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A Wavelet-Based Procedure for Process Fault
Detection

Emily K. Lada, Jye-Chyi Lu, and James R. Wilson

Abstract—To detect faults in a time-dependent process, we
apply a discrete wavelet transform (DWT) to several indepen-
dently replicated data sets generated by that process. The DWT
can capture irregular data patterns such as sharp “jumps” better
than the Fourier transform and standard statistical procedures
without adding much computational complexity. Our wavelet
coefficient selection method effectively balances model parsimony
against data reconstruction error. The few selected wavelet
coefficients serve as the “reduced-size” data set to facilitate an
efficient decision-making method in situations with potentially
large-volume data sets. We develop a general procedure to detect
process faults based on differences between the reduced-size data
sets obtained from the nominal (in-control) process and from
a new instance of the target process that must be tested for an
out-of-control condition. The distribution of the test statistic
is constructed first using normal distribution theory and then
with a new resampling procedure called “reversed jackknifing”
that does not require any restrictive distributional assumptions.
A Monte Carlo study demonstrates the effectiveness of these
procedures. Our methods successfully detect process faults for
quadrupole mass spectrometry samples collected from a rapid
thermal chemical vapor deposition process.

Index Terms—Monte Carlo, process fault detection, resampling
procedures, reversed jackknifing, wavelets.

I. INTRODUCTION

I N MODERN manufacturing systems, various sensors are
equipped to collect data for monitoring, controlling, and im-

proving process performance; for examples, see [1] and [2]. Es-
pecially for costly products like semiconductors, such data are
useful in improving production quality and efficiency as well
as in detecting process faults and understanding process prob-
lems. One of the difficulties faced by many industries today,
however, in fully utilizing the available data is an overabun-
dance of such data. The objective of this paper is to present a
case study in which wavelet transforms are used to reduce the
size of large-volume, dynamic-trend data sets so that they can
be used for (real-time) process fault detection, system behavior

Manuscript received June 19, 2001; revised September 17, 2001. The work
of E. K. Lada and J. R. Wilson was supported in part by the National Science
Foundation under Grant DMI-9900164. The work of J.-C. Lu was supported in
part by the National Science Foundation under Grant DMS-0072960 and Grant
EEC-0080315.

E. K. Lada is with the Graduate Program in Operations Research,
North Carolina State University, Raleigh, NC 27695-7913 USA (e-mail:
eklada@eos.ncsu.edu).

J.-C. Lu is with the School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, GA 30332-0205 USA (e-mail:
jclu@isye.gatech.edu).

J. R. Wilson is with the Department of Industrial Engineering, North
Carolina State University, Raleigh, NC 27695-7906 USA (e-mail:
jwilson@eos.ncsu.edu).

Publisher Item Identifier S 0894-6507(02)01030-8.

modeling, failure prediction, and other problem-solving and de-
cision-making activities.

There are many different types of large-volume data sets in
manufacturing processes. In this article, we focus on numerical
data collected with various measurement tools, including dif-
ferent kinds of sensors and product-testing devices. Such data
sets usually exhibit nonstationary dynamic trends with distinc-
tive patterns (e.g., sharp jumps) caused by specific types of
process faults (see the signals given in [3] for examples). Tradi-
tional statistical and signal-processing procedures, such as poly-
nomial regression, time-series models, Fourier transforms, or
neural networks, can be inappropriate to describe these data sets.
As an alternative, wavelet transforms are being used by many
researchers. For example, Jin and Shi [4] used tonnage signals
to detect faults in a sheet-metal stamping process; and Wanget
al. [5] used different catalyst recycling rates to diagnose fail-
ures in a residual fluid catalytic cracking process. In our study,
we analyze quadrupole mass spectrometry (QMS) samples of a
rapid thermal chemical vapor deposition (RTCVD) process (see
Figs. 1 and 2) to detect significant deviations from the nominal
(in-control) process.

Using an expert’s knowledge of a particular process, we could
derive a “feature-preserving” procedure to extract a particular
data pattern and link it to a specific type of process fault; for
example, see [4]. However, the purpose of our study is to de-
velop and evaluate a generic “data-reduction” procedure that
can handle large volumes of data without requiring an expert’s
knowledge or data visualization techniques to identify segments
of fault signals.

Ideally, the uses of reduced-size data sets will not be limited to
detecting specific types of known faults. Other possible uses in-
clude data reconstruction, fault classification, failure prediction,
and other general purposes of data processing to improve man-
ufacturing quality and efficiency. For example, wavelet trans-
forms or locally focused wavelet neural networks [6] are useful
in the following applications: 1) modeling equipment status and
control signals that exhibit significant dependencies (correla-
tions) over time and space as well as across equipment func-
tions; and 2) predicting process failures in real time for in situ
analysis or in postproduction mode for off-line analysis.

