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A Wavelet-Based Procedure for Process Fault
Detection

Emily K. Lada, Jye-Chyi Lu, and James R. Wilson

Abstract—To detect faults in a time-dependent process, we modeling, failure prediction, and other problem-solving and de-
apply a discrete wavelet transform (DWT) to several indepen- cision-making activities.
Sggtlcyarr)?gl!gia}trigﬂ:ﬁ%;fatspgggf;:tggcEyatsh;twfrg)ﬁzjisrﬁb;hbeeggyr There are many different types of large-volume data sets in
than the Fourier transform and standard statistical procedures manufacturing pr.ocesses. In this article, we focus. on ngmerlgal
without adding much computational complexity. Our wavelet data collected with various measurement tools, including dif-
coefficient selection method effectively balances model parsimony ferent kinds of sensors and product-testing devices. Such data
against data reconstruction error. The few selected wavelet sets usually exhibit nonstationary dynamic trends with distinc-
coefficients serve as the “reduced-size” data set to facilitate an tjve patterns (e.g., sharp jumps) caused by specific types of
efficient decision-making method in situations with potentially process faults (see the signals given in [3] for examples). Tradi-
large-volume data sets. We develop a general procedure to detect,. | statistical and si | . d h |
process faults based on differences between the reduced-size datzyona staustica .an glgna -p.rocessmg proce l.,lres, such as poly-
sets obtained from the nominal (in-control) process and from nomial regression, tlme.-serles m.Odels, FOU”.er tranSformS, or
a new instance of the target process that must be tested for an neural networks, can be inappropriate to describe these data sets.
out-of-control condition. The distribution of the test statistic As an alternative, wavelet transforms are being used by many
is constructed first using normal distribution theory and then yesearchers. For example, Jin and Shi [4] used tonnage signals

with a new resampling procedure called “reversed jackknifing” . ; .
that does not require any restrictive distributional assumptions. to detect faults in a sheet-metal stamping process; and \4ang

A Monte Carlo study demonstrates the effectiveness of these &l- [5] used different catalyst recycling rates to diagnose fail-
procedures. Our methods successfully detect process faults for ures in a residual fluid catalytic cracking process. In our study,
quadrupole mass spectrometry samples collected from a rapid we analyze quadrupole mass spectrometry (QMS) samples of a

thermal chemical vapor deposition process. rapid thermal chemical vapor deposition (RTCVD) process (see
Index Terms—Monte Carlo, process fault detection, resampling Figs. 1 and 2) to detect significant deviations from the nominal
procedures, reversed jackknifing, wavelets. (in-control) process.

Using an expert’s knowledge of a particular process, we could
derive a “feature-preserving” procedure to extract a particular
data pattern and link it to a specific type of process fault; for

N MODERN manufacturing systems, various sensors aggample, see [4]. However, the purpose of our study is to de-
equipped to collect data for monitoring, controlling, and imvelop and evaluate a generic “data-reduction” procedure that
proving process performance; for examples, see [1] and [2]. EE&n handle large volumes of data without requiring an expert’s
pecially for costly products like semiconductors, such data aaowledge or data visualization techniques to identify segments
useful in improving production quality and efficiency as welbf fault signals.
as in detecting process faults and understanding process prolideally, the uses of reduced-size data sets will not be limited to
lems. One of the difficulties faced by many industries todagletecting specific types of known faults. Other possible uses in-
however, in fully utilizing the available data is an overaburelude data reconstruction, fault classification, failure prediction,
dance of such data. The objective of this paper is to preserdra other general purposes of data processing to improve man-
case study in which wavelet transforms are used to reduce thHacturing quality and efficiency. For example, wavelet trans-
size of large-volume, dynamic-trend data sets so that they danms or locally focused wavelet neural networks [6] are useful
be used for (real-time) process fault detection, system behaviothe following applications: 1) modeling equipment status and
control signals that exhibit significant dependencies (correla-
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To illustrate the use of reduced-size data sets for process fault
detection, in this article, we calculate differences between 1) the
wavelet coefficients estimated from several independent runs of
the in-control process, and 2) the corresponding wavelet coef-
ficients estimated from a single run of a process that must be
s . e 3 10 1 o s o 2 10 1m0 tested for an out-of-control condition. We formulate a variant

Sample Number Sample Number of Hotelling’s 72-statistic for two-sample problems to structure
the sum of squares of the differences. The distribution of the
T2-statistic is explored by using a new “reversed jackknife” pro-
cedure. A Monte Carlo study characterizes the accuracy of ap-
proximating the distribution of the final test statistic with an ap-
propriatel -distribution. This leads to a simple decision-making
procedure suitable for detecting process faults. The proposed
procedure is then tested on several data sets obtained by in-
ducing faults in the RTCVD process. The results of this case
Fig. 1. QMS data for nominal (in-control) runs 1-4 of RTCVD process.  study indicate that the proposed wavelet-based general data-re-
duction procedure is effective in detecting process faults.

More complicated fault detection procedures could be devel-
oped based on the selected wavelet coefficients. For instance,
if the process signals are collected at various time points, one
could build time-dependent models of the wavelet coefficients
and use those models to predict future behavior of the wavelet
coefficients. Furthermore, for the purpose of process failure
prediction, statistical process control limits could be built to
signal the possibility of out-of-control events at future time
points. These predictions of wavelet coefficient values could
then be used to reconstruct an approximation to the data at
selected future time points, thereby eliminating the need to
reconstruct an original data set that may be very large. With
various cross-functional, reduced-size data sets representing
20 40 60 80 100 120 2 40 60 80 10 120 aguipment status, control signals, or postproduction mea-

Sample Number Sample Number . . . . . .

