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Abstract

Image denoising plays an important role in image processing, which aims to separate

clean images from noisy images. A number of methods have been presented to deal

with this practical problem over the past several years. The best currently available

wavelet-based denoising methods take advantage of the merits of the wavelet

transform. Most of these methods, however, still have difficulties in defining the

threshold parameter which can limit their capability. In this paper, we propose a novel

wavelet denoising approach based on unsupervised learning model. The approach

taken aims at exploiting the merits of the wavelet transform: sparsity, multi-resolution

structure, and similarity with the human visual system, to adapt an unsupervised

dictionary learning algorithm for creating a dictionary devoted to noise reduction.

Using the K-Singular Value Decomposition (K-SVD) algorithm, we obtain an adaptive

dictionary by learning over the wavelet decomposition of the noisy image.

Experimental results on benchmark test images show that our proposed method

achieves very competitive denoising performance and outperforms state-of-the-art

denoising methods, especially in the peak signal to noise ratio (PSNR), the structural

similarity (SSIM) index, and visual effects with different noise levels.

Keywords: Image denoising, Wavelet transform, Dictionaries, K-SVD

1 Introduction

Image denoising as a low-level image processing operator is an important front-end pro-

cedure for high-level visual tasks such as object recognition, digital entertainment, and

remote sensing imaging. Noise is a random variation of image intensity and appears as

grains in the image. It may arise in the image as effects of basic physics-like photon

nature of light or thermal energy of heat inside the image sensors. Noise means that the

pixels in the image show different intensity values instead of true pixel values. Digital

images may be contaminated during acquisition, transmission, and compression [1], by

diverse types of noise [2], generated by different causes, such as signal instabilities, defec-

tive sensors, physical deterioration of the materiel due to aging, poor lighting conditions,

errors in the transmission due to channel noise, or interference caused by electromagnetic

fields. Noise suppression is of great interest in digital image processing, considering that

the quality improvement of corrupted images is of essential importance for the majority
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of image processing areas, including analysis of images, detection of edges, and pattern

recognition. Mathematically, the problem of image denoising can be modeled as follows:

y = x + b (1)

where y is the observed noisy image, x is the original image, and b represents additive

zero-mean white and homogeneous Gaussian noise with standard deviation σ . The goal

of image denoising is to recover the original image from its noisy observation where the

main challenge is to remove noise while retaining asmuch as possible the important signal

features and improving the PSNR as a common metric used to assess the performance of

the denoising methods, the higher the value of PSNR, the more accurate is the denoising.

Owing to solve the clean image x from the (1) is an ill-posed problem, we cannot get

the unique solution from the image model with noise. To obtain a good estimation image

x̃, image denoising has been well-studied in the field of image processing over the past

several years. Generally, image denoising methods can be classified as [3] spatial domain

methods, transform domain methods, which are introduced in more detail in [4].

Wavelet transform (WT) [5] has proved to be effective in noise removal. It decom-

poses the input signal into multiple scales, which represent different space-frequency

components of the original signal. At each scale, some operations, such as thresholding

[6–11] and statistical modeling [12–14], can be performed to suppress noise. Denois-

ing is accomplished by transforming back the processed wavelet coefficients into spatial

domain. These methods known as wavelet-based denoising techniques can be viewed

also as fixed basis dictionaries [15–22] to whole images. These wavelet-based methods

have demonstrated its efficiency in denoising and have achieved state-of-the-art PSNR

performances. However, in the denoising process, these methods use a thresholding tech-

nique, by using one of the most popular thresholding functions: the soft-thresholding

function and the hard-thresholding function. Consequently, a small threshold retains the

noisy wavelet coefficients, and hence, the resultant images may still be noisy whereas a

large threshold makes a greater number of wavelet coefficients to zero, which leads to

smooth image and image processing may cause blur and artifacts. Therefore, in some of

the previous wavelet-based denoising methods based on the thresholding technique, even

though the quantitative results are promising, the artifacts in the denoised images are

quite noticeable.

In this paper, we address these issues by proposing a new wavelet denoising approach

based on unsupervised learning model. In the proposed method, the approximation and

wavelet coefficients are denoised by using an adaptive dictionary learned over the set

of extracted patches from the wavelet representation of the corrupted image, instead of

using the thresholding operator. On the other hand, sparse and redundant representa-

tion model is applied to image denoising and has drawn a lot of researchers’ attention.