Beyond the generic approach to data reduction and process
fault detection that we take in this paper, other techniques for
trouble-shooting process problems include Isermann’s survey
[3] of model-based process fault detection methods and the
neural network-based failure prediction procedures developed
by Rietman and Beachy [7]. To extend the capabilities of these
methods to handle large data sets with nonstationary patterns,
one could create a wavelet-based reduced-size data set and feed
it into their procedures instead of the original data.

0894–6507/02$17.00 © 2002 IEEE
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Fig. 1. QMS data for nominal (in-control) runs 1–4 of RTCVD process.

Fig. 2. QMS data for induced-fault runs 1–4 of RTCVD process.

Summary statistics, such as the mean and variance, are com-
monly used data reduction methods. However, this approach
works only for data sampled from a population whose character-
istics do not vary over time. For data with dynamic trends, this
approach can be extended to the coefficients (and their “bases”)
of regression functions as well as Fourier and wavelet trans-
forms. Our procedure selects a few important wavelet coeffi-
cients that represent key features of the data and discards those
fine-scale wavelet coefficients that represent noise or secondary
characteristics in the data. Thus, wavelet analysis can be used for
both data reduction and data denoising. Because the commonly
used wavelet model selection methods—for example, SURE
by Donoho and Johnstone [8] and AMDL by Saito [9]—tend
to overfit the data (that is, they use too many coefficients for
effective data reduction), we propose a new method that bal-
ances a data-reduction ratio against a “normalized” version of
the data reconstruction error. Based on several real-life case
studies, our procedure compares favorably with the SURE and
AMDL methods. Our model selection method also goes be-
yond the traditional procedures that are based on a single data
set taken from the target process; thus our proposed techniques
can handle multiple replications of time series generated by the
target process. This type of study has never been explored pre-
viously.

To illustrate the use of reduced-size data sets for process fault
detection, in this article, we calculate differences between 1) the
wavelet coefficients estimated from several independent runs of
the in-control process, and 2) the corresponding wavelet coef-
ficients estimated from a single run of a process that must be
tested for an out-of-control condition. We formulate a variant
of Hotelling’s -statistic for two-sample problems to structure
the sum of squares of the differences. The distribution of the

-statistic is explored by using a new “reversed jackknife” pro-
cedure. A Monte Carlo study characterizes the accuracy of ap-
proximating the distribution of the final test statistic with an ap-
propriate -distribution. This leads to a simple decision-making
procedure suitable for detecting process faults. The proposed
procedure is then tested on several data sets obtained by in-
ducing faults in the RTCVD process. The results of this case
study indicate that the proposed wavelet-based general data-re-
duction procedure is effective in detecting process faults.

More complicated fault detection procedures could be devel-
oped based on the selected wavelet coefficients. For instance,
if the process signals are collected at various time points, one
could build time-dependent models of the wavelet coefficients
and use those models to predict future behavior of the wavelet
coefficients. Furthermore, for the purpose of process failure
prediction, statistical process control limits could be built to
signal the possibility of out-of-control events at future time
points. These predictions of wavelet coefficient values could
then be used to reconstruct an approximation to the data at
selected future time points, thereby eliminating the need to
reconstruct an original data set that may be very large. With
various cross-functional, reduced-size data sets representing
equipment status, control signals, or postproduction mea-
surements, it is possible to predict failure events and identify
their causes. Kim and May [2] explore the use of evidential
reasoning [10] to build an expert system for diagnosis of
equipment failures in the fabrication of integrated circuits.
However, the scope of these extensions is beyond the purpose
of this article on data reduction and should be addressed in
future research.

The remainder of this paper is organized as follows. Section II
contains a description of the RTCVD process and the data as
well as a brief overview of wavelet basics. Section III presents
a detailed fault detection procedure based on reduced-size data
sets. Section IV gives concluding remarks and future research
directions.

II. PROCESS, DATA, AND WAVELET TRANSFORMS

RTCVD is a process capable of depositing chemical mate-
rials on wafers with great precision. It is used in many semicon-
ductor manufacturing systems. Our RTCVD process is equipped
with many in situ temperature sensors at various wafer locations
that are useful in controlling deposition uniformity better than
other processes. See Tedderet al.[11] for details of the RTCVD
process used in this study. QMS data were collected from a
series of process and diagnostic experiments involving poly-
crystalline Si deposition from 10% SiHAr in a single-wafer
RTCVD tool ranging in temperature from 625C to 725 C. The
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data used in this study consists of QMS samples of 21 nom-
inal (in-control) process runs and four induced-fault RTCVD
process runs. Fig. 1 displays the data for the first four nominal
runs, and Fig. 2 displays the data for the four induced-fault runs.
Note that there is a certain amount of secondary “local variation”
exhibited in these data sets.