surements, it is possible to predict failure events and identify
Fig. 2. QMS data for induced-fault runs 14 of RTCVD process. their causes. Kim and May [2] explore the use of evidential
reasoning [10] to build an expert system for diagnosis of
equipment failures in the fabrication of integrated circuits.
wever, the scope of these extensions is beyond the purpose
this article on data reduction and should be addressed in
gture research.
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Summary statistics, such as the mean and variance, are ¢
monly used data reduction methods. However, this approa
works only for data sampled from a population whose charact
istics do not vary over time. For data with dynamic trends, th . . . . .
approach can be extended to the coefficients (and their “bases” he remainder of this paper is organized as follows. Section |

of regression functions as well as Fourier and wavelet trarfe tains a description of the RTCVD process and the data as

forms. Our procedure selects a few important wavelet coef’l’?’-e" as a brief overview of wavelet basics. Section Ill presents

cients that represent key features of the data and discards t%ggtaned_fault de'Fectlon proce_dure based on reduced-size data
fine-scale wavelet coefficients that represent noise or secondSfyS: Section IV gives concluding remarks and future research
characteristics in the data. Thus, wavelet analysis can be usedf5#ctions.

both data reduction and data denoising. Because the commonly

used wavelet model selection methods—for example, SURE

by Donoho and Johnstone [8] and AMDL by Saito [9]—tend Il. PROCESS DATA, AND WAVELET TRANSFORMS

to overfit the data (that is, they use too many coefficients for

effective data reduction), we propose a new method that bal-RTCVD is a process capable of depositing chemical mate-
ances a data-reduction ratio against a “normalized” version édls on wafers with great precision. Itis used in many semicon-
the data reconstruction error. Based on several real-life caietor manufacturing systems. Our RTCVD process is equipped
studies, our procedure compares favorably with the SURE awith many in situ temperature sensors at various wafer locations
AMDL methods. Our model selection method also goes bthat are useful in controlling deposition uniformity better than
yond the traditional procedures that are based on a single deifaer processes. See Teddeal.[11] for details of the RTCVD

set taken from the target process; thus our proposed technigpkecess used in this study. QMS data were collected from a
can handle multiple replications of time series generated by theries of process and diagnostic experiments involving poly-
target process. This type of study has never been explored prgsstalline Si deposition from 10% SiAAr in a single-wafer
viously. RTCVD tool ranging in temperature from 625to 725C. The
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data used in this study consists of QMS samples of 21 nowan be recovered using the inverse DWT= WT®. The DWT

inal (in-control) process runs and four induced-fault RTCVEransformsV data points intaV wavelet coefficients. The orig-

process runs. Fig. 1 displays the data for the first four nominall data can be expressed as a linear sum of products of wavelet

runs, and Fig. 2 displays the data for the four induced-fault rureefficients and their corresponding basis functions, as in (1).

Note that there is a certain amount of secondary “local variatioEktending the analogy between wavelet analysis and Fourier

exhibited in these data sets. analysis, we see that transforming a data set via the DWT closely
Wavelet transforms are very popular in many engineerimgsembles the process of computing the fast Fourier transforma-

and computing fields for solving real-life application problemgion (FFT) of that data set.

Wavelets can model irregular data patterns, such as sharp

“jumps” and “dips,” better than the Fourier transform and |||, A PROCEDURE FORDETECTING PROCESSFAULTS

other standard statistical procedures, such as splines ang} .

nonparametric regression. In the following overview of wavelet he procedure for detecting process faults based on a

analysis R denotes the real line ant?(R) denotes the Spalcereduced-size data set can be broken down into the following
of squar(’e integrable real functions definedrRinA wavelet is a steps: a) data reduction; b) construction of the nominal process

function(t) € L?(R) with the following basic properties data qu?“ ©) developrr_len'F of the process f‘?‘“.'t detection
test statistic; and d) application of the test statistic to detect

potential process faults.
/ P(t)dt =0 and/ Y3 (t)dt = 1.
R R

A. Data Reduction

An example of the)(t) function is the “sombrero” wavelet (see  In this article, the selected wavelet coefficients are treated as
[12, p. 77]), which looks like a Mexican sombrero. Wavelets cdfie reduced-size data set. Our data-reduction step consists of
be used to create a family of time-frequency atofhs, (t) = tWo substeps: 1) selecting wavelet coefficients (and their corre-
n'/%p(nt — 1), via the dilation factor; and the translation. sponding basis functions) by working with a single data set; and

We also require a scaling functigift) € L?(R) that satisfies 2) deciding on a data-reduction strategy for all replicates, where
each replicate is a different set of signals collected from an inde-

) pendent, identically distributed instance of the same in-control
/R $(£)dt # 0 and /R $2()dt = 1. Dr0CESS.
1) Selecting Wavelet Coefficients for a Single Data
Let Z denote the set of all integef®, +1,+2, ...}. Starting SeF: Wheq using wavelet transforms, one needs first to degide
which family of wavelets to use. The default wavelet family
used in the popular S-PLUS package for the DWT operation is
the symmlets8; see Bruce and Gao [13, p. 17] for details. The
for jo,j,k € Z, we can construct an orthonormal basi® Wf_;lvelet i_s an _ex<_:e||ent overall choice for representing many
for the spaceL®(R) consisting of the scaling functionsfunCt'onS since it is orthpgonal, smpoth, nearly symmetric,
{¢j0,k(t) — 290/24 (2j0t _ k) ke Z} and the wavelet func- and nonzero on a relat!vely short. interval. In a study.pot
tions {z/;jk(t) — 29/2y, (th ’ k) P> ok € Z}; and in this reported hgre, we experimented with other wavellet.fammes,
situation: any target functiofi(t) e L_Q(R) can be expressed assuch as con_‘lets an_d daublets. The re_sults were sw_ml_ar to the
results obtained usingd wavelets. In this article we limit our

oo discussion to the results obtained with #tiewavelet.
f(t) = Z Co kPio i (t) + Z Z dj 1t 1 (1) (1) One method often used to fit data using wavelets is to com-

from suitable choices of the scaling functigi{t) and the
wavelet functiony(¢) and using dilations of the form = 2/
andn = 2/ together with translations of the form = &

