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Abstract:
In this paper, we suggest a unit root test for a system of equations using a spectral variance decomposition
method based on the Maximal Overlap Discrete Wavelet Transform. We obtain the limiting distribution of the
test statistic and study its small sample properties using Monte Carlo simulations. We find that, for multiple
time series of small lengths, the wavelet-based method is robust to size distortions in the presence of cross-
sectional dependence. The wavelet-based test is also more powerful than the Cross-sectionally Augmented Im
et al. unit root test (Pesaran, M. H. 2007. “A Simple Panel Unit Root Test in the Presence of Cross-section Depen-
dence.” Journal of Applied Econometrics 22 (2): 265–312.) for time series with between 20 and 100 observations,
using systems of 5 and 10 equations. We demonstrate the usefulness of the test through an application on evalu-
ating the Purchasing Power Parity theory for the Group of 7 countries and find support for the theory, whereas
the test by Pesaran (Pesaran, M. H. 2007. “A Simple Panel Unit Root Test in the Presence of Cross-section De-
pendence.” Journal of Applied Econometrics 22 (2): 265–312.) finds no such support.
Keywords: system of equations, unit roots, wavelets
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1 Introduction

Testing for unit roots in systems of equations has been an active area of research for at least the last three
decades. The principal aim of this research has been to increase the power of unit root tests by utilizing the
cross-sectional dimension of multiple time series. In this way, power gains can be made by increasing the overall
number of observations while using relatively short time series. This approach is often preferable to the use of
long univariate time series, which are likely undergo structural changes.

One of the earliest unit root tests in systems of equations was the test by Levin, Lin, and Chu (2002). This test
assumes a common autoregressive parameter for all time series in the equation system and consequently pools
the data. The assumption of a common parameter, however, imposes a restriction that limits the use of the test
for heterogeneous time series. Im, Pesaran, and Shin (2003) presented the IPS test, which relaxed this assump-
tion and modeled the individual time series using separate linear trends. Their suggested test statistic was the
average of the t-statistics from the individual equations. However, implicit in this method is the assumption
that all the time series are of similar length, i.e. that the data is balanced. The test has also been revealed to be
sensitive to cross-sectional dependency (see Li and Shukur, 2013, for example).

Another panel unit root test that allows for heterogeneous panels was presented by Maddala and Wu (1999)
and Choi (2001). This test combines evidence from several independent tests using their p-values and has its
basis in the method found in Fisher (1932). If Pi is the p-value for the ith unit root test, then −2∑ log𝑃𝑖 has an
exact χ2 distribution, with degrees of freedom equal to twice the number of the individual tests (and therefore,
their p-values). Maddala’s unit root test does not require balanced data, can be conducted on p-values obtained
from any unit root test, and is less sensitive to correlation across time series compared to the IPS unit root test
(see Maddala and Wu, 1999).

The tests described above belong to a group of tests referred as the first generation unit root tests in the panel
data literature. These tests depend on the assumption that there is no correlation between the individual time
series in the equation system – an assumption that rarely holds in practice. Consequently, tests that account
for correlation between time series in equation systems have been proposed. These are often referred to as the
second generation unit root tests. The cross-sectionally augmented Im, Shin and Pesaran test, hereafter referred
to as CIPS, (Pesaran 2007) is perhaps the most popular of the second generation unit root tests. Results from
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using CIPS on time series of short lengths will be investigated and compared to those from the proposed unit
root test.

We suggest a wavelet variance ratio unit root test for a system of equations. Monte Carlo simulations show
that the proposed test is powerful and robust to correlation between time series. We derive the limiting dis-
tribution of the wavelet variance ratio test statistic in the cases where the alternatives have no deterministic
components, as well as when testing against trend stationarity (stationarity around a non-zero mean and time
trend). The limiting distribution is presented under the condition that the lengths of the time series increase,
but with a fixed number of time series. Results from the Monte Carlo simulations show that the wavelet-based
test retains its nominal size for all of the data generating processes (DGPs) considered, and has better power
compared to CIPS.

Finally, we demonstrate the usefulness of the test using an empirical application on evaluating the Purchas-
ing Power Parity theory for the Group of 7 countries. Evidence from this evaluation points to different countries
following different specifications, with some having stationary exchange rate series.

2 Methodology

2.1 Variance ratio unit root tests and the wavelet filters

There has been considerable research into testing the random walk and martingale difference hypotheses,
mainly in the context of asset prices. Of particular interest is the model where the error term is an uncorre-
lated process, which is common in financial time series. Consider the Random Walk Model given by,

𝑦𝑡 = 𝑧𝑡 + 𝜀𝑡𝑧𝑡 = 𝜇 + 𝑧𝑡−1 + 𝜂𝑡
where,𝜀𝑡 = 𝐵(𝐿)𝛿𝑡 and 𝜂𝑡 = 𝐴(𝐿)𝜖𝑡 are stationary processes.

Variance ratio unit root tests use the fact that, for a unit root time series, the variance of the kth difference of the
series is an increasing linear function of the difference, k. The test statistics of these tests are, therefore, based
on estimators of the ratio of variances at different lags to that at lag 1.

Let 𝜎2𝑞 = Var (𝑦𝑡 − 𝑦𝑡−𝑞) /𝑞 andΔ𝑦𝑡 = (𝑦𝑡−𝑦𝑡−1). The relation between 𝜎2𝑞 and the autocorrelation coefficients
of Δyt are given as (see Cochrane (1988)),

𝜎2𝑞𝜎2
Δ𝑦 = 1 + 2

𝑞−1∑𝑘=1
(1 − 𝑘𝑞) 𝜌𝑘,

where ρi is the lag i autocorrelation coefficient of the first differences of the {𝑦𝑡}𝑇𝑡=0 series. This type of variance
ratio unit root test is essentially a specification test using the null hypothesis,

𝐻0 ∶ 𝜌𝑘 = 0; 𝑘 = 1, … , 𝑞.
The variance ratio (see Cochrane 1988) is given as follows,

VR = 𝑓Δ𝑦(0)�̂�2(1)
where �̂�2(1) is an unbiased estimate of the variance at lag 1 and fΔy(0) is the spectral density estimator of Δyt
at the zero frequency. An estimate of fΔy(0) can be based on the sample autocorrelations of Δyt. When the time
series has a unit root, the expected value of the variance ratio should be close to 1 for all lags k. The variance
ratio will be less than 1 when the first differences are correlated, indicating the rejection of the null hypothesis
of a serially uncorrelated random walk.

