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1. INTRODUCTION 

Wind energy is one of the most important renewable resources. The level of installed wind capacity has increased signif-
icantly over the past decade, and many countries have already reached high levels of wind power penetration (between 
5% and 30% ). However, both the variability and the uncertainty of the wind represent certain drawbacks compared with 
traditional energy sources, leading, e.g., to higher ancillary service requirements to maintain the electrical system bal-
ance. In fact, the integration of high wind power amounts has been conditioned to specific actions to reduce the impact of 
the mentioned drawbacks, such as the implementation of accurate wind power forecasting models, especially within the 
short-term context. 

The increasing size of wind farms has emphasised the effect of ramp events, i.e. large variations of the wind power 
output of a certain wind farm or a portfolio within a short period (up to a few hours). From a technical point of view, 
ramp events may be perceived by the Transmission System Operators (TSO) as critical perturbations in the generation side, 
especially in small balancing areas.3 From an economic point of view, energy traders of liberalised electricity markets incur 
penalties because of deviations in scheduled energy. In both cases, forecasting wind power ramp events could represent a 
means to mitigate these problems, contributing to large-scale wind power integration. The booming importance of wind 
power forecasting during extreme events is observed in the increasing number of studies and projects on this topic, with 
the European SafeWind Project being one of the most representative of this line of research. However, it is important to 
note that most of the publications still belong to proceedings, conferences, and enterprise technical reports because of the 
novelty of this topic (see Thiesen,10 Collier et al.,

11 Zack et al}
2 and Girard et al.,

13 among others). As a consequence 
of the recent activity, some considerations related to ramp forecasting are beginning to be highlighted. For example, a 
deeper classification of the causes of ramp events is still needed.14' Ramp events can be motivated by a broad number 
of meteorological processes that occur at different time/spatial scales from horizontal processes (e.g. frontal systems in 
the synoptic scale, thunderstorms and hurricanes in the mesoscale) to vertical processes (e.g. dry convection). • Ramp 
events may also be conditioned by microscale effects such as wake effects and yaw misalignment, as well as other features 
such as the non-linearity of the wind turbine power curve, the cut-out wind speed and grid faults (power dips). Hence, a 
variety of ramp event causes must be considered to address wind power ramp forecasting. In the case of an oriented ramp 
event forecasting tool fed with the outputs of a General Circulation Model, the performance obtained would be limited 
by its resolution because mainly large-scale meteorological processes (synoptic processes) would be expected to be mod-
elled, ignoring ramp events caused by mesoscale and microscale effects. Instead, the use of mesoscale models permits the 
modelling of meteorological processes with shorter life cycles, which usually leads to reductions in the amplitude of the 
forecasting error. However, the so-called phase error (which is observed when a certain process occurs earlier or later than 
forecasted) does not necessarily diminish with an increment in resolution because it may come from initial and boundary 
conditions provided by General Circulation Models.17'18 Hence, approaching the problem of wind power ramp forecasting 
requires a well-defined strategy and a clear idea of the nature of the ramps intended to be modelled. Another recent ques-
tion related to ramp forecasting is the criterion used to tune forecasting models. Traditional wind power prediction tools are 
currently based on the minimisation of a global error criterion (e.g. the root mean squared error), which severely penalises 
the mentioned phase errors during ramp events. As a result, the global minimisation approach tends to predict smoother 
ramps than the observed ones so as to cover a broader time window. Therefore, specific performance criteria focusing 
on ramp event forecasting have been demanded.7'14' Finally, most of the related analyses agree on the lack of a robust 
ramp definition.14'1 '19 '20 Intuitively, a ramp event is a large variation in wind power output within a short period. Ramps 
have usually been defined in a binary way by fixing two threshold values related to the absolute power variation and the 
duration of the event observed in the wind power time series. These thresholds are usually defined ad hoc, which has led 
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to several different ramp definitions. • • • These choices are understandable because the notion of ramp event may 
vary depending on end-user requirements, but a well-defined methodology to relate the mentioned thresholds to end-user 
needs is usually missing. In addition, several studies point out that a binary definition may artificially lead to the reduced 
performance of a ramp forecasting model. • 

This work addresses the problem of characterising ramp events in wind power time series on the basis that the binary 
definition usually adopted is likely to be affected by several shortcomings. An innovative methodology for ramp event 
characterisation based on the wavelet transform (WT) is introduced. Only one parameter must be assessed from expertise 
as an input (related with the maximum duration of ramps). As a result, the ramp function is obtained, which provides a 
continuous index related to the ramp intensity at each time step of a given wind power time series. 

This article is organised as follows: the binary definition of a ramp event is introduced and discussed in Section 2. In 
Section 3, the WT is introduced and the ramp function is defined. Section 4 collects several examples where the ramp 
function can be employed to characterise some features of the ramp performance of a wind farm. Finally, Section 5 gathers 
and discusses the main results obtained in this study. 

2. RAMP EVENT GENERALITIES 

This section addresses the notion of a ramp event. First, the main features of a ramp event are described. Next, the use of 
the indicator function as a basis for the binary ramp classification is introduced, as well as several specific cases presented 
in recent works. Finally, the implications of the use of the binary definition are outlined. 

The term ramp event makes reference to a large variation in wind power output that is observed on a wind farm (or in a 
portfolio) within a short period (up to a few hours). To characterise a ramp event, the following set of parameters is usually 
employed:7'11'22 

• Magnitude (AP): the variation of the power output during the event. A P is commonly defined as a percentage of the 
rated power, PR . 

• Duration (Af): the period in which a large variation takes place. 
• Timing (fn): a time instant that specifies the time of the ramp event, fn c a n be defined as the starting time of the large 

variation, although the central time of the event can also be employed. 

Another parameter of interest is the ramp rate, which is derived from the previous variables (AP/ At) and provides an 
idea of the ramp intensity. In addition, the ramp direction is usually also considered, i.e. whether the ramp event represents 
an increment or a decrement in power. 

To assess these parameters during a specific extreme event, the ramp needs to be previously identified. In some cases, 
a ramp event can be intuitively recognised from the wind power time series under analysis. Figure 1 (top) clearly illus-
trates two consecutive ramp events observed during 25 and 27 January in the wind farm of Ariz, located in a region in 
the northwest of Spain that has a complex terrain. The wind farm of Ariz consists of 32 wind turbines with a rated power 
of 19.2 MW. The time resolution of the wind power time series is 1 h. In this case, variations in the AP25th = 91.1% 
and AP27th = 83.3% of the rated power were observed within a duration of Af = 4 h. On the other hand, Figure 1 
(bottom) shows a period where high variations in power were experienced (between 11 and 13 December) such that the 
non-monotonic evolution of the time series makes it difficult to assess the ramp magnitude without having to make an 
arbitrary decision related to the ramp duration. This example illustrates that identifying ramps with the naked eye may be a 
non-trivial task. 