kcz j=jo kel pute a set of multiresolution approximations [12], [13]. This
method involves first constructing an approximation to the data
where the coefficients using the coarsest-scale signal and then adding increasingly

finer levels of resolution. As more levels of resolution are used,
the approximation to the target data set improves. Figs. 3-5
Cjok = /Rf(t)d)jm’“(t)dt andd; . = /Rf(t)z/)j:’“(t)dt below depict multiresolution approximations to a data set that
we obtained from an in-control run of the RTCVD process.
are defined as the inner productft) with the basis functions Notice in particular the following aspects of Figs. 3-5:
$i,.6(t) andip; 1 (¢), respectively. The representation (1) isanal- i) In the top panel of Fig. 3, the solid curve represents the
ogous to the Fourier series representation of a square integrable wavelet approximation to the data set based on taking

function on the intervalo, 2) in terms of trigonometric basis the level indexj, = 2 in (1) and then estimating only
functions. the coefficients{c,»:k = 0,1,2,3} of all relevant
When a discrete wavelet transform (DWW) is applied to a shifts (translations) of thejg-level scaling functions
datasel = (yi,...,yn)T of size N (where the superscrigt {¢2,1(t): k € Z} while setting all other coefficients on
represents the transpose operator and where in general we must the right-hand side of (1) to zero. Thus the top panel of
haveN = 2¥ for some positive integer), the vector of wavelet Fig. 3 depicts the accuracy of the wavelet approximation
coefficients can be expressed®y= WY'. If W defines an or- to the target data set based on four coefficients at the

thogonal DWT, then th&/ x 1 vectorY of original observations coarsest level.
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Fig. 3. Multiresolution approximation to an in-control run of the RTCVDFig. 4. Multiresolution approximation to an in-control run of the RTCVD
process using four coefficients (top panel) and eight coefficients (bottgonocess using 16 coefficients (top panel) and 32 coefficients (bottom panel).
panel).

1.5 20

ii) In the bottom panel of Fig. 3, the solid curve rep-
resents the wavelet approximation to the data s2
based on estimating the eight coefficients at trg
top two coarsest levels—namely, the coefficient
{e21:k =0,1,2,3} of all relevant shifts of thg,-level : - " = = - -
scaling functions{¢s 4 (¢): k € Z} and the coefficients Sample Number
{d2.x: k = 0,1,2,3} of the corresponding shifts of the
Jjo-level wavelet functions{. i (t):k € Z}—while
setting all other coefficients at the finer levels to zero.

iii) In the top panel of Fig. 4, the solid curve represent}g
the wavelet approximation to the data set based on ¢
timating 16 coefficients—namely, all thyg-level coeffi-
cients mentioned in the previous item ii) and the coeff 0 20 40 60 80 100 120
cients{ds ;:k = 0,1,...,7} of all relevant shifts of the Sample Number
(jo+1)-level wavelet functiongiz . (t): k € Z}—while  Fig. 5. Multiresolution approximation to an in-control run of the RTCVD
setting all other coefficients at the finer levels to zero. process using 64 coefficients (top panel) and 128 coefficients (bottom panel).

iv) Similarly in the remaining panels of Figs. 4 and 5, the

solid curve represents the wavelet approximation to th@nsidered to be an important characteristic of the target data
data set based on estimating the indicated number @ft in representing process signatures, then we should use
coefficients up to and including all relevant shifts ofnonlinear” approximation methods. In particular, nonlinear
the next-higher-level wavelet functions while settingnethods that select “important” wavelet coefficients (usually
all other coefficients at the finer levels to zero. At eackhe largest in magnitude) and set to zero the “unimportant”
level j in this example, there arg2’ nonzero coeffi- coefficients (usually those representing noise) are effective

1.0

00 05

1.5 2.0

itude
1.0

00 05

cients {d;:k =0,1,...,2/ — 1} associated with the in accurately representing small jumps or dips in the data
relevant shifts of the corresponding wavelet functiongith typically fewer coefficients than an approach based on a
{n(t):k € Z}. straightforward multiresolution approximation. Fig. 6 shows a

Notice the improvement in the approximation as more levelsconstruction of the same data set depicted in Figs. 3-5 using
of detail are added by including coefficients at the finer levethe eight estimated wavelet coefficients having the largest
hierarchically. At the finest level of resolution with indgx= magnitudes. Even though this reconstruction is not perfect, the
jo + 4 = 6, the total number of estimated wavelet coefficientdip around sample number 40 is represented. Fig. 7 shows the
equals the size of the data $&f = 128) so that the data set issame data set reconstructed with the 19 estimated coefficients
exactly reconstructed as shown in the bottom panel of Fig. 5having the largest magnitudes. From this plot, it is clear that it
While easy to use, this type of “linear” multiresolutionis possible to achieve an excellent approximation to the data
approximation tends to oversmooth the data. For exampleing as few as 19 coefficients.
in the bottom panel of Fig. 3, the eight coefficients in the There are many wavelet model selection procedures in the
two coarsest-resolution levels are unable to represent the liiprature that are based on this idea of selecting “important”
around sample number 40. Of course, if such a dip in tlveavelet coefficients and setting to zero the “unimportant” co-
data is considered to be less important or data noise, thefficients. These methods attempt to find an optimal number of
it is reasonable to filter out that dip. However, if that dip i€oefficients to accurately represent the data, thereby leading to
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2.0

Because the goal of our wavelet coefficient selection method is
data reduction, we would like to keep only a very small number
of coefficients. However, it is also important to keep enough co-
efficients so that the data model represents the original data well.
Below, we propose a new wavelet coefficient selection method
to meet our goal of data reduction.

