1.65 (0.24)
Ranking—RMSE

mvLSWimpute-f 3 1 0 0 16 4
mvLSWimpute-fb 76 86 87 93 22 65

mtsdi 3 2 0 6 2

Amelia 0 0 0 0 3 0

VAR-f 0 0 0 0 9

VAR-fb 18 11 12 7 33 28

PCA 0 0 0 0 0

Random forest 0 0 0 0 0
Ranking—MAE

mvLSWimpute-f 5 1 0 0 19 8
mvLSWimpute-fb 74 84 86 93 21 62

mtsdi 0 0 6 2

Amelia 0 0 0 0 4

VAR-f 0 0 0 0 13 2

VAR-fb 21 14 13 7 26 26

PCA 0 0 0 0 0

Random forest 0 0

Numbers in brackets represent the standard deviation of estimation errors
Bold numbers indicate best result
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