Wavelet transforms are very popular in many engineering
and computing fields for solving real-life application problems.
Wavelets can model irregular data patterns, such as sharp
“jumps” and “dips,” better than the Fourier transform and
other standard statistical procedures, such as splines and
nonparametric regression. In the following overview of wavelet
analysis, denotes the real line and denotes the space
of square integrable real functions defined on. A wavelet is a
function with the following basic properties

and

An example of the function is the “sombrero” wavelet (see
[12, p. 77]), which looks like a Mexican sombrero. Wavelets can
be used to create a family of time-frequency atoms,

, via the dilation factor and the translation.
We also require a scaling function that satisfies

and

Let denote the set of all integers . Starting
from suitable choices of the scaling function and the
wavelet function and using dilations of the form
and together with translations of the form
for , we can construct an orthonormal basis
for the space consisting of the scaling functions

and the wavelet func-
tions ; and in this
situation, any target function can be expressed as

(1)

where the coefficients

and

are defined as the inner product of with the basis functions
and , respectively. The representation (1) is anal-

ogous to the Fourier series representation of a square integrable
function on the interval in terms of trigonometric basis
functions.

When a discrete wavelet transform (DWT) is applied to a
data set of size (where the superscript
represents the transpose operator and where in general we must
have for some positive integer), the vector of wavelet
coefficients can be expressed by . If defines an or-
thogonal DWT, then the vector of original observations

can be recovered using the inverse DWT, . The DWT
transforms data points into wavelet coefficients. The orig-
inal data can be expressed as a linear sum of products of wavelet
coefficients and their corresponding basis functions, as in (1).
Extending the analogy between wavelet analysis and Fourier
analysis, we see that transforming a data set via the DWT closely
resembles the process of computing the fast Fourier transforma-
tion (FFT) of that data set.

III. A PROCEDURE FORDETECTINGPROCESSFAULTS

The procedure for detecting process faults based on a
reduced-size data set can be broken down into the following
steps: a) data reduction; b) construction of the nominal process
data model; c) development of the process fault detection
test statistic; and d) application of the test statistic to detect
potential process faults.

A. Data Reduction

In this article, the selected wavelet coefficients are treated as
the reduced-size data set. Our data-reduction step consists of
two substeps: 1) selecting wavelet coefficients (and their corre-
sponding basis functions) by working with a single data set; and
2) deciding on a data-reduction strategy for all replicates, where
each replicate is a different set of signals collected from an inde-
pendent, identically distributed instance of the same in-control
process.

1) Selecting Wavelet Coefficients for a Single Data
Set: When using wavelet transforms, one needs first to decide
which family of wavelets to use. The default wavelet family
used in the popular S-PLUS package for the DWT operation is
the symmlet, ; see Bruce and Gao [13, p. 17] for details. The

wavelet is an excellent overall choice for representing many
functions since it is orthogonal, smooth, nearly symmetric,
and nonzero on a relatively short interval. In a study not
reported here, we experimented with other wavelet families,
such as coiflets and daublets. The results were similar to the
results obtained using wavelets. In this article we limit our
discussion to the results obtained with thewavelet.

One method often used to fit data using wavelets is to com-
pute a set of multiresolution approximations [12], [13]. This
method involves first constructing an approximation to the data
using the coarsest-scale signal and then adding increasingly
finer levels of resolution. As more levels of resolution are used,
the approximation to the target data set improves. Figs. 3–5
below depict multiresolution approximations to a data set that
we obtained from an in-control run of the RTCVD process.
Notice in particular the following aspects of Figs. 3–5:

i) In the top panel of Fig. 3, the solid curve represents the
wavelet approximation to the data set based on taking
the level index in (1) and then estimating only
the coefficients of all relevant
shifts (translations) of the -level scaling functions

while setting all other coefficients on
the right-hand side of (1) to zero. Thus the top panel of
Fig. 3 depicts the accuracy of the wavelet approximation
to the target data set based on four coefficients at the
coarsest level.
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Fig. 3. Multiresolution approximation to an in-control run of the RTCVD
process using four coefficients (top panel) and eight coefficients (bottom
panel).

ii) In the bottom panel of Fig. 3, the solid curve rep-
resents the wavelet approximation to the data set
based on estimating the eight coefficients at the
top two coarsest levels—namely, the coefficients

of all relevant shifts of the -level
scaling functions and the coefficients

of the corresponding shifts of the
-level wavelet functions —while

setting all other coefficients at the finer levels to zero.
iii) In the top panel of Fig. 4, the solid curve represents

the wavelet approximation to the data set based on es-
timating 16 coefficients—namely, all the-level coeffi-
cients mentioned in the previous item ii) and the coeffi-
cients of all relevant shifts of the

-level wavelet functions —while
setting all other coefficients at the finer levels to zero.

iv) Similarly in the remaining panels of Figs. 4 and 5, the
solid curve represents the wavelet approximation to the
data set based on estimating the indicated number of
coefficients up to and including all relevant shifts of
the next-higher-level wavelet functions while setting
all other coefficients at the finer levels to zero. At each
level in this example, there are nonzero coeffi-
cients associated with the
relevant shifts of the corresponding wavelet functions

.