Almost all model selection methods in the literature are
linked to the mean-squared error (MSE)
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) which characterizes the accuracy of the approximation to the
, ‘ ‘ ¥4 , : , original data. Our method balances a dimensionless version of
’ “ “ Sarisle ey e 120 this error against a data reduction ratiy, V. That is, similar to

the AMDL method, we keep thé€' largest-magnitude wavelet
Fig. 6. Reconstruction of the in-control RTCVD data set using the eigoefficients that minimize the following (penalized) “relative
largest-magnitude coefficients. reconstruction error”:

0.0
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The first component of (3) represents a “normalized” recon-
struction error from the approximated wavelet model structured
by a linear sum of products of selected wavelet coefficients and
their corresponding bases, similar to (1). The second component
is the normalized number of coefficients used. In addition, it is
possible to add a constant multiplieto the second term in (3)

to control the trade-off between the two terms. In this study, we
decided to keep the method simple by setting= 1, thereby
using equal weights for both terms in (3). More investigation is
needed to explore the choice dfand its impact.

Fig. 8 illustrates the results of applying the RRE and AMDL
estimation methods to the data collected on in-control run 5 of
Fig. 7. Recpnstruction ‘of the in-control RTCVD data set using the 1the RTCVD process. The upper left-hand plot shows that the
largest-magnitude coefficients. data approximation error becomes smaller when the number

of coefficients included in the wavelet model increases. The

a simplified and smoother (less noisy) data model. Two popsyer |eft-hand plot shows that the RRE has a minimum value
ular model selection examples are: the SURE (Stein’s unir~ — 10. The lower right-hand plot shows that the approxi-
ased estimate of the risk function) method proposed by Donokgition model withC' = 10 wavelet coefficients captures almost
and Johnstone [8]; and the AMDL (approximate minimum dey| details of the data pattern. The upper right-hand plot shows
scription length) procedure proposed by Saito [9]. The AMDiat the AMDL criterion (2) has a minimum &t = 77, which
method minimizes the cost function is much larger than the value 6f = 10 at which the RRE crite-

N ripn (i) is mini_mizled. Ta(brl]e I srllows srimiI:r(;englts gbtair}etglforl

r . r . ~ N2 six other nominal runs (the column headed “Run 5” in Table
AMDL(C) = 15Clog, N + 05N logs | 3 (4 = i) corresponds to the nominal run illustrated in Fig. 8).

2) 2) Deciding on a Data Reduction Strategy for All Repli-
whereC' is the number of wavelet coefficients selected to beates: As indicated in Table I, the number of wavelet
nonzero andj; ¢ is the prediction of théth observed responsecoefficients used to represent a data set can be different for
1; based on the wavelet data model with thdargest-magni- different sets of data from the same process. Moreover, even if
tude coefficients. As addressed in Antoniadisal. [14], the the number of coefficients is the same, the coefficients (and the
AMDL function is similar to the Akaike information quantity corresponding basis functions) can have different values. If the
commonly used in many statistical model selection procedurgspcess has little noise, then the data across replications should
including linear regression models. be very similar, and thus the selected wavelet coefficients for

While the existing wavelet model selection procedures, sueach data set should be similar. Because there is a certain
as SURE and AMDL, are effective in denoising data, they terainount of noise in the data obtained from the nhominal process
to overfit the data and use an excessive number of coefficienised in this study, our challenge is to decide on a set of wavelet

RRE(C) = + ®)
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Fig. 8. Comparison of results of applying the RRE and AMDL estimation methods to run 5.

TABLE |
NUMBER OF COEFFICIENTSSELECTED FORSTANDARD RUNS
Run
Estimation Method } 1 2 3 4 5 6 7
SURE 55 65 50 66 77 59 68
AMDL 8 8 93 8 77 90 84
RRE 11 14 10 11 10 12 10

coefficients to represent adequately the overall data structure of

the nominal process.

shown in Table Il below. The weakness of this method is that the
more detailed data patterns described by the finer-level wavelet
coefficients, such ags 26, are excluded. This will make the
data-model approximation overly smoothed. A third alternative
is to find a way to search through all coefficients to minimize
the following overall relative reconstruction error (ORRE):

M
ORRE = Y RRE(Cp,)

m=1

First, we randomly selected seven data sets from the 21 signal
data sets obtained from the nominal process. Using the RRBereM is the number of replicates of the in-control process
method, we selected wavelet coefficients for those seven datalRRE(C,, ) is the relative reconstruction error for theth
sets. To select representative coefficients for all replicates, thelega set. This approach involves a large nun{dérx M) of
are a number of different strategies. For example, one can asefficients, however. Examining this many candidate models
the union set of all bases selected by the RRE method for tioefind an appropriate data model can be very time consuming
seven nominal data sets. This approach gives a comprehensivaractice. Finally, one could extend the procedures developed
selection of the representative coefficients that covers manyionthe wavelet model selection literature to a multivariate case.
the data fluctuations across replicates and captures the mostTinds, the independent replicate data case becomes a special sit-
portant features of each set of data. However, the number of cation for applying the extended procedure. This idea could lead
efficients in the union set can be larger than the number of repld a theoretically justified procedure. However, it is still under
cates of the in-control process. This will create problems latdevelopment and its performance remains to be studied [15].
in computing the value of the overall performance statistic. An To demonstrate the feasibility of using the wavelet coeffi-
alternative approach is to select the most frequently occurringnts estimated from a data set as the “reduced-size” data set for
coefficients (that is, those coefficient positions that are selectéetecting process faults, we will use the 19 coefficients summa-
by the RRE method on every replication), while at the samized in Table Il as the selected coefficients in all subsequent dis-
time keeping the number of selected coefficients smaller thanssion of the case study involving the RTCVD process. These
the number of replicates. For our data, the most frequently di9 coefficients were obtained by taking the union set of the coef-
curring coefficients ares o, d2 0, d2 1, da,2, d3 0, andds 3, as ficients selected by the RRE method for each of the seven runs.
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TABLE I coefficient vectoﬁf will not be multivariate normal. Our study
COEFFICIENTSSELECTED TODESCRIBE THENOMINAL PROCESS will cover both the normal and nonnormal cases.

