
  

  

Abstract— A wavelet-based denoising technique is 
investigated for suppressing EMG noise and motion artifact in 
ambulatory ECG. EMG noise is reduced by thresholding the 
wavelet coefficients using an improved thresholding function 
combining the features of hard and soft thresholding. Motion 
artifact is reduced by limiting the wavelet coefficients. 
Thresholds for both the denoising steps are estimated using the 
statistics of the noisy signal. Denoising of simulated noisy ECG 
signals resulted in an average SNR improvement of 11.4 dB, 
and its application on ambulatory ECG recordings resulted in 
L2 norm and max-min based improvement indices close to one. 
It significantly improved R-peak detection in both the cases. 

I. INTRODUCTION 
ASELINE wander, powerline interference, electromyo-
gram (EMG), and motion artifact are some of the 
common disturbances in the ECG signals [1], [2]. 

Powerline interference and baseline wander can be reduced 
by a careful design of the ECG hardware. Motion artifact 
and EMG noise can be reduced by restricting the motion of 
the patient during signal recording, but this is not possible in 
ambulatory ECG recording. Signal processing techniques, 
known as ECG denoising, are generally employed for 
suppressing these disturbances [3]–[11]. 
 Motion artifact and EMG noise have a spectral overlap 
with ECG and they cannot be effectively suppressed by 
filtering [2]–[7]. Tong et al. [4] used adaptive filtering for 
reducing motion artifact with the output of an accelerometer, 
placed on the ECG electrode on the right arm, as the 
reference input. He et al. [5] used a method based on 
independent component analysis (ICA) on 3-lead ECG. The 
components representing noise were located and set to zero 
and the remaining components were used to get the denoised 
signal. Dai and Lian [6] used modified moving window 
averaging to estimate and remove baseline wander from 
ECG, by applying the moving average on samples separated 
by intervals rather than on consecutive samples and by 
removing the samples corresponding to the R-peaks. Blanco 
-Velasco et al. [7] used empirical mode decomposition for 
denoising ECG. The input ECG was decomposed into its 
fundamental oscillations, called intrinsic mode functions 
(IMFs). The initial IMFs were related to high frequency 
noise and QRS complexes. The noise in the initial IMFs was 
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separated by windowing out the R-peak locations. A low-
pass filter bank was used to extract the baseline wander from 
final IMFs. The extracted disturbances were subtracted from 
the input ECG to get the denoised signal. 

Several techniques using wavelet-based multi-resolution 
analysis have been reported for denoising ECG signals [3], 
[8]–[11]. Zhang [8] applied wavelet decomposition using 
Symlet (order 10), which has a shape similarity to the QRS 
complex, for removing the baseline wander from the ECG 
signal sampled at 360 Hz, by subtracting its 8th scale 
approximation. It resulted, at times, in a distortion in the ST 
segments. The EMG noise was removed by wavelet 
thresholding. Out of the several methods studied, the best 
results were obtained by using EBayes threshold. Denoising 
was found to be better for piecewise thresholding than for 
processing the whole record together. Li and Lin [11] 
reported that EMG noise could be consistently suppressed 
by hard thresholding with EBayes threshold with 5-level 
decomposition using Symlet (order 4). Features of both the 
hard thresholding and soft thresholding can be combined by 
suitably designing the thresholding function [9], [12]. It has 
been reported that thresholding the wavelet coefficients may 
result in oscillations at sharp transitions in the signal due to 
Gibbs phenomenon, and that these can be reduced by using 
translation-invariant denoising [8], [9]. 