Notice the improvement in the approximation as more levels
of detail are added by including coefficients at the finer levels
hierarchically. At the finest level of resolution with index

, the total number of estimated wavelet coefficients
equals the size of the data set so that the data set is
exactly reconstructed as shown in the bottom panel of Fig. 5.

While easy to use, this type of “linear” multiresolution
approximation tends to oversmooth the data. For example,
in the bottom panel of Fig. 3, the eight coefficients in the
two coarsest-resolution levels are unable to represent the dip
around sample number 40. Of course, if such a dip in the
data is considered to be less important or data noise, then
it is reasonable to filter out that dip. However, if that dip is

Fig. 4. Multiresolution approximation to an in-control run of the RTCVD
process using 16 coefficients (top panel) and 32 coefficients (bottom panel).

Fig. 5. Multiresolution approximation to an in-control run of the RTCVD
process using 64 coefficients (top panel) and 128 coefficients (bottom panel).

considered to be an important characteristic of the target data
set in representing process signatures, then we should use
“nonlinear” approximation methods. In particular, nonlinear
methods that select “important” wavelet coefficients (usually
the largest in magnitude) and set to zero the “unimportant”
coefficients (usually those representing noise) are effective
in accurately representing small jumps or dips in the data
with typically fewer coefficients than an approach based on a
straightforward multiresolution approximation. Fig. 6 shows a
reconstruction of the same data set depicted in Figs. 3–5 using
the eight estimated wavelet coefficients having the largest
magnitudes. Even though this reconstruction is not perfect, the
dip around sample number 40 is represented. Fig. 7 shows the
same data set reconstructed with the 19 estimated coefficients
having the largest magnitudes. From this plot, it is clear that it
is possible to achieve an excellent approximation to the data
using as few as 19 coefficients.

There are many wavelet model selection procedures in the
literature that are based on this idea of selecting “important”
wavelet coefficients and setting to zero the “unimportant” co-
efficients. These methods attempt to find an optimal number of
coefficients to accurately represent the data, thereby leading to
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Fig. 6. Reconstruction of the in-control RTCVD data set using the eight
largest-magnitude coefficients.

Fig. 7. Reconstruction of the in-control RTCVD data set using the 19
largest-magnitude coefficients.

a simplified and smoother (less noisy) data model. Two pop-
ular model selection examples are: the SURE (Stein’s unbi-
ased estimate of the risk function) method proposed by Donoho
and Johnstone [8]; and the AMDL (approximate minimum de-
scription length) procedure proposed by Saito [9]. The AMDL
method minimizes the cost function

(2)
where is the number of wavelet coefficients selected to be
nonzero and is the prediction of theth observed response

based on the wavelet data model with thelargest-magni-
tude coefficients. As addressed in Antoniadiset al. [14], the
AMDL function is similar to the Akaike information quantity
commonly used in many statistical model selection procedures,
including linear regression models.

While the existing wavelet model selection procedures, such
as SURE and AMDL, are effective in denoising data, they tend
to overfit the data and use an excessive number of coefficients.

Because the goal of our wavelet coefficient selection method is
data reduction, we would like to keep only a very small number
of coefficients. However, it is also important to keep enough co-
efficients so that the data model represents the original data well.
Below, we propose a new wavelet coefficient selection method
to meet our goal of data reduction.

Almost all model selection methods in the literature are
linked to the mean-squared error (MSE)

which characterizes the accuracy of the approximation to the
original data. Our method balances a dimensionless version of
this error against a data reduction ratio, . That is, similar to
the AMDL method, we keep the largest-magnitude wavelet
coefficients that minimize the following (penalized) “relative
reconstruction error”:

(3)

The first component of (3) represents a “normalized” recon-
struction error from the approximated wavelet model structured
by a linear sum of products of selected wavelet coefficients and
their corresponding bases, similar to (1). The second component
is the normalized number of coefficients used. In addition, it is
possible to add a constant multiplierto the second term in (3)
to control the trade-off between the two terms. In this study, we
decided to keep the method simple by setting , thereby
using equal weights for both terms in (3). More investigation is
needed to explore the choice ofand its impact.

Fig. 8 illustrates the results of applying the RRE and AMDL
estimation methods to the data collected on in-control run 5 of
the RTCVD process. The upper left-hand plot shows that the
data approximation error becomes smaller when the number
of coefficients included in the wavelet model increases. The
lower left-hand plot shows that the RRE has a minimum value
at . The lower right-hand plot shows that the approxi-
mation model with wavelet coefficients captures almost
all details of the data pattern. The upper right-hand plot shows
that the AMDL criterion (2) has a minimum at , which
is much larger than the value of at which the RRE crite-
rion (3) is minimized. Table I shows similar results obtained for
six other nominal runs (the column headed “Run 5” in Table I
corresponds to the nominal run illustrated in Fig. 8).