Coefficient Frequency | Coefficient Frequency If we obtain a new set of data signals from a process whose
2.0 7 das 4 in-control status is to be tested, then the new data set is trans-
a1 4 dig 4 formed using the DWT in the same manner as for the original
€23 1 das 2 M runs that are known to be in control. We &}, denote the
d2o 7 ds12 5 vector of selected wavelet coefficients estimated from the new
da,1 7 ds,13 3 data set. We assume that the random ve@ior, has expected
d22 7 de,22 1 valueg,,..., which is not necessarily equals, and covariance
Zig Z Zzzz ; matrix £°, the same covariance matrix as for tha,
d3:3 7 ds:27 1 To see if the new process is also in control, one can select a
da 4 4 few (or all) wavelet coefficients and formulate a test statistic.

The following hypothesis-testing procedure includespatio-
_ _ efficients. The same idea works for a few targeted coefficients.
B. Construction of the Nominal Process Data Model The null hypothesis that the new process is in control can be

The estimated wavelet coefficients obtained from all replwritten as
cates (at the bases shown in Table Il) are treated as the re- Ho o 4
duced-size data set that will be used for making decisions con- 0: Brew =B )

cerning process performance. It is possible to utilize exp.ert iﬁ'he first step in testing this null hypothesis is to take indepen-
formation to map the process fault patterns to some combinatigg, ¢ samples of sizewithout replacement from the set of es-

of these reduced-size data sets. Furthermore, artificial neyfalateq wavelet coefficient vectors corresponding to the inde-
networks can be helpful in detecting and classifying fault typ%

= ¢ Y ndent replicates of the in-control process,
based on these wavelet coefficients. In this article, we use all
coefficients listed in Table Il to derive a hypothesis-testing pro- {EOL -1 M} ) (5)
cedure for detecting process faults. The nominal process data ! Y

model will be approximated by using the coefficients listed ifrhis sampling operation is independently replicafédimes.

Table 11, with their values computed according to the statigq, thekth random sample of sizeselected without replace-

tical-estimation procedure detailed in Section 11I-C below—ipnentfrom (5), we Ieﬁzi' denote the corresponding sample mean
l k .

palrtlctulgrf, see (6) belc()jw.tlfthr-i valuets (t)'f 'f[he ﬁargiflg C(z?fﬂmet 3r reasons explained in Appendix A, we refer to this sampling

selecled from a new data set are statstically aifterent rom Wy, e 55 a “reversed jackknife” method.

values of the coefficients obtained for the nominal process, then b hat thd 3. nd g

we conclude that the new process has a fault and is, therefore//€ OPserve that thg By:k =1, ... ’K} are independent

out of control. and identically distributed since they are obtained Kiande-
pendent replications of the basic operation of taking a sample of

C. Development of the Process Fault Detection Statistic ~ Sizes without replacement from (5). From this random sample

-~ . . we calculate the grand mean
Let ﬂj:i =1,...,M ; denote thel x p dimensional vec- g

tors of estimated wavelet coefficients selected fromitheepli-

cates of the in-control process, wheris the number of wavelet
coefficients used to describe the nominal process. (In our case
study, recall thap = 19 and M = 21; and thus onAtcbe'th
run of the in-control RTCVD process, the elementgpfare

)

K _
oy (6)
k=1

and the sample covariance matrix

the 19 corresponding estimates of the wavelet coefficients listed 1 K= =T/= =
in Table Il and computed via the DWT of the data set of size 5=4— > <ﬂk - ﬂ) <ﬂk - ﬂ) - (7)
N = 128 recorded during that run, where= 1,...,21.) k=1

Because these replicates are independent and identically gigscombine these in-control sample statistics with the estimated

tributed (i.i.d.) data-signal streams, the selected wavelet cogls,elet coefficient Vectq@new for the new process to obtain a

ficients will naturally be i.i.d. across replications. However, th@ariant of the classical two-sample Hotelling-statistic that

coefficients in a single_data set are not i.i.d. since part of thes peen adapted to the reversed jackknife sampling scheme:
same data set is used in determining the values of different co-

efficients. Let8° and X° respectively denote the mean vector ) KM (1 _ %) ~ =\

and covariance matrix of the multivariate distribution of eachuew = SKM+ M —s <ﬂnew - ﬂ) S

in-control random \Leoctoﬁi . Note that we do not specify the o
distribution of eachg; . If the origional data are samples from N <B’ B ?) ®)
a normal distribution, then eagl; will have a multivariate e

normal distribution since the wavelet coefficients obtained from ) o g i

the DWT are linear combinations of the original data. Howevef'N€re Tue,, has theT=-distribution with K — 1 degrees of
if the original data are not normal, then in general the wavelgedom, provided that th%ﬂi;i =1,..., M} andp,,.., are



86 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 15, NO. 1, FEBRUARY 2002

i.i.d. normal with mean vecto°® and covariance matrix°. the value ofs must be chosen so as to guarantee I@é)
Furthermore, under this normality assumption, we see that is sufficiently large. More precisely(f‘f) should be much
larger thank to ensure that with probability close to one, the
Trew(K —p)

o= Lhew ) set {Bkk = 1,...,K} will include p linearly independent
- (K —1)p vectors so tha8 ! exists and the test statistic (9) can actually

o . be calculated. We observe that if t @k were continuous
has anf-distribution withp and K — p degrees of freedom. \5n4om vectors, then it would follow flom Proposition 2 of

Appendix A contains a derivation of (8) and (9) under the nofy gj that s would be invertible with probability one. Moreover
mality assumption and the null hypothesis (4). If the value of the =

test statistic (9) is larger than ttfécritical value for a prespec- as; increases, _a ce_ntrgl Iw_mt—type effe_c t e.nsures thaq i }
ified significance level (for exampley = 0.05 or « = 0.10) will converge in distribution to multivariate normality and

then we conclude that there are faults in the process from wh s will _tend to behavg . con'qnuous rando_m vectors. _Th|s
ﬁ was estimated observation coupled with extensive computational experience
new "