In [23], the K-SVD algorithm was proposed for learning an adaptive dictionary for sparse

representation of gray-scale image patches. Inspired by the idea of prior-learning on the

corrupted image, the K-SVD algorithm was used to remove white Gaussian noise [24, 25].

This patch-based sparse representation algorithm [26] has shown to outperform in both

providing the sparse representation and capability of denoising. Motivated by these ideas

and the merits of the wavelet transform, sparsity, multi-resolution structure, and similar-

ity with the human visual system, in this paper, we propose a new image denoisingmethod

that takes advantages of the wavelet transform and sparse coding framework.
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In our proposed scheme, the prior-learning on the corrupted image is transferred to

the wavelet coefficients of it. And the adaptive dictionary has been learned in wavelet

domain. It means image denoising in the framework of sparse representations in wavelet

domain. Moreover, the proposed model only uses the wavelet decomposition of the noisy

image as a training set in the dictionary learning phase, and it does not involve the target

output. The model has to learn by its own through determining and adapting according

to the structural characteristics in the input patterns. As a result, the proposed work is

able to produce a wavelet denoising approach based on unsupervised learning model,

by using the K-SVD as a dictionary learning algorithm, and without making any a priori

assumption about the data except a parsimony principle.

Experimental results show that the proposed method provides impressive denoising

results compared with the wavelet thresholding approach for image denoising, the K-

SVD denoising method, and the total variation (TV) denoising method based on the split

Bregman technique [27], one of the best denoising models. It also found in the experi-

ments that the proposed method has better performance than the block-matching and

3D filtering (BM3D) method [28] that is often regarded as a state-of-the-art denoising

algorithm.

The rest of the paper is organized as follows. Section 2 briefly reviews the wavelet trans-

form. It presents the advantages of wavelet theory and introduces related work. It exposes

then and explains the proposed approach. Section 3 addresses the experimental protocol

and discusses the obtained results. Finally, we will conclude the paper in Section 4.

2 Methods

2.1 Wavelets and image processing

2.1.1 Wavelet

A wavelet is a function that oscillates like a wave but is quickly attenuated. A wavelet is a

function ψ of L2(R) who verifies the following admissibility condition:

Cψ =
∫ +∞

−∞

|ψ̂(ξ)|2
|ξ | dξ < +∞ (2)

2.1.2 Discrete wavelet transform

The discrete wavelet transform is based on the concept of multi-resolution analysis

(MRA) introduced by Mallat [29]. The discrete wavelet transform (DWT) of image sig-

nals produces a non-redundant image representation, which provides better spatial and

spectral localization of image formation, compared with other multi-scale representa-

tions such as Gaussian and Laplacian pyramid. Recently, the discrete wavelet transform

has attracted more and more interest in image denoising. The DWT can be interpreted

as signal decomposition in a set of independent, spatially oriented frequency channels.

The signal S is passed through two complementary filters and produces two signals:

approximation and details. This is called decomposition or analysis. The components can

be assembled back into the original signal without loss of information. This process is

called reconstruction or synthesis. The mathematical manipulation, which implies anal-

ysis and synthesis, is called a discrete wavelet transform and inverse discrete wavelet

transform [30].
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1Ddiscretewavelet transform Every analog signal x(t)with finite energy can be decom-

posed into a sum of shifted and dilated wavelet functions ψ(t) and shifted scale functions

φ(t):

x(t) =
∞
∑

k=−∞
c(k)φ(t − k) +

∞
∑

j=0

∞
∑

k=−∞
d(j, k)2

j
2 ψ(2jt − k) (3)

where c(k) are scale coefficients and d(j, k) wavelet coefficients. This is a dyadic variant

of the DWT. Scale and wavelet coefficients are calculated using scalar products:

c(k) =
∫ +∞

−∞
x(t)φ(t − k)dt (4)

d(j, k) = 2
j
2

∫ +∞

−∞
x(t)ψ(2jt − k)dt (5)

Hence, filter banks with perfect reconstruction property can be used as a simple realiza-

tion of the DWT using low-pass and high-pass filters associated, respectively, to the scale

function, and the wavelet function [5].

2D discrete wavelet transform Separable 2D discrete wavelet transform is the simplest

form of the two-dimensional wavelet generalization. It consists of a standard 1D DWT

applied to each row and then to each column as shown in Fig. 1.