Other variance ratio tests are those suggested by Tanaka (1990) and Kwiatkowski et al. (1992). The test statis-
tic for the variance ratio test given in Kwiatkowski et al. (1992) is,
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𝜚𝑇 = ∑𝑇𝑡=1 𝑌2𝑡 /𝑇2

∑𝑇𝑡=1 𝑦2𝑡 /𝑇
where 𝑌𝑡 = ∑𝑡𝑖=1 𝑦𝑖 is the partial sum of the {𝑦𝑡}𝑇𝑡=0 process. ∑𝑇𝑡=1 𝑦2𝑡 /𝑇 estimates the long-run variance which,
in the case of serial dependence, can be estimated using semi-parametric kernel based methods e.g. the Newey-
West estimator (Newey and West, 1987). When testing against trend stationary alternatives, the test statistic is
for the detrended series,

̂𝜚𝑇 = ∑𝑇𝑡=1 �̃�2𝑡 /𝑇2

∑𝑇𝑡=1 ̃𝑦2𝑡 /𝑇
where the deterended series is given as ̃𝑦𝑡 = (𝑦𝑡 − �̂�), and �̂� is an estimate of the deterministic component – for
example, the sample average in the case of the null being of stationarity about a non-zero mean. The test statistic
of Kwiakowski et al. given above tests for stationarity i.e. it has its null hypothesis as stationary. Breitung (2002)
reversed the roles of the null and alternative hypotheses and proposed using ̂𝜚𝑇 as a unit root test where the
null hypothesis is non-stationarity. Used in this way, its limiting distribution under the null hypothesis (see
Breitung (2002), Proposition 3) does not depend on the long-run variance as the long-run variance cancels out
in the variance ratio. This removes the need for kernel function selection and tuning parameter optimization
necessary for estimating the long-run variances.

In the frequency domain, the use of variance ratios for unit root testing is motivated by the fact that the spec-
trum of a unit root process peaks at the near zero frequencies, and tails off exponentially. As a consequence,
the largest proportion of the variance is found in the lowest frequency bands. Suitable test statistics can, there-
fore, be based on the relative distribution of the variance with regards to frequency. For this to be feasible, the
spectral variance needs to be decomposed in order to obtain the proportions of the variance contributed by
the different frequency intervals. The Discrete Wavelet Transform (DWT) is a variance preserving transform,
which decomposes the spectral variance on a scale-by-scale basis using filtering operations. The transform out-
puts two vectors; a vector of the DWT wavelet coefficients, and a vector of its scaling coefficients. The wavelet
coefficients describe the changes at each scale, i.e. the details resulting from differences within each scale. The
scaling coefficients, on the other hand, describe averages at each scale, i.e. the smooth resulting from averaging
at each scale. The scale of the transform, which is inversely related to frequency, refers to the number of the re-
cursive decompositions. Each recursive iteration from the second onwards decomposes the scaling coefficients
from the preceding iteration.

The DWT has its filters operate on non-overlapping values, which means that the input time series have to
be of dyadic lengths (2𝑘, 𝑘 = 2, 3, …). In contrast, the Maximal Overlap DWT (MODWT) has its filters operate
on overlapping values, which makes it possible to handle samples of any size. The MODWT, therefore, extracts
more information on the local variation of the time series. Unlike wavelet functions with longer and smoother
filters, the Haar MODWT does not suffer from boundary effects, i.e. the loss of coefficients which are subject to
circular filtering operations at the end of the time series. The transform also provides a better estimator of the
wavelet variance (see Percival 1995) compared to the DWT. For these reasons, we use the Haar MODWT in this
paper. For more details on wavelet filters and their properties, we refer to texts by Percival and Walden (2000)
and Gençay, Selçuk, and Whitcher (2001).

The Haar MODWT wavelet filter (ℎ𝑗,𝑙 ∶ 𝑙 = 0, … 𝐿𝑗 − 1 𝑗 = 1, 2, …) is given as,

ℎ𝑗,𝑙 ≡
⎧{{{⎨{{{⎩
1
2𝑗 for 𝑙 = 0, … , 2𝑗−1 − 1
1−2𝑗 for 𝑙 = 2𝑗−1, … , 2𝑗 − 1

0 otherwise

�

𝐿𝑗 = 2𝑗 for this wavelet, and is the length of filter at scale j. The scaling filter is given as,

𝑔𝑗,𝑙 ≡ ⎧{⎨{⎩
1
2𝑗 for 𝑙 = 1, … , 2𝑗 − 1
0 otherwise

�
The Haar wavelet filter, therefore, approximates a band-pass filter with the nominal pass-band [2−(j+1), 2−j] and
the Haar scaling filter approximates an ideal low-pass filter with the nominal pass-band [0, 2−(j+1)].
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The jth level wavelet and scaling coefficients are defined as follows respectively:

�̃�𝑡,𝑗 ≡ 𝐿𝑗−1∑𝑙=0
ℎ𝑗,𝑙𝑦𝑡−𝑙, (𝑡 = 0, 1, 2, …)

�̃�𝑡,𝑗 ≡ 𝐿𝑗−1∑𝑙=0
𝑔𝑗,𝑙𝑦𝑡−𝑙, (𝑡 = 0, 1, 2, …)

A useful property of the Haar MODWT transform is,

𝑦𝑡 = 𝐽0∑𝑗=1
�̃�𝑡,𝑗 + �̃�𝑡,𝐽0

where J0 is an arbitrary scale less than or equal to the maximum resolution of the time series. This property
implies that the time series itself (not only its variance) can be additively decomposed into its wavelet and
scaling coefficients.

For univariate time series, the wavelet variance ratio unit root test introduced by Fan and Gençay (2010) use
a normalized version of the test statistic given below,

̃𝑆𝑇,1 = ‖�̃�1‖2‖�̃�1‖2 + ‖�̃�1‖2
The numerator is the contribution to the variance from the first level scaling coefficients, and the denominator
is the total variance partitioned into the parts contributed by the scaling and wavelet coefficients of the first
scale, respectively. The variances of the scaling and wavelet coefficients are given as,

1𝑇−1 ‖ ̃𝑉1‖2 = 1𝑇 𝑇−1∑𝑡=0
�̃�𝑡,1 and

1𝑇−1 ‖�̃�1‖2 = 1𝑇 𝑇−1∑𝑡=0
�̃�𝑡,1

respectively.
Under the unit root null hypothesis, it can be seen that ∑𝑇−1𝑡=0 �̃�2𝑡,1 = 𝑂𝑝(𝑇) and it is shown (see Fan and

Gençay, 2010) that ∑𝑇−1𝑡=0 �̃�2𝑡,1 = 𝑂𝑝(𝑇2). The variance ratio therefore takes the form,

̃𝑆𝑇,1 = ‖�̃�1‖2‖�̃�1‖2 + ‖�̃�1‖2 = 1 + 𝑜𝑝(1)
The limiting distribution of the test statistic, which is a normalized version of ̃𝑆𝑇,1, is non-standard and the
critical values are obtained using Monte Carlo simulations.