1) Formulation of Nonparametric Fault-Detection Pro_using the process fault detection procedure of Fig. 9 has led us

. . . .. 4
cedure for Nonnormal Datailf one does not assume thati© (€ conclusion that in addition to requirifd’) > K, we
EO”L _ M} and ﬁ are normal. then the-dis- should takes just large enough so that the set of sample mean

tribution with p and K — p degrees of freedom is only anvectors{ﬂkfk - 1""’_K} will pass the ShapII’O—.\NH.k. test
pior multivariate normality at a standard level of significance

— = — 1l 1 -1
case where the data are not normal, resampling procedlﬁw’a - 0.05 Orcr = 0.10). In addition to ensuring tha¥ .
such as bootstrapping [16] are typically used to develop gxists with probgbll!ty close to one, we have found 'Fhat _th|s
approximation to the distribution of (9). However, standarfPProach to setting improves the adequacy of approximating

resampling procedures can yield an estimate of the covariafid@ Null distribution of (9) with either thef"-distribution
matrix =° that is singular; and in such situations, a test statistii@Vindp and K" — p degrees of freedom or with the empirical

like (9) cannot be computed. In our case study with= 21 distribution of the{ 7.} generated in step of Fig. 9.

andp = 19, the probability of generating a conventional boot- Cl€arly the selection of appropriate values soand & de-
strap sample of siz&/ from (5) (i.e., a random sample selecte®©nds critically on the selection of an appropriate valueifor

with replacement from (5)) that possesses a nonsingular sanfgid as in all resampling schemes (including conventional boot-
covariance matrix is less than 3.52610~*; see Appendix A strapping schemes), the validity of our nonparametric process

of Lada [17]. Clearly the traditional approach to bootstrappir‘fé‘“lt detection procedure depends on the selection of a suffi-
will not work in this situation; and this is the fundamentaf'€ntly large value ofi/ at the outset. We performed an exten-

reason for the reversed jackknife sampling method that i€ set of Monte Carlo experiments to formulate effective rules
proposed in (5)(7) to compute the final test statistic (9).  ©f thumb for settings, &', and/ in general applications of our
To handle the case where the data are not necessaldylt detection procedure. Based én= 1000 replications of
normal, we develop an alternative to traditional bootstrappiﬁéjepS,1 and3 of the procedure, Fig. 10 displays the following
techniques. In our procedure, the empirical distribution &d-f-'S for a typical Monte Carlo experiment in which we took

the test statistic (9) under the null hypothesis (4) is used #o= 20 M = 200, s = 5, andK = 60 so that the orig-
determine if a new data set, representegdhy,, is in control inal set of wavelet coefficient VeCtO'{Sﬂi =1, M} was
or not. Fig. 9 contains a formal statement of the procedure sampled from a 20-dimensional multivariate uniform distribu-
detect process faults in the nonnormal case. Notice that stéips, with covariance structure typical of estimated wavelet co-
1(ay-1(c) of Fig. 9 generate an empirical cﬂstributi@{rﬂ} of efficients (specifically for this example, the lag-1 correlations

the test statistic (9); and then the given ve@gr,, is tested for were set to 0.4 while all other correlations were set to zero):

the in-control condition in step(a)-3(c) of Fig. 9 by referring i) the empirical c.d.f. of thg £+ = 1,..., R} generated
the associated value &f..., to the empirical distributiog 7. }. by Stepl;

See Appendix B for more details on how this procedure was jj) the empirical c.d.f. ofF,.., based onR = 1000 repli-
derived. cations of Ste8 in which Bnew was sampled from the

2) Settings, K, and M for the Fault-Detection Proce- same underlying multivariate uniform distribution from
dure: Some care is required in selecting appropriate values  which we sampled the original set (5) of in-control esti-
of s and K so that the reversed jackknife sampling scheme mated wavelet coefficient vectors; and
can be used effectively in a process fault detection procedureiii) the c.d.f. of the corresponding-distribution withp and
Given the sizeM of the original set of in-control estimated K — p degrees of freedom.

wavelet coefficient vectors (5), we see that there are in general; i jear from Fig. 10 that in general the distribution of the

My _ 1/[s! _ &)t isti . o . " )
(3) = M!Y[s{(M —s)!] ways to chooses distinct vectors g taqt statisticF,, in item ii) above differs not only from

that will constitute a ;ample of sg&selec_ted .vvnhout'replace- the conventional normal-theory approximation in itemiii) above
ment from (5)'_ In view of the discussion N Sec_:n_o_n -Clht also from our reversed jackknife approximation in item i)
and in Appen_d|x A, we see that to ensure invertibility of th(fe;lbove. Based on extensive computational experience with the
sample covariance matriX computed from the sample mean%rocess fault detection procedure of Fig. 9, we have found that

{B’k k=1,... ,K} based on the reversed jackknife methodhe approximations i) and iii) to the null distribution of the final
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Nonparametric Procedure for Detecting Process Faults

1. For r =1,..., R (R > 1000), perform the rth replication of steps 1(a)-1(c) below.

(a) Independently generate K samples of size s, where the s units in each sample are selected without
replacement from (5). Let ,@k,,, denote the sample mean of the kth sample for k =1,..., K.

(b) Calculate the grand mean vector and the sample covariance matrix of the {Ek,r tk=1,...,K },

= 1 K = 1 K = =\T /= =
137‘ = R Zﬂk,r and Sr = Fl— Z (ﬂk,r - :3r> (ﬂk,r - ﬁr) . (10)
k=1 k=1
(c) Randomly sample BT from (5) and compute the test statistic
TK —p)
F="——=" 11
(K=1)p v

where

[N 5)s(5,-3)"
B (O R )T 9] AN A N
2. Sort the test statistics {£; : » = 1,... R} in ascending order. Let Ff, and Fi; be the /2 and 1 — /2
percentiles, respectively, of the {F;}.
3. To test a new vector of estimated wavelet coefficients ,Bnew for the in-control condition, perform steps
3(a)-3(c) below.
(a) As in step 1(a) above, independently generate K samples of size s, where the s units in each
sample are selected without replacement from (5); then compute the correspondmg sample means
{ Broik=1,...,K } and finally compute the corresponding overall statistics ,6‘0 and Sy as in
(10) with r = 0.