To deal with the subjective concept of ramp, all of the studies reviewed relied on the definition of specific thresholds to 
decide whether a certain event could be considered a ramp in a binary manner. The binary classification is based on the 
indicator function, It, defined as follows: 

, ( 1, if St >S0 
7 ' " i 0, ifSt<S0

 (1) 

where St is a predefined criterion function, S : W —> R, evaluated at time t and So represents a threshold. A specific 
event occurs during a period that causes the criterion function to go above threshold (i.e. It = 1). The indicator function 
was used in Hedley and Keffer23 to decide whether fluid motion could be considered turbulent. However, it can be used for 
other purposes simply by considering the appropriate criterion function St. 

The indicator function allows the identification of ramp events in a wind power time series by considering a certain 
criterion function along with a threshold. In most of the studies reviewed, St is defined at time t on the basis of the largest 
variation of the power observed during a period Af that includes f. In other words, Pt, the power output at time f, is 
considered to belong to a ramp event if f belongs to any of the periods Af in which a variation of power A P goes beyond 
a certain value APQ. The sign of the variation determines whether the ramp is positive (It = 1) or negative (It = —1). 
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Figure 1. Examples of ramp events. A period with two clear large ramp events (top) and a period where ramp events are barely 

identifiable (bottom) 

Mathematically, 

1, if (Ph + At 

- 1 , if (Ptl + At 
0, otherwise 

Ptl) > AP0 withf e [fi,fi + Af] 

^ i ) < - A P o withf e [fi,fi + Af] (2) 

The indicator function of a certain wind power time series can be readily obtained by considering a set of two param-
eters (Af, APo). The threshold APo is usually given as a percentage of the rated power of a wind farm, %PR, although 
other criteria can be applied. For example, Gallego et al.

24 defined APo a s a percentage of ag, the standard deviation of 
the first-differenced wind power time series.* Bossavy et al. proposed a binary classification based on variations expe-
rienced by a filtered signal {pj } instead of the original wind power time series. The filtered signal is obtained from a 
low-pass filter where a parameter related to the number of averaged measures, w, must be set. This parameter permits to 
tune the sensitivity to short period variations in the original time series (i.e. the characteristic time lengths of the ramps that 
are considered of interest). Setting the value of n replaces the election of the parameter Af employed in previous defini-
tions. As a result, (w, APo) provides a binary classification ramp/non-ramp for each time step of the original wind power 
time series. 

Table I summarises the thresholds reviewed. 

2 .1 . Implications of the use of the ramp binary definition 

As mentioned previously, the indicator function is generally employed to identify ramp events within wind power time 
series. Its applicability is due to its simplicity given that only two parameters need to be assessed. It is reasonable to think 
that these two parameters should be set by the end-user. A similar idea was pointed out in Pinson when the Safewind 
project partners were asked for their perception of an extreme event. Consequently, different ramp definitions may arise for 
each specific case depending on the size of the wind farm/portfolio and the cost function considered (e.g. costs of ancil-
lary services and penalties of a certain electricity market). In addition, the parameters mentioned are commonly related to 
thresholds in power variations and periods, which ease the labour of defining ramps to end-users who may not be familiar 
with complex analysis tools. It is important to remark that the way in which ramps are identified may have appreciable 
impact on the activity of the forecaster/modellers because it highlights those periods where meteorological processes and 

The first-difference of a certain time series { Pt} is defined as A Pt = Pt — Pt-
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Table I. Definitions of ramp events reviewed in recent studies. 

Cutler efs/.14 

Cutler efs/.14 

Truewind15 

Truewind15 

Potter et al? 

Greaves efs/.19. Collier 

Bradford efs/.20 

Bossavy efs/.21 

Gallego efs/.24 

efs/.11 

AP0 

75% Pfi 

65% Pfi 

20% Pfi 

15% Pfi 

10% Pfi 

50% Pfi 

20% Pfi 

50% Pfi 

°g 

A f 

3h 

1 h 

1 h 

1 h 

1 h 

4h 

1 h 

n/a 

1 h 

Kind of ramp 

Hourly resolution (slow ramps) 

10 min resolution (fast 

Ramp-up 

Ramp-down 

No distinction 

No distinction 

No distinction 

No distinction 

No distinction 

ramps) 

Study case size 

65 MW 

65 MW 

Not specified (portfolio) 

Not specified (portfolio) 

~ G W 

3-240 MW 

Not specified (wind farm and portfolio) 

Not specified (wind farm) 

33 MW 

PR stands for the rated power of a wind farm, and <rg is the standard deviation of the first-difference of the wind power time 

series. 

60 
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20 
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Figure 2. Relative frequency of ramp events, f r(%), as a function of different thresholds (Af , APo) for the power output time series 

of Ariz during a year. APo stands for the wind power variation as a percentage of the rated power %PR. A f stands for the maximum 

duration in which the power variation takes place. Contour lines interpolate constant relative frequencies in steps of 1 %. The f r(%) 

obtained with some of the reviewed definitions are also shown 

operational states should be carefully regarded to analyse the ramp causes. However, the use of the indicator function as a 
basis for ramp identification entails several shortcomings. 

First, the number of ramp events observed in a wind power time series may become sensitive with respect to fixed thresh-
old values. To illustrate this fact, Figure 2 shows the relative frequency of ramp events in Ariz during 1 year period, as a 
function of the thresholds considered. The relative frequency fr is the percentage of times in which ramps was observed: 

-N 
fr (%) = 100-

H?=l\It\ 
N 

(3) 

where N is the number of elements of the wind power time series. The specific case of four reviewed definitions has been 
pointed out. Contour lines interpolate constant relative frequencies (in steps of 1 %) to provide insights about the sensitivity 
of the relative frequency with respect to both parameters (Af, APo)- In addition, Table II illustrates the relative frequency 
obtained with different ramp definitions for the case of Ariz when the magnitude threshold APo is modified by ±5%PR. 

For example, considering the threshold A Po = 45% PR instead of 50% PR (defined in Greaves et al. ) increases the per-
centage of times where ramps were observed by 19.3%. This issue could have been expected since the distribution of power 
gradients in wind power time series tends to be a smooth function of both the amplitude and the duration considered, as 
discussed in Greaves et al. Along these lines, Cutler et al. proposed a sensitivity analysis for the threshold assessment. 