Under the alternative hypothesis both ∑𝑇−1𝑡=0 �̃�2𝑡,1 and ∑𝑇−1𝑡=0 �̃�2𝑡,1 are stationary and the ratio ̃𝑆𝑇,1 will be less
than 1.

Li and Shukur (2013) proposed using ̂𝑆𝑇,1 in a panel data setting. Their test statistic, 𝑆𝑁𝑇 , is based on av-
eraging the variance ratios of the individual panel units, i.e. 𝑆𝑁𝑇 = 𝑁−1 ∑𝑁𝑖=1

̂𝑆𝑇,1𝑖. The test was conducted on
cross-sectionally correlated time series as well as series that were decorrelated by wavestrapping. Monte Carlo
simulation results showed that the wavelet-based panel unit root test is more powerful than the IPS test in the
presence of correlation among the panel units. The test is also more robust to size distortions resulting from
cross-sectional dependency compared to the IPS test, but still over-sized.

2.2 The wavelet variance ratio unit root test for a system of equations

Consider the system of equations without deterministic terms for simplicity,

𝑦𝑖𝑡 = 𝜙𝑖𝑦𝑖,𝑡−1 + 𝑢𝑖𝑡, 𝑖 = 1, … , 𝑁; 𝑡 = 1, … , 𝑇
4
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where yit is the time series of interest and uit is a zero mean weakly stationary error term, i.e. 𝑢𝑖𝑡 = ∑∞𝑗=0 𝜓𝑗𝐿𝑗𝜀𝑖𝑡
(with finite long-run non-zero variance 𝜎2𝜀𝑖𝑡𝜓(1)2 < ∞, and ψ(1) ≠ 0), i indexes the individual equation, and t
indexes time. Also Cov(𝑢𝑖𝑡, 𝑢𝑘𝑡) = 0 for i ≠ k, and εit is an iid, zero mean process with variance 𝜎2𝜀𝑖𝑡 . ψ(L) is the
lag polynomial that that relates the response of uit to εit.

The unit root hypothesis for the system,

𝐻0 ∶ |𝜙𝑖| = 1 for all 𝑖
and the alternative hypothesis is,

𝐻𝐴 ∶ |𝜙𝑖| < 1, 𝑖 = 1, … , 𝑁1 and |𝜙𝑖| = 1, 𝑁1 + 1, … , 𝑁
Let the matrix of time series be denoted by,

Y = [y1, y2, … , y𝑁]
so that the Haar MODWT scaling and wavelet coefficients for the first scale decomposition are given by,

V = [v1, v2, … , v𝑁] and W = [w1,w2, … ,w𝑁] respectively,

where vi is the vector of the scaling coefficients of the series yi (i = 1, 2, … , N), i.e. 𝑉𝑡𝑖,1, … 𝑉𝑇𝑖,1 and wi is the
vector of the wavelet coefficients of series yi (i = 1, 2, … , N), i.e. 𝑊𝑡𝑖,1, … 𝑊𝑇𝑖,1

A wavelet variance ratio unit root test can be based on the following,

VR = tr ((V𝑇V + W𝑇W) (W𝑇W)−1)
where,

tr( �V𝑇V + W𝑇W) �
is the total variance of the system and,

tr (W𝑇W)−1

is the variance contributed by the first scale wavelet coefficients.
Under the null hypothesis (where all the series in the equation system are I(1)), VTV is a diagonal matrix

with diagonal elements being of order Op(T2). The diagonal elements of VTV will dominate those of WTW
which are of order of convergence Op(T). The test statistic will, therefore, take on larger values under the null
hypothesis compared the values under the alternative. For white noise series, for example,

VR = tr (I𝑁 + V𝑇V (W𝑇W)−1) = 2𝑁 + 𝑜𝑝(1) as 𝑇 → ∞
since VTV = WTW.

VR is not bounded under the null hypothesis. A suitably normalized test statistic given as follows,

VR𝑀 = 1𝑇 tr ( ̂Γ (V𝑇V + W𝑇W)W𝑇W−1)
where ̂Γ is a diagonal matrix with the diagonals consisting of the weights ̂𝜐𝑦𝑖,1/�̂�2𝑖 , and ̂𝜐𝑦𝑖,1 and �̂�2𝑖 are consis-
tent estimates of the wavelet and long-run variances respectively. The two variances, which enter the limiting
distribution as nuisance parameters, are consistently estimated as is shown in the Appendix.

The limiting distribution of the test statistic under the null hypothesis is shown in the following theorem
whose proof is given in the Appendix.
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Theorem 1
The limiting distribution of 𝑉𝑅𝑀 under H0 is given as,

𝑉𝑅𝑀 ⇒ 𝑁∑𝑖=1 ∫1

0
[𝑊𝑖(𝑟)]2 𝑑𝑟

where 𝑊𝑖(𝑟), 𝑖 = 1, 2, … , 𝑁 are independent standard Brownian motions, and N is the number of equations.
Since the test statistic is the sum of variance ratios, a Central Limit Theorem could be invoked by normalizing

the sum and letting N → ∞, but this is not pursued in this paper as we are mainly interested in the limit only
where T → ∞.

Many unit root tests suffer from loss of power when tested against alternatives that are trend stationary.
As a consequence of this, efficient detrending methods (see Schmidt and Phillips, 1966) are required to retain
power. We use the detrending techniques suggested by Fan and Gençay (2010), and, as in their work, we restrict
our scope to the the cases where the models specified under the alternative hypotheses have non-zero means
and linear trends only.

The model including deterministic components is given as,

𝑦𝑖,𝑡 = 𝜇𝑖 + 𝛼𝑖𝑡 + 𝜙𝑖𝑦𝑖,𝑡−1 + 𝑢𝑖𝑡 𝑖 = 1, … , 𝑁; 𝑡 = 1, … , 𝑇 (1)

For equation i, the null hypothesis, H0 : ϕi = 1 is the unit root hypothesis while under HA, ϕi < |1| is the
hypothesis of stationarity. Following Fan and Gençay (2010), when α = 0, we consider the demeaned series(𝑦𝑖𝑡 − 𝑦𝑖𝑡) where 𝑦𝑖𝑡 = 𝑇−1 ∑𝑇𝑡=1 𝑦𝑖𝑡 is the individual’s average. Similarly, we consider the detrending ( ̃𝑦𝑖𝑡 − ̃𝑦𝑖),
when α ≠ 0. ̃𝑦𝑖𝑡 = 𝑇−1 ∑𝑇𝑡=1(Δ𝑦𝑖𝑡 − Δ𝑦𝑖), ̃𝑦𝑖 is the sample mean of ̃𝑦𝑖𝑡 for individual i, Δ𝑦𝑖𝑡 = 𝑦𝑖𝑡 − 𝑦𝑖,𝑡−1 and Δ𝑦𝑖
is the sample mean of Δyit for individual i.