2) Deciding on a Data Reduction Strategy for All Repli-
cates: As indicated in Table I, the number of wavelet
coefficients used to represent a data set can be different for
different sets of data from the same process. Moreover, even if
the number of coefficients is the same, the coefficients (and the
corresponding basis functions) can have different values. If the
process has little noise, then the data across replications should
be very similar, and thus the selected wavelet coefficients for
each data set should be similar. Because there is a certain
amount of noise in the data obtained from the nominal process
used in this study, our challenge is to decide on a set of wavelet
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Fig. 8. Comparison of results of applying the RRE and AMDL estimation methods to run 5.

TABLE I
NUMBER OF COEFFICIENTSSELECTED FORSTANDARD RUNS

coefficients to represent adequately the overall data structure of
the nominal process.

First, we randomly selected seven data sets from the 21 signal
data sets obtained from the nominal process. Using the RRE
method, we selected wavelet coefficients for those seven data
sets. To select representative coefficients for all replicates, there
are a number of different strategies. For example, one can use
the union set of all bases selected by the RRE method for the
seven nominal data sets. This approach gives a comprehensive
selection of the representative coefficients that covers many of
the data fluctuations across replicates and captures the most im-
portant features of each set of data. However, the number of co-
efficients in the union set can be larger than the number of repli-
cates of the in-control process. This will create problems later
in computing the value of the overall performance statistic. An
alternative approach is to select the most frequently occurring
coefficients (that is, those coefficient positions that are selected
by the RRE method on every replication), while at the same
time keeping the number of selected coefficients smaller than
the number of replicates. For our data, the most frequently oc-
curring coefficients are , , , , , and , as

shown in Table II below. The weakness of this method is that the
more detailed data patterns described by the finer-level wavelet
coefficients, such as , are excluded. This will make the
data-model approximation overly smoothed. A third alternative
is to find a way to search through all coefficients to minimize
the following overall relative reconstruction error (ORRE):

where is the number of replicates of the in-control process
and is the relative reconstruction error for theth
data set. This approach involves a large number of
coefficients, however. Examining this many candidate models
to find an appropriate data model can be very time consuming
in practice. Finally, one could extend the procedures developed
in the wavelet model selection literature to a multivariate case.
Thus, the independent replicate data case becomes a special sit-
uation for applying the extended procedure. This idea could lead
to a theoretically justified procedure. However, it is still under
development and its performance remains to be studied [15].

To demonstrate the feasibility of using the wavelet coeffi-
cients estimated from a data set as the “reduced-size” data set for
detecting process faults, we will use the 19 coefficients summa-
rized in Table II as the selected coefficients in all subsequent dis-
cussion of the case study involving the RTCVD process. These
19 coefficients were obtained by taking the union set of the coef-
ficients selected by the RRE method for each of the seven runs.
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TABLE II
COEFFICIENTSSELECTED TODESCRIBE THENOMINAL PROCESS

B. Construction of the Nominal Process Data Model

The estimated wavelet coefficients obtained from all repli-
cates (at the bases shown in Table II) are treated as the re-
duced-size data set that will be used for making decisions con-
cerning process performance. It is possible to utilize expert in-
formation to map the process fault patterns to some combination
of these reduced-size data sets. Furthermore, artificial neural
networks can be helpful in detecting and classifying fault types
based on these wavelet coefficients. In this article, we use all
coefficients listed in Table II to derive a hypothesis-testing pro-
cedure for detecting process faults. The nominal process data
model will be approximated by using the coefficients listed in
Table II, with their values computed according to the statis-
tical-estimation procedure detailed in Section III-C below—in
particular, see (6) below. If the values of the same 19 coefficients
selected from a new data set are statistically different from the
values of the coefficients obtained for the nominal process, then
we conclude that the new process has a fault and is, therefore,
out of control.

C. Development of the Process Fault Detection Statistic

Let denote the dimensional vec-
tors of estimated wavelet coefficients selected from therepli-
cates of the in-control process, whereis the number of wavelet
coefficients used to describe the nominal process. (In our case
study, recall that and ; and thus on theth
run of the in-control RTCVD process, the elements ofare
the 19 corresponding estimates of the wavelet coefficients listed
in Table II and computed via the DWT of the data set of size

recorded during that run, where .)
Because these replicates are independent and identically dis-
tributed (i.i.d.) data-signal streams, the selected wavelet coef-
ficients will naturally be i.i.d. across replications. However, the
coefficients in a single data set are not i.i.d. since part of the
same data set is used in determining the values of different co-
efficients. Let and respectively denote the mean vector
and covariance matrix of the multivariate distribution of each
in-control random vector . Note that we do not specify the
distribution of each . If the original data are samples from
a normal distribution, then each will have a multivariate
normal distribution since the wavelet coefficients obtained from
the DWT are linear combinations of the original data. However,
if the original data are not normal, then in general the wavelet

coefficient vector will not be multivariate normal. Our study
will cover both the normal and nonnormal cases.

If we obtain a new set of data signals from a process whose
in-control status is to be tested, then the new data set is trans-
formed using the DWT in the same manner as for the original

runs that are known to be in control. We let denote the
vector of selected wavelet coefficients estimated from the new
data set. We assume that the random vector has expected
value , which is not necessarily equal to, and covariance
matrix , the same covariance matrix as for the .