Second, the use of a binary definition implies that ramp events are identified with no distinctions on their characteristics 
(e.g. ramp intensity and duration). This fact places conditions on the approach to wind power ramp forecasting for both the 
end-users and the forecaster/modellers. The use of the binary definition constrains end-users to translate their cost function 
into a binary perspective so as to identify what level of ramp intensity constitutes a problematic ramp event. Therefore, 
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Table II. Relative frequency of ramp events for different ramp definitions (column 1) and considering a modified amplitude 

threshold AP0 ± 5%PB (columns 2 and 3). 

f r (A f ,AP 0 ) f + ( A f , A P 0 + 5%PR) f - ( A f , A P o - 5 % P f l ) 1 0 0 - i = ^ ( % ) 1 0 0 - ^ ^ ( % ) 

Cutler efs/.14 

Potter et al.7 

Greaves et al.'13 

Bradford efs/.20 

1.4% 

27.9% 

13.5% 

8.8% 

0.4% 

15.7% 

10.9% 

5.3% 

1.9% 

49.5% 

16.5% 

15.7% 

-71.4% 

-43.7% 

-19.3% 

-39.7% 

35.7% 

77.4% 

22.2% 

78.4% 

Columns 4 and 5 show the relative variation between column 1 and columns 2 and 3, respectively. 

defining a ramp as a variation of APo = 50% PR within a period of At = 4 h implies that variations in AP = 90% PR 

have the same level of impact than the previous one. Furthermore, this definition implies that variations of AP = 49%PR 

within the same period have no impact at all. With respect to the forecaster/modellers, the ramp binary classification sup-
ports the notion that ramps are similar to one another even if ramps with different characteristics are usually observed. Few 
studies have proposed some degree of distinction by defining different thresholds depending on the direction of the ramp 
(ramp-up or ramp-down ) or the time series resolution (slow ramps and fast ramps ). In any case, the binary definition 
does not permit forecaster/modellers to exploit potential relationships between different ramp levels and explanatory vari-
ables that span a continuous range, such as outputs from Numerical Weather Prediction models or data from SCADA or 
off-site locations. 

In summary, a suitable approach to wind power ramp forecasting should be able to deal with the fuzzy limits of the ramp 
notion to preserve more information than the binary classification. In this regard, it is probably more interesting to provide 
end-users and forecaster/modellers with tools oriented to better characterise the ramp performance of a wind power time 
series instead of conditioning the ramp definition to track optimal thresholds of a binary classification. This change would 
eventually permit more flexible and reliable actions from both end-users and forecasters. 

3. THE RAMP FUNCTION 

In this section, the ramp function is introduced and proposed as a means of characterising the ramp performance of a 
wind power time series. The ramp function is intended to overcome the drawbacks of the binary definitions mentioned in 
Section 2.1. The proposed function is defined using the WT, which is briefly described, and provides a continuous index of 
the intensity of the ramp at each time step. 

3 .1 . The wavelet transform 

Wavelet analysis is a relatively recent mathematical technique for signal analysis. Wavelet analysis has become popular in 
the last few decades, especially because developments in computer science permit many different disciplines to take advan-
tage on the properties of wavelets. One of the first applied studies on wavelets was related to seismic surveys.27 Since then, 
wavelet analysis has been successfully applied with different purposes in a variety of fields such as image processing, 
edge detection,30-32 time series forecasting33 (electrical load forecasting,34'3 electricity price forecasting36), chemical 
analysis37 and tool condition monitoring.38 The time-frequency decomposition of wavelet analysis has also been use-
ful in the atmospheric sciences. Specifically, several studies (see Szilagyi et al, Krusche and De Oliveira and 
Watanabe42 and the references therein) employed wavelet analysis to relate abrupt changes experienced by certain vari-
ables (temperature, wind speed or humidity) to coherent structures (large-scale turbulence processes in the atmospheric 
surface layer). 

The WT is proposed to address certain aspects of signal processing that the Fourier transform is unable to deal with. 
Specifically, the frequency content of a certain signal y(t) provided by the Fourier transform does not allow the analysis 
of events that take place during specific time windows, which are of interest for certain applications. In contrast, the WT 
permits to characterise the time-frequency content of a signal, providing information on both the location and the scale of 
different events. This feature is obtained because the transformation is based on functions (wavelets) that are localised in 
time and frequency. These wavelets are merely shifted and scaled versions of the so-called mother wavelet, t/r (t), as given 
in the following equation: 

f
T
'
X
(t) = -±=f C-^] (4) 

Vx 

where r relates to the shift and A relates to the dilation. 
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The WT of a discrete time series {yt} consists of a set of coefficients obtained through the following equation: 

W Z.k 

£ 
x,X 

•yt (5) 

where r € Z, A € Z + and \jfj' relates to the wavelet function employed. 
Several wavelet functions with different mathematical properties exist (e.g. Daubechies or Meyer wavelets). The appro-

priate wavelet function usually depends on the purpose of the study. One of the most famous and simplest wavelets is the 
Haar wavelet. When the Haar wavelet is employed to perform a WT, information about the gradient experienced by the 
signal at different time scales is obtained. For example, considering that WJJ (r, A) is the WT obtained with the Haar 
wavelet, WJ-[{XQ, An) is related to the gradient experienced by the signal in t = to within a time window of At = An. 
Figure 3 illustrates i/rt' for the case of the Haar wavelet family for several scales A. Each A is related to a time scale 
At = X-n hours, n being the number of records per hour in the time series (e.g. n = 1 for an hourly time series). Note that 
the Haar wavelet is defined in such a way that the sign of the coefficient obtained is the opposite of the sign of the gradient 
experienced by the time series. 

A detailed description of the WT is beyond the scope of this work. For further theoretical details, several studies can 
be reviewed (see Mallat, Daubechies, Percival and Walden, Burrus et al., Aboudafel and Schlicker and Boggess 
and Narcowich,47 among others). 

3.2. Definition of the ramp function 

Ramp events represent local events in a wind power time series and are characterised by sharp variations in power. Despite 
the fact that the magnitude and duration may vary from one ramp to another, the essential concept of a ramp is that a certain 
large gradient is maintained during consecutive time steps of the time series. Hence, the ramp pattern can be said to show 
self-similarity, which means that the whole event (wind power ramp) is similar to a smaller part of it (i.e. the shape is 
preserved under different scales). The use of different scales to characterise abrupt changes within signals has been widely 
employed; Canny30 is one of the most well-known studies, where an optimal filter oriented to edge detection was proposed 
and applied to image processing. Mallat and Hwang proved that the WT permits the detection of singularities in a signal 
from local maximum coefficients across different scales. We therefore propose the use of the WT for detecting and char-
acterising ramp events within wind power time series. The use of the Haar function is proposed since we are interested 
in revealing local events where a high gradient is observed within a range of time scale, although further research could 
address the suitability of different wavelets. 

Let Wri be the WT based on the Haar wavelet of a certain wind power output time series {yt}. For the sake of simplic-

ity, the conventional Haar wavelet was replaced by its additive inverse (by changing the sign of i/rt' ) to obtain positive 

coefficients for positive gradients of the time series. 

Considering a period where a ramp event is observed, during this period the WT WTJ would provide increasing coeffi-

cients for a broad range of time scales A, since each WTJ is related to the gradient experienced at time t = r evaluated in a 

time scale At = A. The increasing value of Wli with respect to A is because the scale contributes as A - 1 ' 2 in equation (4). 
Hence, the mentioned self-similarity used to characterise the notion of a ramp event (i.e. the experienced gradient is high for 
both short and large scales, where 'large' means close to the characteristic time of the ramp event) can be easily identified 
by intense vertical lines in Figure 4 (right). Next, considering a period where {yt} experiences high-frequency fluctuations 
(i.e. positive and negative consecutive variations), similar coefficients are obtained for short time scales although the effect 
mentioned previously is not observed for large time scales. This effect is due to smoothing from evaluating the gradient 

1/? 