The wavelet-based denoising techniques generally employ 
hard, soft, or improved thresholding functions with the 
thresholds obtained using SURE, EBayes, Donoho's 
universal threshold, etc [8]–[11]. These techniques produce 
good signal enhancement for noises which are uniformly 
present throughout the signal, but they are not effective in 
suppressing EMG noise. The motion artifact is generally 
suppressed by eliminating approximation at a particular 
scale, but it may cause signal distortion or improper artifact 
correction. To overcome these problems, a technique using 
an improved thresholding function for suppressing the EMG 
noise and limiting of the wavelet coefficients for suppress-
ing the motion artifact is investigated. Thresholds for both 
the denoising steps are estimated using the statistics of the 
noisy signal itself. The technique is validated by applying it 
on noisy ECG signals generated using the records from the 
MIT/BIH database and on ambulatory ECG recordings. 

II. DENOISING METHOD  
Several wavelet bases, e.g. Daubechies (db4,db8), 

Symlets (sym4,sym7,sym8,sym10), Coiflets (coif5), discrete 
Meyer (dmey), and Biorthogonal (bior4.4), have been used 
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for ECG denoising [11]. The denoising is effective if the 
dilated version of the wavelet (or the scaling function) at 
some scale matches the shape of the signal or noise 
components. In ECG, the baseline wander and motion 
artifact components do not have a characteristic shape and 
all the above wavelet bases show a similarity with the ECG 
signal components at some scale. We have used dmey for 
denoising as it resulted in the least RMS error in 
reconstructing the noise-free ECG signals, sampled at 360 
Hz, from the first ten details. The ECG is decomposed into 
details D1 – D10 and approximation A10. The slow baseline 
wander is suppressed by setting A10 to zero. The EMG noise 
and motion artifact are suppressed using non-linear 
modifications of the wavelet coefficients as described in the 
following two subsections. 

A. EMG noise suppression 
EMG noise is a non-stationary broadband noise. In ECG 

recordings with 360 Hz sampling, it gets predominantly 
represented in the initial four details and particularly in D1, 
as indicated by a high average absolute value of D1 in 
segments with significant EMG noise. For suppressing the 
EMG noise, a thresholding operation is applied on the 
wavelet coefficients. For each scale i , a time-varying 
threshold ( )niθ  is obtained by scaling the span of the 

coefficients as obtained from the long-term statistics of the 
noisy signal with a scaling factor ( )nγ obtained from a 
short-time estimate of the level of the EMG noise in the 
signal. For robustness against excessive noise in some 
segments, the 90th percentile of the coefficients is taken as 
the span, and the threshold is given as  
 ( ) ( ) ( )| p90 |n n D niiθ γ ⎡ ⎤

⎣ ⎦=  (1)  

A moving-window average of absolute value of D1, 
avgD1(n), is used as the short-time estimate of the level of 
the EMG noise. A 35-point window is used as it 
approximates the duration of typical short bursts of EMG 
noise. Its 5-percentile is taken as a lower threshold avgD1L 
and half of its 95-percentile is taken as the upper threshold 
avgD1H. These thresholds are used for thresholding, 
clipping, and normalizing the short-time average to get the 
time varying scaling factor  
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As D1 has insignificant contribution from ECG, it is totally 
removed. Before using it for thresholding, ( )niθ is 

resampled to match its number of points to that in Di.  
 As D2–D4 have significant contributions from the signal as 
well as from EMG noise, hard thresholding may introduce 
significant signal distortion and soft thresholding may not 
effectively suppress the artifact. Hence D2–D4 are modified 
by using an improved thresholding function, combining the 
features of hard thresholding and soft thresholding as  
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The factor a controls the transition between soft and hard 
thresholding. Setting a ≈ 3 and the transition span as  
 ( ) ( )0.75 p95[ | |,    | | ( )]S D n D n ni i i iθ= >  (6)  
results in a thresholding which combines the features of hard 
and soft thresholding without showing disadvantages of 
either of them. 