In Fig. 1, if an image has N1 rows and N2 columns, decomposition results in four

quarter-size images (N1/2×N2/2): details (LH, HL, HH) and approximation LL. Approx-

imation LL is product of two low-pass filters and provides for an input to the next

decomposition level. The reconstruction is performed in the opposite way: first on

Fig. 1 Block diagram of wavelet transform
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columns, then on rows. Separable 2D DWT has three wavelet functions (m and n are

coordinates of the input image):

ψ1(m, n) = φ(m)ψ(n) LHwavelet, (6)

ψ2(m, n) = ψ(m)φ(n) HLwavelet, (7)

ψ3(m, n) = ψ(m)ψ(n) HHwavelet, (8)

and one scale function:

φ2(m, n) = φ(m)φ(n) (9)

associated to the approximation LL [31].

An N level decomposition can be performed resulting in 3N + 1 different frequency

bands: LL is low frequency or approximation coefficients, and the wavelet image coef-

ficients LH, HL, and HH which correspond, respectively, to vertical high frequencies

(horizontal edges), horizontal high frequencies (vertical edges), and high frequencies in

both directions (corners), as shown in Fig. 2. In Fig. 2, the number written next to the

sub-band name shows the level. The next level of wavelet transform is applied to the

low-frequency sub-band image LL only. For more details about the 2D discrete wavelet

transform and 2D inverse discrete wavelet transform, the reader can refer to [5] and

[32–34].

2.2 Advantages of wavelet theory

One of the main advantages of wavelets is that they allow complex information such as

images to be decomposed into elementary forms at different positions and scales and

subsequently reconstructed with high precision [5].

The second main advantage of wavelets is that using fast wavelet transform based on

filter banks [5], it is computationally efficient.

Wavelet transform provides sparse representation for a large class of signals [5], and

it is capable of revealing aspects of data that other signal analysis techniques miss the

aspects like trends, breakdown points, and discontinuities in higher derivatives and

self-similarity [35].

Wavelets have the great advantage of being able to capture the energy of a signal

in few energy transform values, it does not change the number of pixels required to

Fig. 2 Sub-bands after two levels of wavelet decomposition
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represent the image and separate the information in a way that resembles the human

visual system [36].

2.3 Related work

2.3.1 The K-SVD denoisingmethod

Sparse and redundant representations model of signal Given a signal y ∈ Rn and a

over-completed dictionaryD = [d1, d2, · · · , dk] ∈ Rn×k(n << k), where di is called atom.

The sparse and redundant representations model of signal is equivalent to the following

problem:

(P0) : min
α

‖ α ‖0 s.t. y = Dα (10)

here ‖ α ‖0 is called l0 norm. It defines the sparsity measurement of the vector α. The

problem (P0) can be solved by the orthogonal matching pursuit (OMP) algorithm [37]

because of its simplicity and efficiency.

Sparse and redundant representations model for image denoising We address the

classical image denoising problem: a clear image x is corrupted by an additive zero-mean

white and homogeneous Gaussian noise z, with standard deviation σ and ‖ z ‖2≤ ε, and

the observed noisy image y is generated. Hence,

y = x + z (11)

Assume x ∈ Rn has sparse representation over redundant dictionary, modifying (P0), we

get the denoising model as follows:

(P0,δ) : α̂ = argmin
α

‖ α ‖0 s.t. ‖ y − Dα ‖22≤ δ (12)

Here δ = δ(ε). And we get the denoised image x̂ = Dα̂ [38, 39].

The K-SVD image denoisingmethod The key point for solving problem (P0,δ) is to find

a suitable redundant dictionary, for this reason, the K-SVD algorithm [23] is proposed.

The basic idea is when the training signal and the initial dictionary are given, then the

prior-learning idea is used. It learns a dictionary that yields sparse representations for the

training signal. The algorithm alternates a sparse coding step based on the OMP method

and a dictionary updating step based on a simple singular value decomposition (SVD).

The reader can refer to [23, 24] for some details.

2.3.2 Wavelet-based image denoisingmethod

Wavelet-based methods have proved to be effective in noise removal. These methods

are mainly based on thresholding the discrete wavelet transform coefficients, which have

been affected by additive white Gaussian noise [6]. As shown in Fig. 3, the basic denoising

algorithms that use DWT consist of three steps:

• The discrete wavelet transform is adopted to decompose the noisy image and get the

wavelet coefficients.