0 

-119 

T -

O 

J <x>-

1 

T 

1<x> 

1 KJ 

Figure 3. i/rf' for the case of the Haar wavelet family, scales A = 2 (left), A = 3 (centre) and A = 4 (right) 
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Figure 4. Coefficients of the wavelet transform based on the Haar function, WH{T,X), during two different situations: a fluctuation 

period (left) and a ramp event period (right) 

within a larger period, which highlights the fact that the net variation of the power during the fluctuations is small. This 

effect can be observed in Figure 4 (left). Finally, the coefficients Wri related to those periods where the time series do not 

show high gradients (large ramps or fluctuation periods) are expected to be close to zero for every scale A considered. 

The labour of characterising a ramp can take advantage of previous considerations in a simple way by defining the ramp 

function, {Rt}, as the addition of the wavelet coefficients Wji at time t = r for the interval of scales A given by [Ai, A^v]: 

Rt(X1,XN)= V W\l
k 

H 
(6) 

By performing this computation, {Rt} becomes related to the sharpness of the ramp events because it gathers at each 
time step the contribution of the gradient evaluated under different time scales. 

A crucial question is which time scales A should be considered. The time scale A i is the smallest scale to be considered. 
In the case of the WT of a discrete time series, the minimum possible value is A i = 2 because at least two values of {yt} 
are required to evaluate a gradient. However, A v̂, the highest scale to be considered, must be established on the basis of 
expert knowledge. As mentioned previously, WJJ (to, Ao) provides information about the gradient experienced by the time 
series in t = to within a time window of At = Ao- Hence, A r̂ is the maximum time window where a local gradient is to 
be evaluated. The labour of characterising ramp events within a wind power time series requires Xj\f to be related to the 
maximum duration expected for a ramp event (in terms of time steps). Choosing a low value for Xj\f may result in a lower 
performance of the ramp function when differentiating between large ramp events and fluctuation periods. Conversely, 
values for Xj\f related to very large time scales may cause a mixing of the gradients of different consecutive ramp events. 
Hence, on the basis of the analysis carried out with the available wind power time series during this work, we suggest that 
appropriate values for A^ may be in the range of 5 to 10 (for hourly time series). The impact of this parameter on the ramp 
characterisation is addressed in depth in Section 3.3. 

However, it should be noted that the proposed ramp function is not expected to be highly sensitive to small variations in 
Xp/, mainly because Rt is built from the addition of the WT coefficients across scales from Ai to A r̂ (see equation (6)), 
which reduces the potential impact of considering an additional scale A ̂ + 1 • For example, the relative frequency of ramp 
events* for the case of the wind farm of Ariz ranged from 10.0% (case of AN = 5) to 11.4% (case of AN = 8), which 

"The ramp relative frequency based on a continuous index such as {rt} was calculated by replacing It by rt in equation (3). 
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if 
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rt < 

n 
n 

0 
0 
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> 0 

can be considered as a robust trade-off between the relative frequencies provided by the reviewed definitions of ramp event 
(see Figure 2). 

The range spanned by {Rt} depends on the range spanned by the original wind power time series, which is related to 
the size of the wind farm. Hence, it is not possible to compare the ramp functions of different wind farms. For this reason, 
it is necessary to re-scale the ramp function between [—1, 1] by defining the relative ramp function as follows: 

Rt 

rt = (7) 
max{|^ |} 

In addition, the relative ramp function can be decomposed into three time series, {r"}, {rf} and {rf}, to isolate the ramp 
performance during ramp-up (positive ramps), ramp-down (negative ramps) and non-ramp events, respectively: 

(8) 

(9) 

r f
u = l - r f " - r ? (10) 

To conclude this subsection, the ramp performance obtained through the ramp function is compared with ramp per-
formances obtained with some of the binary classifications presented in Section 2. Figure 5 shows the wind power time 
series of Ariz during the period mentioned in Figure 1 (bottom) along with the ramp function computed for A r̂ = 5 (solid 
line) and Xj\f = 10 (dashed line). In addition, the indicator function for several definitions related to similar sized projects 
(see Table I) are also represented. Specifically, those time steps labelled as ramp events that would change their status if 
APn is increased by 5%PR are highlighted with circles. It can be seen that the ramp function takes its minimum values 
around two ramp-down events, which are also captured by most of the binary criteria. However, disagreements between 
the binary criteria are observed during strong gradients that would not likely be considered part of a large ramp event. 
These disagreements are probably because each binary definition was conceived for a specific case study different from the 
one considered here. However, what is relevant from this figure is that a more reliable ramp characterisation is obtained 
through a continuous index compared with the ramp characterisations provided by any of the binary classifications: the 
information provided by the ramp function is not highly sensitive to the A r̂ value and provides a means to compare the 
ramp intensity of two different events without forcing a binary decision on their ramp/non-ramp nature. Conversely, what 
can be considered a ramp event from a binary point of view may become highly conditioned to the precise threshold value 
selected, as shown by the circles in the figure. Thus, the ramp function can be considered a satisfactory trade-off between 
the discrepancies observed under different binary criteria. The ramp function can also provide an alternative to avoiding 
the sensitivity inherent in the binary classification. 

3.3. Discussion on the effect of the addition across scales 

In this subsection, we analyse the impact of the proposed addition across scales on the ramp performance by comparing 
the ramp function defined in equation (6) with respect to other continuous functions, namely the gradient function and the 
filtered function. 

The gradient function of order a, {gf}, of a certain wind power time series {yt} can be defined as the variation of the 
wind power generation observed within a + 1 time steps: 

g?=yt-yt-a , foit=a + l,...,N (11) 

Under the assumption of {yt} being the realisation of a weakly stationary stochastic process {Yt}* (commonly adopted 

in time series analysis, ) the expectation of the gradient function is E \Gf\ = E [Yt] — E [Ft-a] = 0. Let us define the 

variance of the gradient function as Var [Gf~\ = ah a. As mentioned previously, most ramp binary definitions are based 

on the gradient function to define ramp events by setting specific thresholds. • • • • • • However, a continuous ramp 

performance could be obtained directly by considering {gf}, since the extreme values of this signal (i.e. the tails of its 
statistical distribution) would correspond to high variations in power experienced within a + 1 time steps. In this case, 
the value of the parameter a is crucial, since it determines a single time window to be considered. Hence, the use of the 
gradient function to measure the ramp intensity would be suitable only under the assumption of having a clear idea about 
a single duration of what can be considered a problematic event. 

•Thus, E[Ytl] = E[Yt2], Var [Ytl] = Var [Yt2] and Cov [Ytl, Yn±d] = Cov [Yt2, Yt2±d] for every tl,t2,d. 
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Figure 5. Wind power time series of Ariz with the relative ramp function (solid line for A/v = 5 and dashed line for A/v = 10) and four 

ndicator functions based on different definitions of a ramp event. Periods labelled as ramp events (/t = ±1) that would change to 

non-ramp (/t = 0) by considering an amplitude threshold So increased by 5 % P R are highlighted with a circle. 