(b) Compute the T2.value and the corresponding F-value

s - = ~ =\T 2 _
T112ew = [MI_MZ‘] (ﬁnew - ﬂO) 551 (ﬂnew - ﬁO) and Fnew = M'
8

sKM + M — (K —1)p

(c) If Fiew falls outside the 100(1 — )% tolerance interval (Fy,, Fyy), then the process yielding ﬁnew
is out of control; otherwise that process is considered to be in-control.

Fig. 9. Procedure for detecting process faults when the original data sets are nonnormal.

test statisticl',.., Will be adequate in practice if we selekf, the effectiveness of the proposed process fault detection pro-
K, ands according to the following rules of thumb: cedure. Notice that two of the faults are significantly different
from the in-control process while the other two faults, repre-
M M senting a more difficult case to detect, are similar to the in-con-
M > 15p, K ~ max {p +20, j} , and< 3> > K. 4ol process. For each of the four induced-fault runs, we com-
(12) puted the corresponding wavelet coefficient veggr, ; and fi-
nally we computed the test statisfig.., correspondingt@, ... -
D. Process Fault Detection Applications To ensure adequate performance of the process fault de-
As mentioned previously, we observad = 21 in-control tection statistic (9), we attempted to apply the rules of thumb
runs of the RTCVD process to form the set (5) of in- contréllz) while takings large enough to ensure that the sepafi-
estimated wavelet coefficient vectors. We then tdék= 40 mensional sample mea Bik=1,. K} would pass the
samples of size = 5 without replacement from the set (5)Shap|ro—W|Ik test for multivariate normality. Using Royston’s
to compute the sample mean vect{@k: k=1,... K} and @lgorithm [19] for the extended univariate Shapiro-Wilk test,
we developed an S-PLUS program to compute the multivariate
the overall sample stausncﬁ, and S. The four induced-fault Shapiro—Wilk test statistigl’*. This program is available from
runs of the RTCVD process shown in Fig. 2 were used to tdabie authors on request. Corresponding/ifo = 40 samples
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TABLE I
TEST STATISTIC VALUES FOR THEFOUR FAULT RUNS

Calculated P-value
Fault Fpew From {F.} From F(p,K —p)

1 8.48 0 4.73 x 107
2 94.7 0 3.33 x 10716
3 5190. 0 <10~
4 2052 0 <1078

95% tolerance interval (0.54, 2.00) is of questionable validity.
Nevertheless, we see that in the extreme tails of the distribution
of Fl.w, both of our approximations are sufficiently accurate
to justify the conclusion that all four induced-fault runs are out
of control. Therefore, we concluded that all four runs have po-

tential process faults, and steps should be taken to identify and
Fig. 10. c.d.f.’s for the nonparametric procedure of Fig. 9: i) c.d.f. of theeamove these faults.
{F.:r = 1,..., R} (solid step function) generated by Stipii) empirical
c.d.f. of F,.... based orR = 1000 replications of Ste with 8, ., sampled
from the same in-control distribution as for (5) (dashed step function); and iii) IV. CONCLUSIONS AND FUTURE RESEARCH
the corresponding’ c.d.f. (solid curve) wittp and K — p degrees of freedom.

0.5 1.0 1.5 20 25 3.0 3.5

We believe that the results presented in this paper provide
tgood evidence of the effectiveness of the proposed method for

. = . . . detecting process faults from a reduced-size data set consisting
statistic for the ﬂ’;‘j s W* = 0.670,_and_the as_sog'atedofaselected set of estimated wavelet coefficients. If the original
P-value is 0.521. Note moreover that in this application, Wgata are normal, or if one simply wants a quick test for process
have () = 20,349 > 40 = K, which clearly satisfies the faits with a minimum amount of computation, then the value
third condition in (12). In all applications of our process faulgs the proposed test statistic (9) for a new set of data can be
detection procedure to this case study and to other problegaﬁnpared to the™-distribution withp and K — p degrees of
in which we have taker just large enough to ensure that th§reedom. Otherwise, to obtain the most accurate results, we rec-
{ﬂk} pass the multivariate Shapiro-Wilk test aflf) > K, ommend that the test statistic value for a new data set be com-
o- pared to the empirical null distribution generated by the algo-
rithm of Fig. 9—provided that the conditions of (12) are satis-

of sizes = 5, the resulting multivariate Shapiro-Wilk tes

we have never generated a sam fék} for which the corr

sponding sample covariance mati§xfailed to be invertible. fi?d
We believe that this observation provides good evidence of, : . . .

. . . The next logical step after detecting possible faults in a
the effectiveness of our rules of thumb in (12) for setting 9 P gp

and K in oractical applications of the process fault detectioﬁrocess is to determine the cause of the fault. When there is
P PP P ._enough information to map the wavelet coefficients to known

procedure. On the other hand, it should be noted that s!%%lts, artificial neural networks or other pattern recognition

p = 19 in the RTCVD case study, the first two conditions Ir‘brocedures can be employed to classify faults and suggest

(131) :;Ioil;llddrteq;mk?r]:/[ 2_ Ziow?;]dtﬁ( ~ r‘rﬁ. Slrr:g?nw\? \INerefremediaI procedures. Further research on building fault classi-
constrained to taking/ = € correspo g value o {ication signatures from the reduced-size data set (that is, the
K = 40, we do not have an adequate overall approximation

(0] . . . . .
the distribution off,.., under the null hypothesis (4) based Or\(];vavelet coefficients) is needed. By using process fault detection
either the{ F..} in our nonparametric resampling scheme or tl}

nd fault classification techniques, manufacturing systems can
F-distribution withp and K — p degrees of freedom.