• The wavelet coefficients are denoised by using the wavelet thresholding technique.

• The inverse discrete wavelet transform is applied to the modified coefficients to get

the denoised image.
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Fig. 3 The basic framework of the wavelet transform based image denoising

Wavelet thresholding approach for image denoising Let the original image be
{

fij
}

of

sizeM × N , whereM, N is some integer power of 2. It has been corrupted by an additive

zero-mean white and homogeneous Gaussian noise
{

nij
}

, with standard deviation σ , and

one observes:

gij = fij + nij (13)

The goal is to estimate the denoised image
{

f ′
ij

}

from noisy observation
{

gij
}

.

It is convenient to label the sub-bands of the transform as in Fig. 2. The sub-bandsHHk ,

HLk , and LHk are called the details, where k is the level ranging from 1 to J, where J is the

largest level. The sub-band LLJ is the low resolution residual. The wavelet transform is

applied to (13) to obtain the wavelet coefficients cij. Then, the wavelet thresholding tech-

nique is used to filter each wavelet coefficient from the detail sub-bands with a threshold

function to obtain the modified coefficients. Finally, the inverse wavelet transform is

applied to the modified coefficients to get the denoised image. There are two threshold-

ing methods frequently used. The soft-thresholding function (also called the shrinkage

function):

ηT (x) = sgn(x).max(|x| − T , 0) (14)

takes the argument and shrinks it towards zero by the threshold T.
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The other popular alternative is the hard-thresholding function:

ψT (x) = x.1 {|x| > T} (15)

which keeps the input if it is larger than the threshold; otherwise, it is set to zero.

The wavelet thresholding procedure removes noise by thresholding only the wavelet

coefficients of the detail sub-bands, while keeping the low-resolution coefficients

unaltered [7, 30].

Donoho et al. [8] have discussed a simple, but influential wavelet-based denoising pat-

tern known as VisuShrink. The outcomes of VisuShrink are stable along with an alluring

visual feature. VisuShrink uses the universal threshold, T, which is proportional to the

standard deviation of the noise, and it is defined as follows [9]:

T = σ
√

2logS (16)

where σ 2 is the noise variance, defined as follows:

σ 2 =[ (median|cij|)/0.6745]2 (17)

where cij ∈ HH1 sub-band thresholding.

S: Number of pixel for the test image.

2.3.3 Total variation denoisingmethod

TV-based regularization is the most influential research in the field of image denoising.

TV regularization is based on the statistical fact that natural images are locally smooth,

and the pixel intensity gradually varies in most regions. It has achieved great success in

image denoising because it cannot only effectively calculate the optimal solution but also

retain sharp edges.

The l1 total variation functional was first introduced by Rudin, Osher, and Fatemi (ROF)

[40] to address image-denoising problems. It is formulated as:

min
f̂

‖ ▽f̂ ‖1 such that ‖ f̂ − f ‖22≤ σ (18)

where f̂ is the reconstructed denoised image, f is the noisy image, ‖ . ‖1 is the l1-norm,

‖ . ‖2 is the l2-norm, and σ is an error tolerance included to account for noisy data.

The choice of technique for solving l1 regularization-based problems is crucial, as l1 is

nonlinear; therefore, the computational burden can increase significantly using classic

gradient-based methods. The recently published Split Bregman (SB) method [27, 41] is

a simple and efficient algorithm for solving l1 regularization-based problems that makes

it possible to split the minimization of l1 and l2 functionals. By applying the SB method

to image denoising proposed in [27], the authors showed that the TV-denoising problem

solved using SB formulation was computationally efficient, given that the SB formulation

leads to a problem that can be solved using Gauss–Seidel and Fourier transformmethods.

2.3.4 BM3D denoisingmethod

The BM3Dmethod [28] is a famous denoisingmethod. It has become a baseline algorithm

to test the performance of denoising algorithms. BM3D includes the following steps: the

first step is block matching: for each image block located at j, the similar image blocks

with size
√
n × √

n are collected in groups with member number Ij. Image blocks in each

group are stacked together to form a
√
n × √

n × Ij 3D data array. Second, the sparsity
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regularization step, the 3D arrays are decorrelated by using an invertible sparse 3D trans-

form such as discrete cosine transform (DCT) [42] and then are filtered by thresholding

or Wiener filtering. Finally, the restoration is obtained by aggregating all the estimated

image patches.