Let the test statistics be denoted by VR𝑀𝑀 and 𝑉𝑅𝑑𝑀 for the cases where α = 0 and α ≠ 0 respectively (see
Eqn. (1)). The limiting distributions of these statistics are given by Theorem 2 below. The derivations of these
limiting distributions, which are also given in the Appendix, are similar to that given for the distribution of the
test statistic given in Theorem 1, except that detrended Brownian motions are used.

Theorem 2
The limiting distributions of 𝑉𝑅𝑀𝑀 and 𝑉𝑅𝑑𝑀 under H0 are given as,

𝑉𝑅𝑀𝑀 ⇒ 𝑁∑𝑖=1 ∫1

0
[𝑊𝜇𝑖 (𝑟)]2 𝑑𝑟 and

𝑉𝑅𝑑𝑀 ⇒ 𝑁∑𝑖=1 ∫1

0
[𝑉𝜇𝑖 (𝑟)]2 𝑑𝑟

respectively.

Where ⇒ denotes convergence in the associated probability measure, 𝑊𝜇(𝑟) = 𝑊(𝑟) − ∫1
0 𝑊(𝑟)𝑑𝑟, is the

demeaned Brownian motion, and 𝑉𝜇(𝑟) = 𝑉(𝑟) − ∫1
0 𝑉(𝑟)𝑑𝑟 is the detrended Brownian motion, with V(r) =

W(r) − rW(1).

2.3 Comparison unit root test

The small sample properties of VRM are compared to CIPS. Pesaran (2007) constructs the CIPS test based the
following model:

𝑦𝑖𝑡 = (1 − 𝜙𝑖)𝜇𝑖 + 𝜙𝑖𝑦𝑖,𝑡−1 + 𝑢𝑖𝑡
where the initial values yi0 are fixed. A single common factor with individual specific factor loadings is specified
for the error term,

𝑢𝑖𝑡 = 𝜆𝑖𝑓𝑡 + 𝜖𝑖𝑡
6
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𝜖𝑖𝑡, 𝑖 = 1, … , 𝑁, 𝑡 = 1, … , 𝑇, are zero mean errors with heterogeneous variances 𝜎2𝑖 . The common factor, ft, is
assumed to be stationary and serially uncorrelated, and without loss of generality, its variance is fixed at 1, i.e.𝜎2𝑓 = 1. Cross-sectional correlations are introduced by the factor loadings λi, themselves random variables. ϵit,
λi and ft are assumed to be mutually independent.

Pesaran (2007) proposes a test that augments the standard Dickey-Fuller test with the cross-sectional aver-
ages, resulting in the following Cross-sectionally Augmented Dickey-Fuller (CADF) estimating equation,

Δ𝑦𝑖𝑡 = 𝑎𝑖 + 𝑏𝑖𝑦𝑖,𝑡−1 + 𝑐𝑦𝑡−1 + 𝑑𝑖Δ𝑦𝑡 + 𝜖𝑖𝑡
where ȳt are the cross-sectional averages, and lags of Δyit and Δ𝑦𝑡 may be included to whiten the residuals. The
cross-sectional averages are used as proxies for the unobservable common factor.

Letting CADFi represent the CADF statistic for equation i, CIPS is the average of the CADFs over all the
equations,

CIPS = 1𝑁 𝑁∑𝑖=1
CADF𝑖

The small sample properties of CIPS are studied using Monte Carlo simulation in Pesaran (2007). The test is
shown to be robust to size distortions even, in the presence of strong cross-sectional dependence and serial
correlation, and has good power properties for sample sizes of between 50 and 100 for the DGPs considered
therein.

In the following section, we examine the performance of VRM, and make comparisons with that of CIPS
for time series of lengths 20–100, using systems of 5 and 10 equations. The size and power of the tests are
compared in cases where there is neither cross-sectional dependency nor serial correlation (hereafter called
DGP 1), in the presence of weak cross-sectional correlation but no serial correlation (hereafter called DGP 2),
in the case where there is strong cross-sectional correlation but no serial correlation (hereafter called DGP 3),
and in the case with both strong cross-sectional correlation and strong serial correlation (hereafter called DGP
4). The choice of DGPs follows that of Pesaran (2007).

3 Monte Carlo simulations

Monte Carlo simulations were used to study the size and power properties of the two unit root tests in small
sample sizes. The design of the Monte Carlo experiments is discussed next.

3.1 Design of the Monte Carlo experiment

Following Pesaran (2007), time series are simulated using the following DGPs

𝑦𝑖𝑡 = (1 − 𝜙𝑖)𝜇𝑖 + 𝜙𝑖𝑦𝑖,𝑡−1 + 𝑢𝑖𝑡, |𝜙| < 1𝑢𝑖𝑡 = 𝛾𝑖𝑓𝑡 + 𝜐𝑖𝑡, 𝑓𝑡 ∼ iid N(0, 1)𝜐𝑖𝑡 = 𝜌𝑖𝜐𝑖,𝑡−1 + 𝜀𝑖𝑡, |𝜌| < 1

𝜀𝑖𝑡 ∼ iid N(0, 𝜎2𝑖 )𝜎2𝑖 ∼ U[0.5, 1.5]𝜇𝑖 ∼ U[0, 0.02]
Cross-sectional correlation is introduced using a single common factor denoted by ft, and represents the unob-
served common factor effect.

Table 1 shows the experimental factors and the ranges over which they are varied. The nominal test size is
held at 5% as per convention.
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Table 1: Factors that vary for the different DGPs.

Factor Symbol Design

Nominal size π 0 0.05
Number of iterations I 10,000 (Size)

50,000 (Critical values)
10,000 (Power)

Number of equations N 5, 10
Number of observations T 20, 30, 50, 100
Common factor loadings γ i 0 (No correlation)       (Cross-sectional correlation) ∼U[0, 0.2] (Weak)∼U[−1, 3] (Strong)
AR parameter for serial correlation ρ i ∼U[0.2, 0.4]
AR parameter for alternatives ϕ i ∼U[0.85, 0.95]

The common factor loadings are sampled from the uniform distribution with parameters U[0, 0.2] and U[−1,
3] for weak and strong cross-sectional dependence, respectively. This corresponds to cross-sectional correlations
between the equations of 1% and 50% on average, respectively.