?nprove their quality and operational efficiency.
Some care is required in interpreting the results that we ob-

tained from applying the process fault detection procedure to
the induced-fault runs of the RTCVD process. We obtained the
95% tolerance interval (0.54, 2.00) for an in-control value of the Typical jackknife procedures [20], such as the “delete-1 jack-
test statistic (9). Table Il displays the computed value of (9) fdnife” and the “delete-2 jackknife,” delete one or two data points
each of the four induced-fault runs, as well as thiéiwalues from the original data set that containg replications to con-
computed from the empirical distributici¥,.:» = 1,...,R}. structa new sample for calculating the test statistic value. In the
Clearly, all four induced-fault test statistic values fall well outeelete-1 jackknife procedure, this process is repeafetimes
side the given 95% tolerance interval. Furthermore, note that ffsince there ar@/ different ways to generate samples of size
estimatedP-value based on théF:.} is zero for all four runs. M — 1 from the original sample of siz&f). Similarly, in the
Table Il also shows thé’-value when the test statistic (9) isdelete-2 jackknife procedure, the processis repe(éfedimes.
compared to thé’-distribution withp = 19 andK — p = 21 In our case study, we take random samples of sizerhich
degrees of freedom. Notice that theBevalues are also very means that our procedure randomly deletés- s of the data
close to 0. Since we do not have an adequate overall approximaints. Unlike the jackknife procedure, our procedure repeats
tion to the distribution of .., under the null hypothesis (4), thethe resampling proceds times (it does not go through all the

APPENDIX A
“REVERSEDJACKKNIFE” METHOD
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cases of deleting/ — s data _points). Therefore, _in some sens%y multiplying  the difference <ﬁnew _ ?) by
our procedure can be considered a “reversed jackknife” proce-

dure. VsKM/(sKM + M — s), we obtain a test statisti that
Since each sample of sizas selected without replacementhas the same covariance matrix a[gj andﬁnew

from the original data set of estimated wavelet coefficients for The statistid» can now be used to calculate a two-sample ver-

the M in-control processegd, is the average of quantities sion of Hotelling’sZ2-statistic. In view of (13)~(17), we have

that in general are assumed to be identically distributed random .

vectors with mea@® and covariance matrix.°. Note, however, ) sKM ~ = s

that the vectors going into the computationﬁ;j are not inde- Tiew = sKM+M—s <ﬂﬂew B ﬂ) [( — ﬁ) S]

pendent because they are sampled without replacement from the

T
finite set (5); and we have % sKM B.. -8
( ) SKM+ M —s \''™"
7 Cov ﬁj s ° s KM (1- ) 3 B
=—~ 7{1-= N T M/ —-B)s7!
Cov () () =5 () @ sKM + M - <ﬂ new — P )
where the quantityl — (s/M)) is the “finite population cor- ~ =T 18
rection” for sample size and population sizé/ [21]. If the X |\ Brew = B (18)

sampling fractiors /M is small, then this correction is close to

unity and therefore it has little effect on the standard error of th¢here 722, has the7™-distribution with K — 1 degrees of
sample mean. Otherwise, if the correction is ignored, the covaffﬁ‘?dom Note that in order for the mati$o be nonsingular so
ance matrix of the sample mean will be overestimated. Finaffjat (16) can be computed, a necessary and sufficient condition

invoking the Central Limit Theorem, we see that provided is that the corresponding random sam J(ék k=1,....K
sufficiently Iarge,ﬁk is approximately normal with mean vectormust containp linearly independent vectors and must satisfy
B° and covariance matrix (13). K > p+ 1; see Theorem 7.5.2 of [22]. Finally, Theorem 5.2.2

To define the fault detection test statistic, we compute thg [22] ensures that if th({ﬁj; 1<i< M} andg,., areiid.
overall sample statisticg andS, as given by (6) and (7), re- normal with mean vectof® and covariance matrig®, then

spectively. Notice that (9) has ani’-distribution withp and K — p degrees of freedom.
E F} =E [E} = B° andE [S] = Cov (,Ek) APPENDIX B
EMPIRICAL DISTRIBUTION OF TEST STATISTIC FOR
_x° s NONNORMAL DATA
: (1 - M) . (14)

We can compute the empirical distribution of the test statistic
(112) (see Fig. 9) under the null hypothesis (4) in the following

Hence,S is an unbiased estimator Glov (ﬂk)’ andﬂ is ap- way. To generate theth random sample from this distribution
proximately normally distributed with meg#? (the same mean

as for the original/ nominal runs) and covariance matrix 10" = 1+ [t we calculated, ands, according to (6) and

B (7), respectively, based on a new sal i k=1 K.
= Cov (Z’k) 0 s Finally to compute theth observation of (11), we randomly
Cov <,6'> =% ik ( — M) (15) sampleg,. from the original set o/ wavelet coefficient vectors

representing the nominal process. Taking into account the finite
| Population correction, we see thabv (ﬂ,,) =3°(1-1/M).

Now if the {ﬁfL = 1,...,M} andﬁ][1eW are i.i.d. norma ' ) ) o
This results in the slightly altered test statistic

with mean vecto3® and covariance matrix°, then we are

able to construct the following test statistic for determining if the 1 1_ = =
wavelet coefficients (the reduced-size data sets) obtained frih = =y < p ) <ﬂ ﬂ)
the new and the nominal processes are equal statistically: (1-4)+7
T
_ [ KM (5 = «(B.-B) a9
P=Vikmra—s <ﬂnew - ﬂ) (16)

R which is easily seen to be equivalent to the expressiofifdn
whereg, ..., is a vector of wavelet coefficient values obtainedtepl(c) of Fig. 9.
from a new process. Note that under the null hypothesis (4), we
haveE[D] = 0, and REFERENCES
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