A more reliable proposal to characterise the ramp performance of a time series is the filtered function, which averages 

several gradient functions at each time step. The number and order of the gradient functions considered depend on a scale 

parameter, A. The filtered function can be defined as follows: 

/ / 

A/2 

(A-l)/2 
J _ X ^ J A + l ) / 2 
VA' 2-

 g
t+j 

if A is even 

if A is odd 

(12) 

This definition is equivalent to the filtered signal proposed in Bossavy et al.,
21

 {pt } 

{ft )
 c o r r e s P o n d s to the coefficients of the Haar WT for a single scale A: 

In addition, it is worth noting that 

/ / W^
X, Vr (13) 

Since {ft } is built from the addition of several gradient functions, it can be readily shown that its expectation is 

E Ft = 0. Moreover, it can be demonstrated that its variance can be expressed as a linear combination of the variances 

of several gradient functions as follows: 

War {Ft
x
} = J2

w
f»-

a
i<> (14) 

*{p{ } was only denned for even scales. The relation among both functions is a lag of one time step and a scalar factor */X, that is: 

p{{2X) = JX-ft\v 
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where wfa is the weight associated to the contribution of the variance of the gradient function {gf} to the variance of the 

filtered function {ft }. Equations (15) and (16) particularise equation (14) for the case of A being even and odd, respectively 

(the demonstration is detailed in Appendix A). 

i_l A 

Nar\Ft
l
] = --a

2
 A + j • V V (a

2
 x „ + a

2
 x „ , - 2 - < r \ . .,) (15) 

j=\ k=j+l
 v

 ' 

A = l _ l A - l 

i = l fe=;+l v y 

Table III (top) gathers the weights wfa obtained through equations (15) and (16) for several values of A. It is worth 
noting that these weights uniquely depend on the way in which the filtered function and the gradient function have been 
defined (equations (12) and (11), respectively). Hence, the values obtained are valid for any time series {yt} considered. 

The reason why the filtered function, {ft }, provides a more reliable ramp performance than the gradient function, {gf}, 

is that {ft } is able to communicate high variations in power experienced in several time scales (in particular, in those time 
scales related to high weights wfa). In addition, negative weights are related to short time scales where high variations in 
power would be considered fluctuations rather than ramp events. In this regard, the parameter A permits to customise to 
some extent the notion of ramp event by selecting the value that better fits with those time scales where important variations 
in power would be relevant for a certain study case. 

To illustrate the impact of A on the ramp characterisation obtained with the filtered signal, Figure 6 shows the perfor-
mance of two filtered signals, {ft

 2
} and {ft }, during three different events experienced at Ariz. Event (A) shows a 

ramp event where the power level increased in almost 90% PR within 3 h. Event (B) illustrates a case of dip in power, i.e. a 
sharp decrease (B~) followed by a sharp increase (B+) in power. Event (C) shows a decrease in power of 75% PR within 
6 h. On the right part of the figure, the histograms of both filtered signals are showed, where the values obtained during the 
mentioned events have been pointed out. It can be observed that {J

2
} departs from the mean (zero) to extreme values (the 

tails of its distribution) specially during the events (B~), (B+) and (A). On the other hand, {ft
6
} highlights events (A) and 

(C) because they represent high gradients in power evaluated in the range of 4-6 time steps. The ramp characterisation of 
both filtered functions could be envisaged by visiting the weights wfa gathered in Table III (top). 

Table III. Weights to express the variance of the filtered function, {f t
A}, (top) and 

the ramp function, {RfN}, (bottom) as a linear combination of the variances of 

several gradient functions (see equations (14) and (17)). 

A 

2 

3 

4 

5 

6 

7 

8 

9 

10 

A/v 

2 

3 

4 

5 

6 

7 

8 

9 

10 

wf-

0.50 

0.00 

-0.25 

-0.40 

-0.50 

-0.57 

-0.62 

-0.67 

-0.70 

wr-

0.50 

0.50 

-0.04 

-1.94 

-5.08 

-9.21 

-15.62 

-22.64 

-31.98 

wf-z 

0.00 

0.33 

0.50 

0.20 

0.00 

-0.14 

-0.25 

-0.33 

-0.40 

l/W"2 

0.00 

0.74 

2.53 

4.01 

5.71 

5.41 

4.62 

2.28 

-1.58 

wf3 

0.00 

0.00 

0.25 

0.40 

0.50 

0.29 

0.12 

0.00 

-0.10 

wr?. 

0.00 

0.00 

0.54 

2.44 

5.98 

9.15 

13.34 

14.73 

16.43 

wU 

0.00 

0.00 

0.00 

0.20 

0.33 

0.43 

0.50 

0.33 

0.20 

1/W4 

0.00 

0.00 

0.00 

0.42 

1.51 

4.98 

10.00 

15.25 

21.65 

wh_ 

0.00 

0.00 

0.00 

0.00 

0.17 

0.29 

0.37 

0.44 

0.50 

i/w-c 

0.00 

0.00 

0.00 

0.00 

0.35 

1.30 

3.27 

8.18 

14.89 

wfe 

0.00 

0.00 

0.00 

0.00 

0.00 

0.14 

0.25 

0.33 

0.40 

i/we 

0.00 

0.00 

0.00 

0.00 

0.00 

0.30 

1.09 

2.86 

5.60 

wf-j 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.12 

0.22 

0.30 

wo 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.26 

0.98 

2.51 

wfe 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.11 

0.20 

wre 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.23 

0.86 

Wfe 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.10 

l/Wg 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.00 

0.21 

The highest value in each row is given in bold fonts 
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Figure 6. ft
A~2 and ft

A 6 during three events of high wind power variations (left). Histograms of ft
A~2 (right, top) and ft

A 6 (right, 

bottom) with the mentioned events pointed out 

Finally, the case of the ramp function is considered. Taking into account equation (13) along with equation (6), it can 
be seen that the ramp function is built from the addition of a set of filtered functions with scales A comprised between A \ 

and Xj\f. At this point, the question is to explore the effect of the proposed addition across scales on the characterisation 
of the ramp performance of a certain time series {yt}- From now on, we will consider the case of Ai = 2 since it repre-
sents the shortest scale to evaluate a gradient (two time steps). To simplify the notation, let us denote the ramp function 
Rti^l = 2, A N ) with {Rt

 N}. It can be noted from equations (6) and (13) that the ramp function can be expressed as a 
linear combination of several gradient functions. Likewise, the variance of the ramp function can be expressed as a linear 
combination of the variances of several gradient functions, {gf}, as follows: 

War [**"] = E- (17) 

where wra is the weight associated to the contribution of the variance of the gradient function {gf} to the variance of the 
ramp function. A general expression for these coefficients becomes excessively complex in this case. Nevertheless, they 
can be computed through equations (6), (12), (13), (22) and (28). Table III (bottom) gathers the weights wra for several 
values of A^r. 