To see if the new process is also in control, one can select a
few (or all) wavelet coefficients and formulate a test statistic.
The following hypothesis-testing procedure includes allco-
efficients. The same idea works for a few targeted coefficients.
The null hypothesis that the new process is in control can be
written as

(4)

The first step in testing this null hypothesis is to take indepen-
dent samples of sizewithout replacement from the set of es-
timated wavelet coefficient vectors corresponding to the inde-
pendent replicates of the in-control process,

(5)

This sampling operation is independently replicatedtimes.
For the th random sample of sizeselected without replace-

ment from (5), we let denote the corresponding sample mean.
For reasons explained in Appendix A, we refer to this sampling
scheme as a “reversed jackknife” method.

We observe that the are independent
and identically distributed since they are obtained viainde-
pendent replications of the basic operation of taking a sample of
size without replacement from (5). From this random sample
we calculate the grand mean

(6)

and the sample covariance matrix

(7)

We combine these in-control sample statistics with the estimated
wavelet coefficient vector for the new process to obtain a
variant of the classical two-sample Hotelling’s-statistic that
has been adapted to the reversed jackknife sampling scheme:

(8)

where has the -distribution with degrees of

freedom, provided that the and are
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i.i.d. normal with mean vector and covariance matrix .
Furthermore, under this normality assumption, we see that

(9)

has an -distribution with and degrees of freedom.
Appendix A contains a derivation of (8) and (9) under the nor-
mality assumption and the null hypothesis (4). If the value of the
test statistic (9) is larger than thecritical value for a prespec-
ified significance level (for example, or ),
then we conclude that there are faults in the process from which

was estimated.
1) Formulation of Nonparametric Fault-Detection Pro-

cedure for Nonnormal Data:If one does not assume that
and are normal, then the -dis-

tribution with and degrees of freedom is only an
approximation to the distribution of the test statistic (9). In the
case where the data are not normal, resampling procedures
such as bootstrapping [16] are typically used to develop an
approximation to the distribution of (9). However, standard
resampling procedures can yield an estimate of the covariance
matrix that is singular; and in such situations, a test statistic
like (9) cannot be computed. In our case study with
and , the probability of generating a conventional boot-
strap sample of size from (5) (i.e., a random sample selected
with replacement from (5)) that possesses a nonsingular sample
covariance matrix is less than 3.52610 ; see Appendix A
of Lada [17]. Clearly the traditional approach to bootstrapping
will not work in this situation; and this is the fundamental
reason for the reversed jackknife sampling method that we
proposed in (5)–(7) to compute the final test statistic (9).

To handle the case where the data are not necessarily
normal, we develop an alternative to traditional bootstrapping
techniques. In our procedure, the empirical distribution of
the test statistic (9) under the null hypothesis (4) is used to
determine if a new data set, represented by , is in control
or not. Fig. 9 contains a formal statement of the procedure to
detect process faults in the nonnormal case. Notice that steps
1(a)–1(c) of Fig. 9 generate an empirical distribution of
the test statistic (9); and then the given vector is tested for
the in-control condition in steps3(a)–3(c)of Fig. 9 by referring
the associated value of to the empirical distribution .
See Appendix B for more details on how this procedure was
derived.

2) Setting , , and for the Fault-Detection Proce-
dure: Some care is required in selecting appropriate values
of and so that the reversed jackknife sampling scheme
can be used effectively in a process fault detection procedure.
Given the size of the original set of in-control estimated
wavelet coefficient vectors (5), we see that there are in general

ways to choose distinct vectors
that will constitute a sample of sizeselected without replace-
ment from (5). In view of the discussion in Section III-C1
and in Appendix A, we see that to ensure invertibility of the
sample covariance matrix computed from the sample means

based on the reversed jackknife method,

the value of must be chosen so as to guarantee that
is sufficiently large. More precisely, should be much
larger than to ensure that with probability close to one, the

set will include linearly independent

vectors so that exists and the test statistic (9) can actually

be calculated. We observe that if the were continuous
random vectors, then it would follow from Proposition 2 of
[18] that would be invertible with probability one. Moreover

as increases, a central limit-type effect ensures that the
will converge in distribution to multivariate normality and
thus will tend to behave like continuous random vectors. This
observation coupled with extensive computational experience
using the process fault detection procedure of Fig. 9 has led us
to the conclusion that in addition to requiring , we
should take just large enough so that the set of sample mean

vectors will pass the Shapiro–Wilk test
for multivariate normality at a standard level of significance
(say, or ). In addition to ensuring that
exists with probability close to one, we have found that this
approach to setting improves the adequacy of approximating
the null distribution of (9) with either the -distribution
having and degrees of freedom or with the empirical
distribution of the generated in step1 of Fig. 9.