B. Motion artifact suppression  
 Most of the noise suppression techniques using wavelet 

thresholding are based on the assumption that the noise is 
always present and has low amplitude, and that the signal is 
present in specific time segments and has relatively high 
amplitude [13]. In ECG corrupted with non-stationary 
motion artifact, ECG signal is always present and the motion 
artifact occurs intermittently and it generally has high 
amplitude. Hence limiting of the wavelet coefficients is 
investigated for suppressing the motion artifact. The 
operation, using threshold iφ , on ( )D ni is carried out as  
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The threshold iφ  is an estimate of the maximum value of the 
wavelet coefficients of the ECG signals at scale i. It should 
be high enough to exclude the possibility of reducing the 
coefficients representing noise-free ECG, and low enough to 
significantly suppress the motion artifact. The thresholds are 
estimated by dividing the ECG record into segments of two 
average cardiac cycles. At each scale i, the maximum 
absolute values of coefficients in these segments are used to 
calculate the average iμ and standard deviation iσ . The 

limiting threshold for scale i is calculated as i i iφ μ ησ= − , 
A value of η close to 0.1 resulted in effective denoising 
without causing signal distortion, while a larger value 
caused distortion in artifact-free ECG segments. 

III. METHOD OF EVALUATION  
A quantitative estimate of the performance of a denoising 

technique can be obtained as the SNR improvement for ECG 
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inputs with different levels and types of simulated noise [4], 
[5], [9]–[11]. For real ECG records, noise reduction is 
generally assessed by visual inspection [3], [7], [8]. Tong et 
al. [4] used improvement indices based on signal excursion 
(max-min) and L2 norm to quantify the enhancement. 

The denoising was carried out by applying EMG noise 
reduction followed by motion artifact reduction. The 
technique was evaluated by applying it on simulated noisy 
ECG records and on ambulatory ECG records. The 
simulated noisy records were obtained by adding ECG 
records from the MIT/BIH arrhythmia database and ECG-
free noise records from the MIT/BIH noise stress test 
database, having waveforms with 360 Hz sampling and 11-
bit resolution. From each of the 48 two-channel ECG 
records in the database, single channel ECG signals of one 
min. duration were taken as noise-free ECG. Segments from 
the EMG noise ("ma") and motion artifact ("em") were taken 
as the noise. All the records were scaled to have the same 
RMS value. Simulated noisy records with different values of 
SNR were generated by scaling the noise and adding it to 
the signal. The noises used were EMG noise, motion 
artifact, and a mix of EMG noise and motion artifact in 1:2 
ratio (approximating the occurrence in ambulatory 
recordings). Ambulatory ECG signals were recorded using a 
Holter monitor (ECIL, Hyderabad, India) at 200 Hz with 8-
bit resolution. The recordings were resampled to 360 Hz (the 
sampling rate used in the MIT/BIH database). The 
recordings were taken from five healthy volunteers in 
resting condition and during common ambulatory activities 
like hand movements, walking, and climbing stairs. 

A qualitative evaluation of the denoising on both types of 
records involved a visual examination of the output for 
suppression of the artifact and presence of distortion. A 
quantitative evaluation involved calculation of improvement 
in the SNR for the simulated noisy records. Another 
quantitative evaluation, as used by Tong et al. [4], involved 
the improvement indices (I.I.) based on L2 norm and 
excursion (max-min) of the signal and calculated as 

 
(Pre-denoising value)  (Post-denoising value)

I.I.= (Pre-denoising value)  (Artifact-free value)
−
−  (8) 

An index value close to one indicates an effective denoising 
and a small value indicates ineffective noise suppression. A 
value larger than one indicates signal distortion. Improve-
ment in automated R-peak detection using Pan-Tompkins 
algorithm [14] was also used as a measure of denoising. 

IV.  RESULTS  

A. Denoising of Simulated Noisy ECG  
The improvements in SNR obtained by denoising are 

given in Table 1. The technique was effective in suppressing 
all the three types of simulated noise, with a mean improve-
ment of 11.4 dB for mixed noise at –10 dB input SNR. At 
this input SNR, the improvement indices, as calculated using 
(8), were close to one indicating a significant noise reduct-

ion without introducing distortion. In automated R-peak 
detection, the errors (failures and false detections) reduced 
from 14.5 % to 2.2 %. In many of the segments with EMG 
noise, Gibbs oscillation produced by the thresholding 
operation, could be observed in the vicinity of the QRS 
complexes. Translation-invariant [8], [9] application of the 
denoising, with 1-sample shift and 125 iterations, reduced 
these oscillations and resulted in SNR improvement of up to 
1 dB. It did not result in any change in improvement indices 
and errors in the automated detection of R-peaks. 