The value of Â v determines (through the weights wra) those time scales where large variations in power would be 
highlighted by {Rt

 N}, providing a parameter to customise the notion of ramp event for a specific study case. However, 
the ramp characterisation provided by the ramp function differs from the one provided by the filtered function on the fact 
that wra concentrates within a narrow range of time scales, whereas wfa evolves more regularly along the scales a. This 
effect can be observed in Figure 7, which illustrates the weights obtained wfa and wra for several cases of A and A r̂ (to 
facilitate the comparison, each set of weights was divided by its maximum value). For example, let consider the case of 
X = Xj\f = 10. By visiting the coefficients wra in Table III, it can be noted that extreme values of the ramp function, 
{R}

0
}, are likely to be related to extreme values of the gradient functions {gf},{St}

 ani-' {St }• However, large gradients 
experienced within other time scales would have little impact on the ramp function because of the lower value of the related 
weighs. On the other hand, extreme values of the filtered function, {ft }, are likely to be related to high variations in power 
experienced under a broader number of time scales because of the smooth decrease of the weights wfa with respect to the 
scale a. Therefore, it can be concluded that both the filtered function and the ramp function permit to highlight large varia-
tions in power experienced within a certain range of time scales, providing a better ramp characterisation than the gradient 
function. However, the addition across scales proposed in the ramp function definition contributes in a better bound of the 
range of time scales involved in the notion of ramp event. 

4. PROPOSALS FOR THE USE OF THE RAMP FUNCTION 

The ramp function defined previously is intended to characterise the ramp performance of a wind power time series in a 
more reliable way than binary classification because it is less sensitive to input parameters and a continuous index related 
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Figure 7. Weights wfa and wrs (defined in equations (14) and (17) for several cases of A and Aw. To facilitate the comparison, each 

set of weights was divided by its maximum value 

to the ramp intensity is provided at each time step. Both end-users and forecaster/modellers could take advantage of the 
ramp function to enhance their approach to wind power ramp forecasting, although specific considerations must be taken 
into account. For example, concerning the labour of end-users, the ramp function may represent a suitable option for better 
communicating the impact of ramp events to forecaster/modellers because it would be possible to tailor the impact level 
to different ramp intensities. However, this option would require the end-users to explore the interpretation of the ramp 
function indexes in terms of their specific cost function. From the forecaster/modellers point of view, the ramp function 
provides a characterisation of the ramp performance mainly based on the considered wind power time series, whereas 
the information obtained through a binary classification is subjected to the threshold values. Furthermore, the continuous 
indexes provided by the ramp function permit new approaches to wind power ramp analysis that are not possible from a 
binary classification. Nevertheless, it is important to note that the evaluation of {Rt} at a certain time f = fo requires a set 
of AN records of {yt} centred in {yt0}- Thus, {Rt0} would be available A^v/2 time steps after t = fo. This fact does not 
represent a problem for preliminary offline analyses of ramp causes identification, which can be used to customise ramp 
forecasting tools when considering a certain location. However, this delay has to be taken into account for the case of online 
applications (e.g. computing the ramp function of the forecasted wind power time series to provide online alerts). 

The aim of the following subsections is to propose several applications based on the ramp function that concern the 
offline analysis of ramp events observed in wind power time series. We therefore focus on the forecaster/modellers per-
spectives. End-users' motivations are not explored further in this article, although this perspective represents an interesting 
path for research in future studies. 

4 .1 . Characterising the diurnal pattern of ramp events 

Atmospheric dynamics usually shows a component of diurnal pattern due to solar radiation forcing. Thus, it would be of 
interest to explore whether this pattern is also present in ramp events. This analysis could eventually give insights into the 
nature of certain ramp events at a given site. 

Let us consider a wind power time series with the length of 1 year length from the Ariz wind farm, {yt}, along with the 

relative ramp functions {rf}, {r^ and {r°} defined in equations (8-10). Let us define {r™} as the set of 8760 elements 
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contained in {r™} sorted in decreasing order. Similar definitions correspond to {r% } and {r%}. Given that {r™} and {rf} 
contain the values provided by the relative ramp function during ramp-up and ramp-down events, respectively, {r"} and 
{r'l} allow us to compare differences (in terms of frequency and intensity) among the two possible directions of ramp 
events. Figure 8 (top) shows {r"}, {r^} and {r®} overlapped and illustrates that for most of the year, the value provided 
by the relative ramp functions is negligible. In addition, Figure 8 (bottom) reveals in detail that ramp-up events were more 
intense than ramp-down events. A similar conclusion was met in Katzenstein et al. for an interconnected area of 20 wind 
farms in Texas. 

Now, let us define {r™.,} as the set of values that result from considering only those values of {r™} occur at time h of 
each day, given in the following equation: 

r£h = {r?\t =h + 2A*i}, for ; = 1 , . . . , 365 (18) 

Once more, each {r™.,} can be sorted in decreasing order to generate the corresponding {r™.,}. By performing this sort, 
the first element of {^".JQ} provides the maximum value of the ramp function obtained at 10:00 h, and so forth. Figure 9 
illustrates the 24 time series {r

u
, } (green) along with the 24 time series {r , } (red). Thus, the observed colour determines 

whether the observed ramp-up or the ramp-down events were more intense (higher ramp function values) depending on 
the hour of the day considered. In our case, it can be seen that ramp-down events were more intense for the part of the day 
comprised from 08:00 to 16:00 h, whereas the opposite situation was observed for the rest of the hours. For more clarity, 
Figure 10 shows four sections of Figure 9. This result suggests that ramp events at this wind farm follow a diurnal pattern. 
Hence, for this specific case study, daily cycles are likely to play a key role in explaining ramp events' underlying causes. 
Finally, further research can be carried out to explore different cycles of interest, such as seasonal cycles. 

4.2. Analysis of a wind farm's ramp performance at the wind turbine level 

Since the wind power output of a certain wind farm is generated from the addition of the power delivered by a number of 
wind turbines, the wind power output dynamics of each wind turbine influence to some degree those dynamics observed in 
the wind power output of the wind farm. However, considering that each wind turbine is affected by local conditions (e.g. 
the local orography and the relative position with respect to the other wind turbines), the contribution of each individual 
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Figure 8. Relative ramp functions sorted in descending order (top). Observed ramp-up events were more intense than ramp-down 

events (bottom) 
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Figure 10. Four sections of Figure 9. 

wind turbine to the dynamics of the total wind power output may vary from one turbine to another. In this regard, the ramp 
function allows us to evaluate the correlation of the ramp performance among different wind turbines within a wind farm. 

For this experiment, the case study of a wind farm located in La Muela (Spain) was considered. The wind farm consists 
of 65 wind turbines. The hourly wind power time series is available for each wind turbine for 1 year. Figure 11 shows 
the lay out of the wind turbines and the wind rose. A previous study of this wind farm showed that several groups of 
wind turbines (clusters) can be identified depending on different power performances. Similarly, the use of the ramp 
function may eventually give insights about the different levels of ramp performance. Let us consider the ramp functions 
{R't}, i = 1 , . . . , 65 defined in equation (6) for each wind turbine power output time series. The cross-correlation function 
Cjj (/) can be readily obtained from equation (19) for each pair of wind turbines to measure the similarity of their ramp 
behaviour in a more accurate way compared with correlating their wind power time series, since the ramp function departs 
from zero depending on the intensity of the ramp event experienced by a certain wind turbine. As a result, high correlation 
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Figure 11. Layout of the La Muela wind farm. The colour represents the cross-correlation between the ramp function of each wind 

turbine and the ramp function of the wind farm power output 

coefficients would inform us about ramp events taking place at different wind turbines with a given lag /. 