2.4 Proposed denoising method

Suppose the input noisy image y is from a clean image x contaminated by additive zero-

mean white and homogenous Gaussian noise z, with standard deviation σ . The measured

image y is, thus

y = x + z (19)

We desire to design an algorithm that can remove the noise from y, getting a denoised

image x̂ as close as possible to the original image x. As shown in Fig. 4, the proposed

denoising method consists of three steps:

• In the first step, discrete wavelet transform is applied to the noisy image y, to get the

approximation and wavelet coefficients.

• In the second step, approximation and wavelet coefficients are denoised by using an

adaptive dictionary learned on the set of extracted patches from wavelet

representation of the noisy image, by the K-SVD as a dictionary learning algorithm.

• In the third step, inverse discrete wavelet transform is applied for reconstructing the

image, which results in the denoised image x̂.

The detailed steps of the proposed method can be given bellow:

In (19), we assume clear image x of size
√
N ×

√
N pixels and then use 2D discrete

wavelet transform on the noisy image y. According to (19) and the property of wavelet

transform, we have:

Wy = Wx + Wz (20)

where Wy, Wx, and Wz are the wavelet transform of y, x, and z, respectively. Just like

the K-SVD algorithm, learning dictionary on small image patches, note each small patch

Wxij = RijWx of size
√
n × √

n in every location (i, j) of Wx. The matrix Rij is an n × N

matrix that extracts the (ij) block size of n×1 pixels from the imageWx. For the imageWx

of size
√
N ×

√
N , the summation over i, j includes (

√
N −√

n+1)2 items, considering all

image patches of size
√
n×√

n inWxwith overlaps.When redundant dictionaryD ∈ Rn×k

Fig. 4 Block diagram of the proposed denoised method
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is given, according to the sparse prior of wavelet coefficients, every patchWxij has a sparse

representation with bounded error, we get:

α̂ij = argmin
αij

‖ αij ‖0 s.t. ‖ Wxij − Dαij ‖22≤ (Cσ)2 (21)

The Lagrange form of it is:

α̂ij = argmin
αij

‖ Wxij − Dαij ‖22 +μij ‖ αij ‖0 (22)

By maximum a posteriori estimation, denoising of Wy is equivalent to the energy

minimization problem:

{

α̂ij,Wx̂
}

= arg min
αij ,Wx

λ ‖ Wx − Wy ‖22 +
∑

ij

μij ‖ αij ‖0 +
∑

ij

‖ RijWx − Dαij ‖22 (23)

In this expression, the first term is the log-likelihood betweenWx andWy, and λ depends

on ‖ Wx − Wy ‖22≤ Cst × σ 2. The second and the third terms are the sparse prior of

wavelet coefficients.

When D is known, we can solve (23) by two steps. First, let Wx = Wy, thus (23) is

equivalent to solve (
√
N − √

n + 1)2 problems of (22) which can be solved by OMP. This

step is called sparse coding. Second, when getting α̂ij for all (ij) locations, fix them and

turn to updateWx. Returning to (23), we need to solve:

Wx̂ = argmin
Wx

λ ‖ Wx − Wy ‖22 +
∑

ij

‖ RijWx − Dα̂ij ‖22 (24)