4 Results and discussions

4.1 Empirical test sizes and power

Monte Carlo simulations were conducted for two purposes; to study the small sample performance of VRM by
comparing it CIPS, and to study the robustness of VRM to cross-sectional and serial dependence. We examine
these aspects in the cases where testing is against an alternative that has zero mean and no time trend, and in
the case where testing is against an alternative that is stationary around a non-zero mean only. The test statistic
used in both cases is 𝑉𝑅𝑀𝑀 since both tests correspond to α = 0 but differ in their specification of μi (see Eqn. (1))

4.1.1 Case I. No deterministic terms

The 1%, 5% and 10% critical values for 𝑉𝑅𝑀𝑀 and CIPS test statistics are shown in Table 2. These critical values
correspond to the case where no deterministic terms are assumed.

Table 3 shows the test sizes for the the four DGPs given earlier. There is no evidence of size distortions any
of the DGPs for both tests.

Table 2: Case I (no deterministic components): critical values.

1% 5% 10%

T 𝑉𝑅𝑀𝑀 CIPS 𝑉𝑅𝑀𝑀 CIPS 𝑉𝑅𝑀𝑀 CIPS

N = 5 20 105.55 −2.29 220.86 −1.92 321.06 −1.72
30 66.35 −2.28 135.69 −1.91 196.64 −1.72
50 38.35 −2.24 77.86 −1.91 111.35 −1.71

100 19.09 −2.23 38.25 −1.89 54.62 −1.72
N = 10 20 693.17 −1.97 1185.68 −1.69 1529.02 −1.55

30 398.98 −1.95 637.69 −1.70 799.70 −1.56
50 214.04 −1.95 333.68 −1.70 422.6 −1.56

100 100.18 −1.93 154.13 −1.71 192.14 −1.57

Each individual series generated using the DGP 𝑦𝑖𝑡 = 𝑦𝑖,𝑡−1 + 𝑓𝑡 + 𝜀𝑖𝑡 for 𝑖 = 1, … , 𝑁; 𝑡 = 1, … , 𝑇 with ft and εit ∼ iid N(0, 1).
For CIPS, the critical values are calculated from the regression of Δyit on 𝑦𝑖,𝑡−1, 𝑦𝑡−1 and Δ𝑦𝑡. The cross-sectional mean is 𝑦𝑡 = ∑𝑁𝑖=1 𝑦𝑖𝑡.
For the 𝑉𝑅𝑀𝑀, the critical values are given by the quantiles of the empirical distribution of the test statistic with no adjustment made for
the deterministic components.
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The empirical power of the two tests are also displayed in Table 3. For the case where there are no determin-
istic components, it is clear that the 𝑉𝑅𝑀𝑀 is more powerful than the CIPS test for all the DGPs and the sample
sizes considered, as well as for both equation systems. The power of CIPS increases with sample size for all the
DGPs. The increase in power with increasing sample size is slowest for the DGP that has the combination of
the strongest cross-sectional dependence and serial correlation (DGP number 4). For the 5 equations system,
the highest power achieved by the CIPS test is only 83.7%.

Table 3: Case I (no deterministic components): test sizes.

DGP 1 DGP 2 DGP 3 DGP 4

T 𝑉𝑅𝑀𝑀 CIPS 𝑉𝑅𝑀𝑀 CIPS 𝑉𝑅𝑀𝑀 CIPS 𝑉𝑅𝑀𝑀 CIPS

Size N = 5
20 0.055 0.054 0.050 0.050 0.050 0.058 0.049 0.054
30 0.049 0.051 0.051 0.051 0.051 0.050 0.048 0.051
50 0.050 0.051 0.050 0.050 0.052 0.054 0.046 0.051
100 0.051 0.049 0.053 0.053 0.508 0.055 0.046 0.049
Size N = 10
20 0.050 0.048 0.046 0.055 0.048 0.053 0.047 0.040
30 0.049 0.050 0.051 0.052 0.051 0.057 0.046 0.046
50 0.050 0.051 0.049 0.049 0.053 0.053 0.049 0.035
100 0.047 0.055 0.046 0.051 0.051 0.063 0.044 0.041
Power N = 5
20 1.000 0.134 1.000 0.132 1.000 0.142 1.000 0.091
30 1.000 0.232 1.000 0.211 1.000 0.234 1.000 0.134
50 1.000 0.508 1.000 0.496 1.000 0.503 1.000 0.313
100 1.000 0.960 1.000 0.956 1.000 0.952 1.000 0.837
Power N = 10
20 1.000 0.194 1.000 0.188 1.000 0.191 1.000 0.101
30 1.000 0.357 1.000 0.362 1.000 0.366 1.000 0.194
50 1.000 0.796 1.000 0.782 1.000 0.788 1.000 0.519
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.988

4.1.2 Case II. Non-zero mean and no time trend

The critical values for VR𝑀𝑀 and CIPS are given in Table 4. These values correspond to the case where a non-
zero mean but no time trend is assumed. For the CIPS test, the estimating equation fits an intercept but no time
trend, and for 𝑉𝑅𝑀𝑀 the data are demeaned prior to performing the unit root test (see the discussion on tests
against trend stationary alternatives in page 10).

Table 4: Case II (intercept only): critical values.

1% 5% 10%

T 𝑉𝑅𝑀𝑀 CIPS 𝑉𝑅𝑀𝑀 CIPS 𝑉𝑅𝑀𝑀 CIPS

N = 5 20 1.07 −2.99 1.22 −2.59 1.32 −2.40
30 1.00 −2.91 1.17 −2.56 1.27 −2.39
50 0.96 −2.87 1.12 −2.55 1.22 −2.38

100 0.92 −2.86 1.09 −2.54 1.19 −2.38
N = 10 20 2.58 −2.61 2.84 −2.35 2.98 −2.22

30 2.41 −2.58 2.67 −2.33 2.83 −2.21
50 2.28 −2.55 2.56 −2.33 2.71 −2.22

100 2.20 −2.53 2.47 −2.32 2.64 −2.22

Each individual series generated using the DGP 𝑦𝑖𝑡 = 𝑦𝑖,𝑡−1 + 𝑓𝑡 + 𝜀𝑖𝑡 for 𝑖 = 1, … , 𝑁; 𝑡 = 1, … , 𝑇 with ft and εit ∼ iid N(0, 1).
For CIPS, The critical values are calculated from the regression of Δyit on a constant, 𝑦𝑖,𝑡−1, 𝑦𝑡−1 and Δ𝑦𝑡. The cross-sectional mean is𝑦𝑡 = ∑𝑁𝑖=1 𝑦𝑖𝑡.
For the 𝑉𝑅𝑀𝑀, the critical values are given by the quantiles of the empirical distribution of the test statistic for the demeaned series.