Q/(0 
l 

N 

(N-l-l)-aRi • aRJ 
J2 (*j-#)•(*/_,-*') (19) 

t=i+l 

In equation (19), N is the length of the time series, R' is the sample mean of {R\}, aRi is the sample standard deviation 

of R't and / is the lag considered between both time series. The maximum of Qy (/) was found to be at / = 0 for all pair 

(;', j), which is consistent with the fact that ramp event causes (generally based on meteorological effects) take less than 

1 h to propagate across the whole wind farm (although a different conclusion could be obtained for larger wind farms or 

portfolios).* Figure 12 illustrates Qy (0), which ranges from a minimum of 0.68 to 1. It is possible to observe clusters of 

wind turbines with highly correlated ramp functions (wind turbines from 21 to 25), which correspond to the central part of 

the third wind turbine line. In contrast, the ramp performance of wind turbines 1 to 5 (located at the extreme edge of the 

first line) has a low correlation compared with wind turbines 34 to 43 (at the opposite edge with respect to the prevailing 

wind direction). 

The cross-correlation function between the ramp function of each wind turbine and the ramp function of the wind farm 

was also estimated (only the case 1=0 was considered). The correlations ranged from 0.85 to 0.96, showing the highest 

values for the wind turbines located at the centre of the third row (wind turbines 21-27; see Figure 11). This fact suggests 

that there is a significant connection between ramp events observed in the total power output time series and ramp events 

experienced in a small part of the wind farm. Hence, special attention could be paid to this cluster during ramp events so 

as to provide insights about the ramp causes. Specifically, it would be of interest to explore the contribution of microscale 

effects (such as wakes) that affect this cluster to the generation of wind power ramp events at this wind farm. Another 

interesting issue would be to evaluate the contribution of online measurements of this cluster to the performance of ramp 

forecasting models rather than the power output of the whole wind farm. 

4.3. Assessing the performance of statistical point-forecasting models during ramp events 

The aim of statistical point-forecasting models is to learn and replicate from a statistical perspective the dynamics shown 

by a certain time series. This kind of models usually overcome Numerical Weather Prediction models for very short-term 

wind power forecasting (from a few minutes to a few hours.4 ' ) There are several criteria for evaluating the performance 

*An estimation of the characteristic time T^^ of a wind perturbation crossing the wind farm is T^^ 

characteristic length of the wind farm and Fave is the average wind speed. In this case, T^^ < < 1 h. 
i-char/^ave, where LchaI is a 
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Figure 12. Cross-correlations between ramp functions of the 64 wind turbines in the La Muela wind farm 

of wind power statistical point-forecasting models. 
(MSE), which is defined as follows: 

MSEQc) •• 

One of the most often employed criterion is the mean squared error 

1 

N-k 

N-k 

J2 (yt+k •yt+k\t) (20) 

where k is the prediction horizon, N is the number of observations of {yt} and yt+k\t is m e f° r e c a s t of yt+k provided 
by a statistical model at time t. The MSE is a global criterion, which means that the performance of the model is evalu-
ated across a complete period (1 year, for instance). However, it may be of interest to evaluate different models analysing 
their performance during specific events such as ramp events. This task can be achieved by employing the relative ramp 
functions {r"}, {rf} and {r't }, which are defined in equations (8-10). The underlying idea is to weight the forecast error 
incurred at each time step with these functions. For example, the MSE" defined in equation (21) would correspond to the 
MSE committed during ramp-up events. 

MSE
u
(k) 

1 
N-k 

2-,t = "!*(?+*) 
J2

 r
"+k ' (yt+k - 9t+k\t)

2 (21) 

vd. Similar definitions would follow for MSE" (k) (MSE during ramp-down events) and MSE (k) (MSE during non-ramp 
events). It is worth noting that this way of weighting takes advantage of the fact that the relative ramp function provides 
a more accurate set of weights than a binary classification of ramp events, since the latter would provide a set of weights 
on the basis of zeros and ones whereas the relative ramp function takes different values depending on the intensity of each 
ramp event. In addition, the binary definition may become highly dependent on the thresholds used to define a ramp, as 
shown in Section 2.1. 

To illustrate the evaluation of the MSE during ramp events, the case study of a wind farm located in the complex region 
of Alaiz (northwest Spain) was considered. The wind power time series with an hourly resolution has been derived from 
3 years of available data. The following sets of prediction models have been proposed for one step-ahead forecasting 
(k = 1): 

• Persistence, which is the main reference method for short-term forecasting. Persistence states that the forecast is the 
last observed value. Considering the case of k = 1, 

9t+l =yt 

• Linear autoregressive AR(/>) model. The forecast is a linear combination of the last p observed values, given by 

9t+l =<P0 + J2f> 'M 

The coefficients (p, were estimated by means of the Yule-Walker equation, and the optimal AR order p was found to 
be p = 3. 



A wavelet-based approach for large wind power ramp characterisation C. Gallego et al. 

Artificial Neural Network model (ANN). ANNs have become a powerful computational model because they allow 
non-linear patterns to be captured simply from a set of historical data. In this case, a multilayer perceptron (MLP) was 
used. The appropriate architecture of the MLP and the optimal number of inputs (last observed values) were deter-
mined from a cross-validation criterion. As a result, the forecast at time t + 1 is provided by a non-linear function F 

as follows: 

9t+i = F{yt,yt-i,yt-2) 

Regime-Switching Artificial Neural Nets. This model was proposed in Gallego et al.
24 The underlying idea is to com-

bine the power of ANN models with a regime-switching strategy. Three regimes were identified in the wind power 
time series depending on the last observed gradient yt — yt-l- A different MLP was trained for each regime: 

I
Fi(yt,yt-l), regime 1 

F2(jt,yt-l,yt-2), regime 2 
Fj,(yt,yt-l,yt-2,yt-i), regime 3 A period of 2 years was employed to train and validate the models. Next, the MSE was evaluated during the third year. 