B. Ambulatory ECG 
A visual examination of the processed outputs showed 

that the denoising technique was effective in suppressing the 
EMG noise and motion artifact, and it did not result in any 
visible distortions in the clean segments. In Fig. 1, the 
motion artifact during 6–8 s is attenuated without affecting 
the nearby QRS complexes. In Fig. 2, the EMG noise is 

TABLE  I 
MEAN (AND STD. DEV.) OF SNR IMPROVEMENT (DB)  

FOR SIMULATED NOISY ECG (N = 48). 

Input SNR (dB) 
Noise type 

-10 -5 0 

EMG noise 12.1   (1.7) 8.8   (2.0) 5.1   (2.3) 

Motion artifact 11.5   (0.9) 8.3   (1.4) 4.8   (2.1) 

Mixed 11.4   (0.9) 8.3   (1.5) 4.9   (2.2) 

 

Fig. 1.  Suppression of motion artifact in ambulatory ECG: (a) Input. 
(b) Output. 
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Fig. 2.  Suppression of EMG noise in ambulatory ECG: (a) Input, (b) 
Output. 
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attenuated while the EMG-free region is unaffected and the 
initial artifact is suppressed. The R-peak overlapping with 
the EMG noise (the first R-peak after 6 s) is attenuated. An 
occurrence of Gibbs oscillations and its suppression using 
translation invariant denoising is shown in Fig. 3. In the 
example of the automated R-peak detection in Fig. 4, it is 
seen that the denoising resulted in the detection of all the R-
peaks. Its application on ambulatory ECG recordings (10-s 
segments from the recordings from five volunteers, different 
leads, and different ambulatory activities) with a total of 551 
cardiac cycles resulted in L2 norm and max-min based 
improvement indices close to one. Application of the 
automated R-peak detection on these records resulted in an 
error of 12.3 % (54 failures and 14 false detections). 
Denoising significantly reduced the error to 1.5 % (4 failures 
and 4 false detections). 

V. DISCUSSION 

The wavelet-based denoising technique for suppressing 
EMG noise and motion artifact in ECG does not require a 
reference as in adaptive filtering techniques. It does not need 
multi-channel signals as required by ICA-based techniques. 
Further, identification of R-peaks or other characteristic 
points as required in the cubic spline and EMD-based 
techniques are not needed. The discrete Meyer wavelet was 
chosen as the wavelet basis function for this application 
after studying the effectiveness of several wavelet bases. 

EMG noise was reduced by thresholding combining the 
features of hard and soft thresholding. Motion artifact was 
reduced by limiting the wavelet coefficients. Thresholds for 
both the denoising steps were estimated from the statistics of 
the wavelet coefficients of the noisy signal in an automated 
manner. Gibbs oscillations due to thresholding, occasionally 
occurring in the vicinity of QRS complexes, were 
suppressed by translation-invariant application of denoising. 
Effectiveness of the technique was validated by applying it 
on simulated noisy ECG records as well as on ambulatory 
recordings from a Holter recorder. Its application 
significantly reduced the EMG noise and motion artifact 
without introducing any visible distortions in ST segments. 
Its performance needs to be further evaluated with respect to 
some of the other techniques and particularly on ECG 
records from patients with different cardiac disorders. 
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Fig. 3.  Suppression of Gibbs oscillations in the vicinity of QRS 
complexes: (a) Input ECG, (b) ECG after EMG denoising, (c) ECG 
after translation-invariant EMG denoising. 
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Fig. 4  Automated R-peak detection applied on (a) input ECG, (b) 
ECG after denoising. 
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