Table 5 shows the test sizes for the 4 DGPs. Again there is no evidence of size distortions for all the DGPs
using both tests.
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Table 5 also displays the power of the two tests. Both tests show low power for the smallest sample sizes (T =
20, 30) but the power increases with sample size. Both tests show decreasing power when strong cross-sectional
and serial correlation are present. For the 5 equations system, 𝑉𝑅𝑀𝑀 has higher power than the CIPS for sample
sizes of larger than 20. For the 10 equations system, 𝑉𝑅𝑀𝑀 is more powerful than CIPS for sample sizes of T
= 50 and T = 100. For the smaller sample sizes, both tests show similar (but low) power. As expected, the 10
equations system shows more power than the 5 equations system for both tests. 𝑉𝑅𝑀𝑀 has noticeably higher
power than CIPS in the presence of both serial and cross-sectional correlation.

Table 5: Case II (intercept only): test sizes and power.

DGP 1 DGP 2 DGP 3 DGP 4

T 𝑉𝑅𝑀𝑀 CIPS 𝑉𝑅𝑀𝑀 CIPS 𝑉𝑅𝑀𝑀 CIPS 𝑉𝑅𝑀𝑀 CIPS

Size N = 5    20 0.047 0.048 0.050 0.051 0.045 0.050 0.037 0.050    30 0.048 0.049 0.055 0.047 0.049 0.056 0.042 0.044    50 0.050 0.047 0.049 0.051 0.047 0.049 0.045 0.044    100 0.051 0.052 0.050 0.049 0.053 0.058 0.041 0.051
Size N = 10    20 0.047 0.054 0.050 0.050 0.046 0.058 0.049 0.055    30 0.050 0.051 0.045 0.051 0.049 0.060 0.044 0.044    50 0.047 0.051 0.049 0.050 0.044 0.054 0.050 0.044    100 0.051 0.049 0.050 0.053 0.052 0.055 0.048 0.038
Power N = 5    20 0.089 0.079 0.089 0.086 0.085 0.089 0.078 0.077    30 0.157 0.111 0.151 0.113 0.157 0.119 0.147 0.087    50 0.368 0.227 0.385 0.224 0.363 0.235 0.350 0.156    100 0.905 0.729 0.918 0.706 0.886 0.722 0.885 0.533
Power N = 10    20 0.098 0.093 0.097 0.092 0.092 0.100 0.098 0.073    30 0.178 0.159 0.184 0.165 0.171 0.165 0.170 0.099    50 0.511 0.373 0.535 0.371 0.479 0.391 0.491 0.225    100 0.986 0.964 0.993 0.959 0.976 0.954 0.977 0.842

The power advantage of the wavelet-based unit root test over CIPS could be explained by the differences in
effective sample sizes. While the wavelet-based test loses power when the series are demeaned or detrended,
CIPS requires the estimation of several parameters for each individual time series, which means that the effec-
tive sample size is reduced (hence the loss of power).

5 Empirical application

Purchasing Power Parity (PPP) has been heavily researched in international economics because of its central
role in building macroeconomic models. There are two different versions of PPP; the absolute PPP, which refers
to the situation where the nominal exchange rate between two currencies is equal to the ratio of the price levels
of the two corresponding countries, and the relative PPP which takes into account factors such as trade barriers
(tariff and non-tariff barriers), transportation costs, and product differentiation across countries. The empirical
literature has focused on the relative version the PPP which is the weaker version of the macroeconomic theory.
In the relative version, the rate of depreciation of a currency equals the difference in price inflation of that
country’s currency and the price inflation in the comparative country, making the real exchange rate constant.

The conventional procedure when evaluating PPP is to test the null hypothesis that the real exchange rate
series has a unit root against the alternative hypothesis of being stationary. Rejection of the null hypothesis
indicates support for the PPP theory. Initial studies using augmented Dickey-Fuller (ADF) unit root tests sug-
gested by Dickey and Fuller (1979) showed little evidence supporting PPP in the long-run. An example of such a
study is Taylor (1988) where the conclusions were very unfavorable to PPP as a long-run equilibrium condition.
Other examples of such studies include Corbae and Ouliaris (1988), Layton and Stark (1990), Corbae and Ou-
liaris (1991), and Bahmani-Oskooee (1993, 1995). However, Frankel and Rose (1996) noted that a non-rejection
of the null hypothesis may be due to low statistical power of the unit root tests, which is mainly caused by the
lack of data. Glen (1992), Lothian and Taylor (1996), and Taylor (2002) among others suggest that longer time
series could be used to provide indirect evidence to support PPP. However, these long-span studies also faced
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the criticism (see Hegwood and Papell, 1998, for example) that structural breaks or shifts in the equilibrium
exchange rates are possibly generated during the long time span, thereby biasing the results. An alternative
approach, which can be used to increase the statistical power, is to utilize the cross-sectional dimension of mul-
tiple time series. Examples of studies using panel unit root tests are Cheung, Chinn, and Fujii (2006) and Murray
and Papell (2002, 2005).

As an empirical application we use the PPP theory and compare the evidence found from using CIPS
and 𝑉𝑅𝑀𝑀. The data are on the real exchange rates of the Group of 7 (G7) countries (source: Bruegel website:
http://bruegel.org/) and covered the time span between 1960 and 2015. To avoid the potential bias from a
structural break, we consider data from the post-Bretton Woods period (the period after currencies were un-
pegged from the dollar, spanning from 1972 to 2015) in a separate analysis. The results are shown in Table 6.
The data are demeaned so as to study the relative version of PPP. The results confirm those from the simulation
study and conclude that 𝑉𝑅𝑀𝑀, rejects the null hypothesis for both sample periods. No such support for PPP is
found using CIPS for either of the sample periods at the 5% significance level.

The CIPS test is the conventional Pesaran (2007) test. The 𝑉𝑅𝑀𝑀 test is based on the MODWT using the Haar
filter. This method, as noted in Section 2 when describing the wavelet filtering, is chosen since it extracts more
information than the DWT. The method can also handle samples of any sizes. By using the Haar filter we also
avoid loss of information due to boundary coefficients. The 𝑉𝑅𝑀𝑀 test is, as discussed in Fan and Gençay (2010),
is based on the observation by Granger (1966) that the spectral density of trending time series, such as the real
exchange rates, are characterized by a significant power in low frequencies followed by exponential decline at
higher frequencies. The more powerful wavelet-based test for unit roots suggested by Fan and Gençay (2010)
used this notion and the ability of wavelets to decompose the variance of a time series at different frequencies.
Capitalizing on the idea of Granger (1966) and the decomposing ability of wavelets Fan and Gençay (2010)
constructed the variance ratio test which we generalize to systems of equations. The results from our simula-
tion study and the Fan and Gençay (2010) study indicates that this type of wavelet variance ratio test is more
powerful than the traditional parametric options such as the ADF test for univariate time series and the CIPS
test for systems of equations. This is the main reason why the 𝑉𝑅𝑀𝑀 test is able to reject the null hypothesis of
a non-stationary system of equations

Table 6: Empirical example.