Figure 13 shows the MSE for each model depicted in ramp-up, ramp-down and non-ramp events. Several conclusions can 
be derived from this figure, (i) It can be observed that forecast errors are, as might be expected, higher during ramp events 
than during non-ramp events for every model, (ii) Considering the performance of persistence, the lower MSE during 
ramp-down events compared with the MSE obtained during ramp-up events suggests that the ramp intensity is statistically 
higher during ramp-up events compared with that during ramp-down events. This conclusion is similar to the conclusion in 
Section 4.1 for the wind farm of Ariz and the case study of Texas considered in Katzenstein et al. (iii) With regard to the 
results obtained by the linear AR, the ANN and the RS-ANN models, it was found that non-linear models allowed important 
reductions of the MSE during ramp-up events. Specifically, the ANN and the RS-ANN obtained a reduction of 5.6% and 
9.3% with respect to the AR model. Considering the results for the ramp-down events, it can be noticed that more complex 
models did not attain similar MSE reduction levels with respect to the MSE obtained with the linear AR model (2.5% and 
5.2%, respectively). The fact that more complex models did not produce better forecasts during ramp-down events does 
not permit us to conclude whether the linear model performs sufficiently well to capture the wind power dynamics during 
these events or that hypothetical room for improvement was not exploited by the proposed non-linear models. The second 
option would be supported by the fact that ramp-down events could be due to a higher diversity of underlying causes, such 
as wind speeds passing the cut-out speed of wind turbines or yaw misalignments caused by sudden changes in the wind 
direction. In this regard, a lower predictability during ramp-down events was pointed out in Truewind. (iv) Finally, the 
accuracy of the models was practically the same during non-ramp events, suggesting that complex models do not seem to 
provide a substantial contribution with respect to Persistence. 
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Figure 13. Evaluation of the wind power forecasting performance of different statistical models for three situations: ramp-up events, 

ramp-down events and non-ramp events 
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5. CONCLUSIONS 

The present study introduced a novel tool based on the WT. This tool is used to characterise the ramp performance of wind 
power time series. The underlying concept is to consider the contribution of the local gradient evaluated under different 
time scales. As a result, the ramp function is obtained, which provides a continuous index related to the ramp intensity at 
each time step. 

The use of a continuous index was found to be a more reliable approach to characterise the ramp performance of 
wind power time series than the binary classification ramp/non-ramp usually employed in wind power ramp forecasting. 
Although the ramp function does not provide a 'closed definition' of ramp events, it permits us to address several drawbacks 
related to the binary classification. For example, the ramp function is based on the assumption that there is an imprecise 
border that differentiates ramp events within a wind power time series. This assumption is important to minimise the sen-
sitivity observed when binary classification is employed for ramp identification. Hence, specific thresholds regarding fixed 
values on power variations and ramp durations are not required. Instead, the ramp function can be computed by considering 
one parameter related to relevant time scales in the ramp characterisation. Moreover, the ramp function is obtained in such 
a way that small variations in this parameter do not entail substantial variations in the ramp intensity indexes. 

On the other hand, binary classification supports the notion that ramp events are similar to one another, although dif-
ferences in amplitude and duration are usually observed. In contrast, the ramp function preserves the information in these 
features by assessing a continuous index of the intensity of the ramp experienced at each time step. This fact potentially 
benefits the activity of both end-users (TSOs and energy traders) and forecaster/modellers in relation to wind power ramp 
forecasting. 

From the point of view of forecasters/modellers, the ramp function permits new approaches to wind power ramp analysis 
that are not feasible from a binary classification standpoint. To illustrate this fact, a set of applications where the ramp func-
tion plays a major role was described. Interesting conclusions concerning different aspects of wind power ramp forecasting 
were envisaged for some wind farms located in Spain. The first application shows how the proposed ramp function could 
be used to identify the period of the day in which ramp-up events are more intense compared with ramp-down events and 
vice versa. The second application explores how a specific cluster of wind turbines could be identified in a wind farm on 
the basis of how close its ramp performance is to the ramp performance of the whole wind farm. Finally, the third appli-
cation shows how the ramp function could contribute to evaluate statistical point-forecasting models during ramp events, 
providing insights into different predictability levels for ramp-up and ramp-down events. Nevertheless, there is still room 
for the development of new approaches. For example, considering that ramp events may be motivated by a broad number 
of causes, an important open question is how much the proposed ramp function could eventually contribute to a better 
understanding of the meteorological processes and the operational states that cause ramp events. Future research could 
address this topic as the next step for the development of oriented ramp event forecasting tools. 

The issue of the ramp function contribution to end-users was not addressed in depth in this work and should be further 
investigated. However, it can be envisaged that the ramp function would permit end-users to tailor different ramp intensities 
to a specific cost function. In this regard, energy traders and TSOs could eventually benefit from the ramp function since a 
more appropriate action could be adopted depending on the forecasted ramp intensity rather than the limited range of infor-
mation provided by the binary classification. The counterpart would be that the end-user needs to be more knowledgeable 
about the implications of a particular ramp intensity (in terms of economic penalties or the cost of ancillary services). 

Finally, it is important to note that the theoretical background based on the WT permits the ramp function to be readily 
extended to other time series, such as wind speed or wind direction time series, as well as to time series with higher time 
resolutions than the hourly resolution used in this work, to address the characterisation of faster ramp events. 
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APPENDIX A 

In this Appendix, equations (15) and (16) are demonstrated. Consider a time series, {yt}, obtained through the realisa-
tion of the stochastic process {Yt}, t = 1 , . . . , N, which is supposed to be weakly stationary (i.e. E [Yn] = E [F2L 
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War [Yti] = War [Yt2] and Cov [Yti, Yfi±d]
 =

 Cov \Xt2, Yt2±d] f° r every 11, tl, d). The demonstration makes use of 
some properties related to the variance and covariance of several random variables, namely 

War £*, J2Var[Xj]+2-J2 £ Cov[Xj,Xk] 

; = i j=\k=j+l 

(22) 

Cov [aX, bY] = a-b- Cov [X, Y] (23) 

Cov [X + Y,Z] = Cov [X, Z] + Cov [Y, Z] (24) 

Cov [X, Y] = Cov [Y, X] (25) 

The variance of the gradient function defined in equation (11) is given by 

War [Gf] = War [Yt] + War [Yt-a] -2-Cov [Yt, Yt-a\ = 2-W ar [Yt] -2-Cov [Yt, Yt-a\ (26) 

Equation (26) can be rewritten as follows: 

2-War[Yt]-War[Gf] 
Cov [Yt, Yt-a\ (27) 

Now, let consider the covariance between two gradient functions, \_Gf~\ and G®j , for arbitrary values a, b and < 

Cov [Gf, G
a

tZ%\ = Cov [Yt - Yt-a, Yt_d - Yt-d-a+b\ 

= Cov [Yt, Yt-d]-Cov [Yt,Yt-d-a+b] ~ Cov [Yt-aJt-d\ + Cov [Yt-a,Yt_d_a+b] 

War [G?+
a
-

b
]-War [G? ] + War [ G f ^ ] -War [Gf~

b
] 

(28) 

Finally, consider the filtered signal defined in equation (12) for the case of A being even (the demonstration for A being 
odd is analogous). The variance of the filtered signal can be written as follows: 

War M • War 

1 
: A 

. A/2 

V G
1 / 2 

^fl ; = i 

(
A/2 A / 2 - 1 A/2 N 

£ V a r [ G ^ _ 1 ] + 2 . £ £ Cov[G^_vG^k_x\ 

; = i ; = i k=j+i , 

(29) 

(28) 1_ 

~ 2 

A / 2 - 1 A/2 V f l i 

•M^
/2

K-£ £ 
[G?

/2+k
-

j
] - 2 -War [G*~

J
] +War [G?

/2
~

k+J
] 

j=\ k=j+\ 

which leads to equation (15). 
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