Clearly the selection of appropriate values forand de-
pends critically on the selection of an appropriate value for;
and as in all resampling schemes (including conventional boot-
strapping schemes), the validity of our nonparametric process
fault detection procedure depends on the selection of a suffi-
ciently large value of at the outset. We performed an exten-
sive set of Monte Carlo experiments to formulate effective rules
of thumb for setting , , and in general applications of our
fault detection procedure. Based on replications of
steps1 and3 of the procedure, Fig. 10 displays the following
c.d.f.’s for a typical Monte Carlo experiment in which we took

, , , and so that the orig-
inal set of wavelet coefficient vectors was
sampled from a 20-dimensional multivariate uniform distribu-
tion, with covariance structure typical of estimated wavelet co-
efficients (specifically for this example, the lag-1 correlations
were set to 0.4 while all other correlations were set to zero):

i) the empirical c.d.f. of the generated
by Step1;

ii) the empirical c.d.f. of based on repli-
cations of Step3 in which was sampled from the
same underlying multivariate uniform distribution from
which we sampled the original set (5) of in-control esti-
mated wavelet coefficient vectors; and

iii) the c.d.f. of the corresponding-distribution with and
degrees of freedom.

It is clear from Fig. 10 that in general the distribution of the
final test statistic in item ii) above differs not only from
the conventional normal-theory approximation in item iii) above
but also from our reversed jackknife approximation in item i)
above. Based on extensive computational experience with the
process fault detection procedure of Fig. 9, we have found that
the approximations i) and iii) to the null distribution of the final
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Fig. 9. Procedure for detecting process faults when the original data sets are nonnormal.

test statistic will be adequate in practice if we select,
, and according to the following rules of thumb:

and

(12)

D. Process Fault Detection Applications

As mentioned previously, we observed in-control
runs of the RTCVD process to form the set (5) of in-control
estimated wavelet coefficient vectors. We then took
samples of size without replacement from the set (5)

to compute the sample mean vectors and

the overall sample statistics and . The four induced-fault
runs of the RTCVD process shown in Fig. 2 were used to test

the effectiveness of the proposed process fault detection pro-
cedure. Notice that two of the faults are significantly different
from the in-control process while the other two faults, repre-
senting a more difficult case to detect, are similar to the in-con-
trol process. For each of the four induced-fault runs, we com-
puted the corresponding wavelet coefficient vector ; and fi-
nally we computed the test statistic corresponding to .

To ensure adequate performance of the process fault de-
tection statistic (9), we attempted to apply the rules of thumb
(12) while taking large enough to ensure that the set of-di-

mensional sample means would pass the
Shapiro–Wilk test for multivariate normality. Using Royston’s
algorithm [19] for the extended univariate Shapiro–Wilk test,
we developed an S-PLUS program to compute the multivariate
Shapiro–Wilk test statistic . This program is available from
the authors on request. Corresponding to samples



88 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 15, NO. 1, FEBRUARY 2002

Fig. 10. c.d.f.’s for the nonparametric procedure of Fig. 9: i) c.d.f. of the
fF : r = 1; . . . ; Rg (solid step function) generated by Step1; ii) empirical
c.d.f. ofF based onR = 1000 replications of Step3 with ��� sampled
from the same in-control distribution as for (5) (dashed step function); and iii)
the correspondingF c.d.f. (solid curve) withp andK � p degrees of freedom.

of size , the resulting multivariate Shapiro–Wilk test

statistic for the is , and the associated
-value is 0.521. Note moreover that in this application, we

have , which clearly satisfies the
third condition in (12). In all applications of our process fault
detection procedure to this case study and to other problems
in which we have taken just large enough to ensure that the

pass the multivariate Shapiro–Wilk test and ,

we have never generated a sample for which the corre-
sponding sample covariance matrixfailed to be invertible.
We believe that this observation provides good evidence of
the effectiveness of our rules of thumb in (12) for setting
and in practical applications of the process fault detection
procedure. On the other hand, it should be noted that since

in the RTCVD case study, the first two conditions in
(12) would require and . Since we were
constrained to taking with the corresponding value of

, we do not have an adequate overall approximation to
the distribution of under the null hypothesis (4) based on
either the in our nonparametric resampling scheme or the

-distribution with and degrees of freedom.
Some care is required in interpreting the results that we ob-

tained from applying the process fault detection procedure to
the induced-fault runs of the RTCVD process. We obtained the
95% tolerance interval (0.54, 2.00) for an in-control value of the
test statistic (9). Table III displays the computed value of (9) for
each of the four induced-fault runs, as well as their-values
computed from the empirical distribution .
Clearly, all four induced-fault test statistic values fall well out-
side the given 95% tolerance interval. Furthermore, note that the
estimated -value based on the is zero for all four runs.
Table III also shows the -value when the test statistic (9) is
compared to the -distribution with and
degrees of freedom. Notice that these-values are also very
close to 0. Since we do not have an adequate overall approxima-
tion to the distribution of under the null hypothesis (4), the

TABLE III
TEST STATISTIC VALUES FOR THEFOUR FAULT RUNS

95% tolerance interval (0.54, 2.00) is of questionable validity.
Nevertheless, we see that in the extreme tails of the distribution
of , both of our approximations are sufficiently accurate
to justify the conclusion that all four induced-fault runs are out
of control. Therefore, we concluded that all four runs have po-
tential process faults, and steps should be taken to identify and
remove these faults.