Full sample Post-Bretton Woods𝑉𝑅𝑀𝑀 CIPS 𝑉𝑅𝑀𝑀 CIPS

1.562* −2.006 1.661* −2.078

A star indicates significance at the conventional 5% level of significance.

6 Summary and conclusions

A unit root test for a system of equations is introduced in this paper. The proposed test extends the wavelet
variance ratio unit root test of Fan and Gençay (2010) to multiple equation time series.

Monte Carlo simulations show that the proposed test has higher power compared to CIPS (Pesaran 2007)
for time series of short length (between 20 and 100 observations), and systems of 5 and 10 equations. The test
is also shown to be robust to cross-sectional dependency and serial correlation for the DGPs considered in this
paper.

We demonstrate its usefulness through an empirical application on evaluating the PPP theory for the G7
countries. Evidence from this evaluation points to different countries following different specifications, with
some having stationary exchange rate series.

The proposed unit root test is simple to apply and interpret, and could prove to be useful to the practitioner
who is faced with a system of 10 or fewer equations and time series of lengths up to 100. For larger systems of
equations or systems with longer time series, any of the existing unit root tests should provide adequate power.
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A Appendix

Consider the first-order autoregressive model:

𝑦𝑖𝑡 = 𝜙𝑖𝑦𝑖,𝑡−1 + z𝑇𝑖𝑡𝛾𝛾𝛾𝑖 + 𝑢𝑖𝑡
where yit is the time series of interest, i = 1, …, N are the individual time series, t = 1, …, T indexes time, z𝑇𝑖𝑡 are
the deterministic components, and uit is a weakly stationary zero mean process with finite long-run variance.

Here we consider the cases with no deterministic terms as well as where the alternative is trend stationary
around a non-zero mean and time trend.

Proof of Theorem Theorem 1
Consider N time series that have no cross-sectional correlation but are possibly autocorrelated,

Y = [y1, y2, … , y𝑁]
The Haar MODWT scaling and wavelet coefficients for the first scale decomposition are given by,

V = [v1, v2, … , v𝑁] and W = [w1,w2, … ,w𝑁] respectively,

where vi is the vector of the scaling coefficients of the series yi (i = 1, 2, … , N), i.e. 𝑉𝑡𝑖,1, … 𝑉𝑇𝑖,1 and wi is the
vector of the wavelet coefficients of series yi (i = 1, 2, … , N), i.e. 𝑊𝑡𝑖,1, … 𝑊𝑇𝑖,1.

The total variance in the system of equations can be expressed in terms of the Haar MODWT coefficients as
follows:

tr (𝑇−1 (V𝑇V + W𝑇W))
The contribution to the total variance due to the wavelet and scaling coefficients is given by,

tr (𝑇−1 (V𝑇V)) and tr (𝑇−1 (W𝑇W)) , respectively.

A unit root test statistic can, therefore, be based on the following ratio,

VR = tr (𝑇−1 (V𝑇V + W𝑇W)W𝑇W−1)
Under the unit root null hypothesis, the diagonal elements of V𝑇V = 𝑂𝑝(𝑇2) while those of W𝑇W = 𝑂𝑝(𝑇).
The variance ratio will take on large values. Whereas for stationary processes, both terms are Op(T) and the
ratio will be small.

Under the null hypothesis,

𝑇−1 (V𝑇V + W𝑇W) (W𝑇W)−1

= 1𝑇 ⎡⎢⎢⎢⎣
𝛼11 𝑜𝑝(1) ⋯ 𝑜𝑝(1)𝑜𝑝(1) 𝛼22 ⋯ 𝑜𝑝(1)⋮ ⋱ ⋮𝑜𝑝(1) 𝑜𝑝(1) ⋯ 𝛼𝑁𝑁

⎤⎥⎥⎥⎦
as T → ∞ since there is no cross-correlation i.e. v𝑇𝑖 v𝑗 and w𝑇𝑖 w𝑗 = 𝑜𝑝(1), and 𝛼𝑖𝑖 = (v𝑇𝑖 v𝑖 + w𝑇𝑖 w𝑖)(w𝑇𝑖 w𝑖)−1.

12

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Ali et al.

Then,

tr (𝑇−1 (V𝑇V + W𝑇W) (W𝑇W)−1) = 𝑇−1
𝑁∑𝑖 (v𝑇𝑖 v𝑖 + w𝑇𝑖 w𝑖)(w𝑇𝑖 w𝑖)−1

For the MODWT transform,

VR𝑀 = 𝑁∑𝑖=1

𝑇−2 (∑𝑇𝑡=1 𝑉2𝑡𝑖,1 + ∑𝑇𝑡=1 𝑊2𝑡𝑖,1)𝑇−1 (∑𝑇𝑡=1 𝑊2𝑡𝑖,1) ,
Also, for this wavelet transform,

𝑇∑𝑡=1
𝑉2𝑡𝑖,1 + 𝑇∑𝑡=1

𝑊2𝑡𝑖,1 = 𝑇∑𝑡=1
𝑦2𝑖𝑡

From the asymptotic theory for unit root processes (see Hamilton (1994) pp. 486) and Continuous Mapping
Theorem (CMT) (see Billingsley 1968),

1𝑇2

𝑁∑𝑖=1

𝑇∑𝑡=1
𝑦2𝑖𝑡 ⇒ 𝑁∑𝑖=1

𝜔2𝑖 ∫1

0
[𝑊𝑖(𝑟)]2 𝑑𝑟 (2)

where 𝜔2𝑖 is the long-run variance of uit.
Also, for the Haar MODWT wavelet filter,

1𝑇 𝑇∑𝑡=1
𝑊2𝑡𝑖,1 → E(𝑊2𝑖,1) as 𝑇 → ∞

where E(𝑊2𝑖,1) is the first scale wavelet variance for series i (see Percival 1995)
Using the CMT, the limiting distribution of the variance ratio for each individual series is,

𝑇−2 (∑𝑇𝑡=1 𝑉2𝑡𝑖,1 + ∑𝑇𝑡=1 𝑊2𝑡𝑖,1)𝑇−1 (∑𝑇𝑡=1 𝑊2𝑡𝑖,1) ⇒ 𝜔2𝑖𝐸(𝑊2𝑡𝑖,1) ∫1

0
[�𝑊𝑖(𝑟)] �2𝑑𝑟

where the long-run variance of uit (for time series i) is given by,

𝜔2𝑖 = lim𝑇→∞ E( �𝑇−1𝑆2𝑇) � = ⎡⎢⎣𝛾𝑖,0 + 2
∞∑𝑗=1

𝛾𝑖,𝑗⎤⎥⎦
𝑆2𝑇 is the partial sum process of 𝑦2𝑖,𝑡, γi, j is the lag j autocovariance for time series i, and ⇒ is used to denote
convergence of the associated probability measure.

The two nuisance parameters in the limiting distribution, 𝜔2𝑖 and E(𝑊2𝑡𝑖,1), can be consistently estimated as
follows:

1. E(𝑊2𝑡𝑖,1) is the wavelet variance at unit scale of the Haar MODWT. Its consistent estimator (see Percival (1995))
is given by,

̂𝜐𝑦𝑖,1 = 1𝑇 − 1

𝑇−1∑𝑡=0
𝑊2𝑡𝑖,1

The wavelet variance estimator for the Haar MODWT avoids boundary effects, which is the loss of coeffi-
cients at the ends of time series as a result of circular filtering operations.

13

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Ali et al. DE GRUYTER

2. For the long-run variance, 𝜔2𝑖 , estimation can be made in one of two ways (see Zivot and Wang, 2006, for
details on the long-run variance estimation):

a. Parametric approach
For time series i, since ωi is a linear process, it follows that,

∞∑−∞ 𝛾𝑗 = 𝜎2 ⎛⎜⎜⎝
∞∑𝑗=0

𝜓𝑗⎞⎟⎟⎠
2 = 𝜎2𝜓(1)2

giving 𝜔2𝑖 = 𝜎2𝑖 𝜓(1)2.
When uit is ARMA(p, q), then,

𝜓(1) = 1 + 𝜃1 + … + 𝜃𝑞
1 + 𝜙1 + … + 𝜙𝑝 = 𝜃(1)𝜙(1) ,

which gives

𝜔2𝑖 = 𝜎2𝑖 𝜃(1)2𝜙(1)2
where 𝜎2𝑖 is the variance of the error of the ARMA model for time series i.
Making substitutions using the estimates of the parameters of the ARMA(p, q) process gives a consistent
estimate of 𝜔2𝑖 .
A second parametric approach is to approximate the ARMA(p, q) process with a higher order AR(p*)
process,

𝑢𝑖𝑡 = 𝜙𝑖,1𝑢𝑖,𝑡−1 + … + 𝜙𝑖,𝑝∗𝑢𝑖,𝑡−𝑝∗ + 𝜀𝑖𝑡,
and then estimate the long-run variance as follows

𝜔2𝑖 = 𝜎2𝑖𝜙∗(1)2
b. Semi-parametric method using a kernel function:

One possible semi-parametric estimator of the long-run variance is the Newey and West (1987) estimator,
which is the wighted covariance function,

𝜔2𝑖 = �̂�𝑖,0 + 2
𝐿∑ℓ=1

𝑤𝑖,ℓ�̂�𝑖,ℓ
where wi,ℓ are the weights for time series i, �̂�𝑖,ℓ are the autocovariances for time series i, and L is the
truncation lag or bandwidth parameter, such that L = O(T1/3) (see Andrews 1991).
Newey and West use the Bartlett weights,

𝑤ℓ = 1 − ℓ𝐿 + 1

with 𝐿 = ⌊4(𝑇/100)2/9⌋.
The nuisance parameters are eliminated from the limiting distribution by normalizing the variance ratio

with the ratio of the consistent estimates of the nuisance parameters,

̂𝜐𝑦𝑖,1�̂�2𝑖
𝑇−2 (∑𝑇𝑡=1 𝑉2𝑡𝑖,1 + ∑𝑇𝑡=1 𝑊2𝑡𝑖,1)𝑇−1 (∑𝑇𝑡=1 𝑊2𝑡𝑖,1) ⇒ ∫1

0
[ �𝑊𝑖(𝑟)]�2𝑑𝑟
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giving the result,

𝑇−1
𝑁∑𝑖=1

( �v𝑇𝑖 v𝑖 + w𝑇𝑖 w𝑖) �(w𝑇𝑖 w𝑖)−1 ⇒ 𝑇−1
𝑁∑𝑖=1 ∫1

0
[𝑊𝑖(𝑟)]2 𝑑𝑟

The test statistic is, therefore,

VR𝑀 = tr (𝑇−1 ̂Γ (V𝑇V + W𝑇W)W𝑇W−1)
where ̂Γ is a diagonal matrix with the main diagonal consisting of the weights ̂𝜐𝑦𝑖,1/�̂�2𝑖 .

Proof of Theorem Theorem 2
Let ̃𝑦𝑖𝑡 represent the time series adjusted for the deterministic components i.e.

̃𝑦𝑖𝑡 = (𝑦𝑖𝑡 − �̂�𝑖)
where �̂� is the estimate ot the deterministic component. Then, from asymptotic theory for demeaned unit root
processes (see Stock (1994), for example)

𝑇−2
𝑇∑𝑡=1

̃𝑦2𝑖𝑡 ⇒ 𝜔2𝑖 [𝑊𝜇𝑖 (𝑟)]2 , where 𝑊𝜇𝑖 (𝑟) = 𝜔𝑖 (𝑊𝑖(𝑟) − ∫1

0
𝑊𝑖(𝑢)𝑑𝑢)

so that

𝑇−2
𝑇∑𝑡=1

̃𝑦2𝑖𝑡 ⇒ 𝜔2𝑖 [𝑊𝑖(𝑟) − ∫1

0
𝑊𝑖(𝑢)𝑑𝑢]2

where 𝜔2𝑖 is the long-run variance for equation i.
For the case where the time series are efficiently detrended, the following result holds (see Kwiatkowski

et al. (1992), for example)

𝑇−2
𝑇∑𝑡=1

̃𝑦𝑖𝑡 ⇒ 𝜔2𝑖 [∫1

0
𝑉𝜇(𝑟)𝑑𝑟]2

where 𝑉𝜇(𝑟) = 𝑉(𝑟) − ∫1
0 𝑉(𝑢)𝑑𝑢, V(r) is a standard Brownian bridge given as V(r) = W(r) − rW(1), and W(r)

is Brownian motion.
The rest of the proof follows that for Theorem 1. Starting with Eqn. (2), replacing Wi(r) with 𝑊𝜇𝑖 (𝑟) and

Vi(r) with 𝑉𝜇𝑖 (𝑟) in the proof of Theorem 1 for the cases where the series have been demeaned and detrended
respectively, leads to the limiting distributions of the two test statistics (𝑉𝑅𝑀𝑀 and 𝑉𝑅𝑑𝑀) as given in Theorem 2.
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