IV. CONCLUSIONS ANDFUTURE RESEARCH

We believe that the results presented in this paper provide
good evidence of the effectiveness of the proposed method for
detecting process faults from a reduced-size data set consisting
of a selected set of estimated wavelet coefficients. If the original
data are normal, or if one simply wants a quick test for process
faults with a minimum amount of computation, then the value
of the proposed test statistic (9) for a new set of data can be
compared to the -distribution with and degrees of
freedom. Otherwise, to obtain the most accurate results, we rec-
ommend that the test statistic value for a new data set be com-
pared to the empirical null distribution generated by the algo-
rithm of Fig. 9—provided that the conditions of (12) are satis-
fied.

The next logical step after detecting possible faults in a
process is to determine the cause of the fault. When there is
enough information to map the wavelet coefficients to known
faults, artificial neural networks or other pattern recognition
procedures can be employed to classify faults and suggest
remedial procedures. Further research on building fault classi-
fication signatures from the reduced-size data set (that is, the
wavelet coefficients) is needed. By using process fault detection
and fault classification techniques, manufacturing systems can
improve their quality and operational efficiency.

APPENDIX A
“REVERSEDJACKKNIFE” METHOD

Typical jackknife procedures [20], such as the “delete-1 jack-
knife” and the “delete-2 jackknife,” delete one or two data points
from the original data set that contains replications to con-
struct a new sample for calculating the test statistic value. In the
delete-1 jackknife procedure, this process is repeatedtimes
(since there are different ways to generate samples of size

from the original sample of size ). Similarly, in the
delete-2 jackknife procedure, the process is repeatedtimes.
In our case study, we take random samples of size, which
means that our procedure randomly deletes of the data
points. Unlike the jackknife procedure, our procedure repeats
the resampling process times (it does not go through all the
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cases of deleting data points). Therefore, in some sense,
our procedure can be considered a “reversed jackknife” proce-
dure.

Since each sample of sizeis selected without replacement
from the original data set of estimated wavelet coefficients for

the in-control processes, is the average of quantities
that in general are assumed to be identically distributed random
vectors with mean and covariance matrix . Note, however,
that the vectors going into the computation of are not inde-
pendent because they are sampled without replacement from the
finite set (5); and we have

(13)

where the quantity is the “finite population cor-
rection” for sample size and population size [21]. If the
sampling fraction is small, then this correction is close to
unity and therefore it has little effect on the standard error of the
sample mean. Otherwise, if the correction is ignored, the covari-
ance matrix of the sample mean will be overestimated. Finally
invoking the Central Limit Theorem, we see that providedis

sufficiently large, is approximately normal with mean vector
and covariance matrix (13).

To define the fault detection test statistic, we compute the

overall sample statistics, and , as given by (6) and (7), re-
spectively. Notice that

and

(14)

Hence, is an unbiased estimator of , and is ap-

proximately normally distributed with mean (the same mean
as for the original nominal runs) and covariance matrix

(15)

Now if the and are i.i.d. normal

with mean vector and covariance matrix , then we are
able to construct the following test statistic for determining if the
wavelet coefficients (the reduced-size data sets) obtained from
the new and the nominal processes are equal statistically:

(16)

where is a vector of wavelet coefficient values obtained
from a new process. Note that under the null hypothesis (4), we
have and

(17)

By multiplying the difference by

, we obtain a test statistic that

has the same covariance matrix as and .
The statistic can now be used to calculate a two-sample ver-

sion of Hotelling’s -statistic. In view of (13)–(17), we have

(18)

where has the -distribution with degrees of
freedom. Note that in order for the matrixto be nonsingular so
that (16) can be computed, a necessary and sufficient condition

is that the corresponding random sample
must contain linearly independent vectors and must satisfy

; see Theorem 7.5.2 of [22]. Finally, Theorem 5.2.2
of [22] ensures that if the and are i.i.d.

normal with mean vector and covariance matrix , then
(9) has an -distribution with and degrees of freedom.

APPENDIX B
EMPIRICAL DISTRIBUTION OF TEST STATISTIC FOR

NONNORMAL DATA

We can compute the empirical distribution of the test statistic
(11) (see Fig. 9) under the null hypothesis (4) in the following
way. To generate theth random sample from this distribution

for , we calculate and according to (6) and

(7), respectively, based on a new sample .
Finally to compute the th observation of (11), we randomly
sample from the original set of wavelet coefficient vectors
representing the nominal process. Taking into account the finite
population correction, we see that .
This results in the slightly altered test statistic

(19)

which is easily seen to be equivalent to the expression forin
step1(c) of Fig. 9.
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