Table 1 The PSNR results of the denoised images by different denoising schemes

Image Method σ = 10 σ = 25 σ = 50 σ = 70 σ = 100

Barbara Wavelet thresholding 31.24 25.60 22.50 21.73 20.23

TV 30.56 25.31 22.81 22.31 21.72

K-SVD 34.11 29.57 25.42 23.30 21.87

BM3D 34.75 30.36 26.95 25.17 23.24

Proposed approach 34.34 29.80 27.03 25.85 23.63

House Wavelet thresholding 32.25 27.60 24.57 23.15 21.58

TV 34.28 30.43 27.21 25.92 24.41

K-SVD 35.23 31.20 28.08 25.77 23.82

BM3D 36.36 32.48 29.32 27.52 25.47

Proposed approach 35.62 31.60 28.40 27.05 25.84

Flinstones Wavelet thresholding 30.09 24.66 20.72 19.08 17.70

TV 30.95 25.86 21.63 20.40 18.80

K-SVD 31.97 27.87 24.33 22.20 19.64

BM3D 32.27 28.25 24.98 23.20 21.26

Proposed approach 32.08 28.36 25.35 24.31 22.50

Bridge Wavelet thresholding 29.81 24.54 21.74 20.80 19.90

TV 29.55 25.64 22.85 22.05 21.17

K-SVD 30.87 26.04 23.10 22.10 21.09

BM3D 31.03 26.15 23.56 22.56 21.57

Proposed approach 31.25 26.57 23.98 22.87 21.70

Fingerprint Wavelet thresholding 30.55 25.11 20.86 19.52 17.72

TV 29.88 25.40 22.90 21.31 18.03

K-SVD 32.20 27.28 23.28 20.60 18.40

BM3D 32.19 27.38 24.32 22.84 21.23

Proposed approach 32.21 27.80 25.18 23.20 21.83

For each test setting, five results are provided: Wavelet thresholding, TV, K-SVD, BM3D, and our proposed model. The highest

PSNR values (best denoising results) are given in bold
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This is a simple quadratic term that has a closed-form solution of the form:

Wx̂ =

⎛

⎝λI +
∑

ij

RT
ij Rij

⎞

⎠

−1 ⎛

⎝λWy +
∑

ij

RT
ijDα̂ij

⎞

⎠ (25)

This expression says the averaging of the denoised patches and is called patches averaging

step. Given the updated, we can repeat the sparse coding stage, working on the already

denoised patches. Once this is done, a new averaging should be calculated, and so on,

and so forth. Finally, the satisfying α̂ij andWx̂ are obtained. In practice, the dictionary D

is unknown and we can get it by learning which is same to [23]. After fusion dictionary

learning in (23), we get the denoising model as follows:

{

α̂ij, D̂,Wx̂
}

= arg min
αij ,D,Wx

λ ‖ Wx − Wy ‖22 +
∑

ij

μij ‖ αij ‖0

+
∑

ij

‖ RijWx − Dαij ‖22 (26)

In this work, the K-SVD algorithm is used to learn and update the initial redundant DCT

dictionary, and Wyij is the training set. As so far, we can solve (26) as follows: (a) Given

the initial dictionary D and let Wx = Wy, then compute α̂ij by (21); (b) update initial

dictionary D to D̂ using K-SVD; and (c) compute Wx̂ by (25). Finally, let D̂ and Wx̂ are

the initial D andWx, then repeat the above process until getting the denoised imageWx̂.

As so far, we have finished the denoising process in the wavelet domain, the 2D inverse

Table 2 The SSIM results of the denoised images by different denoising schemes

Image Method σ = 10 σ = 25 σ = 50 σ = 70 σ = 100

Barbara Wavelet thresholding 0.8155 0.6022 0.4774 0.4185 0.2992

TV 0.8283 0.5996 0.5035 0.4997 0.4615

K-SVD 0.8996 0.7991 0.6410 0.5355 0.4453

BM3D 0.9112 0.8342 0.7193 0.6388 0.5390

Proposed approach 0.9608 0.9030 0.7938 0.7104 0.5977

House Wavelet thresholding 0.7100 0.5564 0.5012 0.4368 0.3518

TV 0.8125 0.7503 0.6783 0.6423 0.5865

K-SVD 0.8446 0.7555 0.6667 0.5856 0.4970

BM3D 0.8687 0.7755 0.7120 0.6628 0.5914

Proposed approach 0.9536 0.9044 0.8362 0.7738 0.6721

Flinstones Wavelet thresholding 0.8088 0.6614 0.4880 0.4151 0.3325

TV 0.8531 0.7568 0.5534 0.4814 0.4591

K-SVD 0.8697 0.7903 0.6935 0.6094 0.4830

BM3D 0.8686 0.8015 0.7272 0.6713 0.5920

Proposed approach 0.9391 0.8786 0.7978 0.7311 0.6294

Bridge Wavelet thresholding 0.8492 0.6197 0.3855 0.3141 0.2718

TV 0.8588 0.6824 0.5184 0.4204 0.3207

K-SVD 0.8813 0.6770 0.4642 0.3864 0.3271

BM3D 0.8900 0.7013 0.5161 0.4402 0.3710

Proposed approach 0.9252 0.7870 0.6394 0.5618 0.4783

Fingerprint Wavelet thresholding 0.9494 0.8462 0.6506 0.5507 0.4125

TV 0.9460 0.8620 0.7780 0.7084 0.3747

K-SVD 0.9647 0.8919 0.7411 0.5892 0.4160

BM3D 0.9636 0.8950 0.8043 0.7432 0.6600

Proposed approach 0.9701 0.9112 0.8276 0.7678 0.6690

For each test setting, five results are provided: wavelet thresholding, TV, K-SVD, BM3D, and our proposed model. The highest SSIM

values (best denoising results) are given in bold
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discrete wavelet transform is used to get the restoration image x̂. The following sequence

defines our proposed algorithm:

Algorithm 1Wavelet denoising approach based on unsupervised learning model

Step 1 Choose a suitable wavelet basis, use a 2D discrete wavelet

transform on the noisy image y and getWy.

Step 2 Do the following operations forWy.

2.1 Choose the parameters: λ-Lagrange multiplier, C-noise gain, k-

number of atoms, n-size of patches and J-number of training itera-

tions.

Initialization: SetWx = Wy,D =redundant DCT dictionary and p = 0

as the counter of loop.

2.2 Use OMP to compute coefficients α̂ij ∈ Rk×1 for each patch by

solving (21).

2.3 Update the dictionary. For each column l = 1, 2, · · · , k in D, as a

atom of dictionary, update it by the following steps:

• Find the set of patches that use this atom, wl =
{

[ i, j] | α̂ij(l) 	= 0
}

• For each index [ i, j]∈ wl, compute its representation error:

elij = RijWx −
∑

m 	=l

dmα̂ij(m) (27)

• Set El as the error matrix whose columns are (elij)[i,j]∈wl
∈ Rn×|wl|

• Apply SVD decomposition El = U�VT , where U =
(u1,u2, · · · ,un), � = diag(σ1, σ2, · · · , σn), σ1 ≥ σ2 ≥ · · · ≥ σr >

σr+1 = · · · = σn = 0 are singular values and V = (v1, v2, · · · , v|wl|).

Set d̂l = u1 and
{

α̂ij(l)
}

(i,j)∈wl
= σ1.v

T
1 . Updating all dl, we get updated

dictionary D̂ =[ d̂1, d̂2, · · · , d̂k].
2.4 Set D = D̂ in (25), and then computeWx̂.

2.5 Set p = p + 1. If p = J , go to Step 3. If not , set Wx = Wx̂ and

D = D̂ in (26) and turn to step 2.2.

Step 3 Use 2D inverse discrete wavelet transform on Wx̂, to get the

denoised image x̂.

3 Results and discussion

In this section, we aim to demonstrate the advantages and the performance that our

proposed wavelet denoising approach based on unsupervised learning model has.

Our proposed algorithm is evaluated and compared with four representative and state-

of-the-art denoising algorithms: the wavelet thresholding approach for image denoising,

the sparse representation-based K-SVD denoising method in the image domain, the TV

denoising method, and the BM3D denoising method.

In our experiments, we choose five well-known images as test images, including “Bar-

bara,” “House,” “Flinstones,” “Bridge,” and “Fingerprint.” Each image is contaminated by
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adding zero-mean white Gaussian noise with various deviations. These following param-

eters are used in our proposed method: for the choice of the best wavelet basis, we

test several wavelets under each noise level for all images and take the results with the

highest PSNR for comparison, as a result, for the wavelet transform and inverse wavelet

transform, we choose the Coiflet wavelet transform (MATLAB ’coif ’) for the two images:

“House,” “Fingerprint,” and Symlet wavelet transform (MATLAB ’sym’) for the rest of

images, the size of patches n = 64, the number of dictionary elements k = 256, the

Lagrange multiplier λ = 30/σ , and the noise gain C = 1.15.

Fig. 5 Denoising performance comparisons of “Barbara” with the noise deviation σ = 10 by different

methods. a Noisy image. b Denoised image by wavelet thresholding. c Denoised image by TV. d Denoised

image by K-SVD. e Denoised image by BM3D. f Denoised image by the proposed method
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Since we evaluate denoised images with the measures of the PSNR and SSIM index, the

formulas of the PSNR and SSIM are also given. The PSNR is estimated based on the mean

square error (MSE) as:

MSE = 1

N1N2

N1
∑

i=1

N2
∑

j=1

[

I1(i, j) − I2(i, j)
]2

(28)

PSNR = 10 × log

(

2552

MSE

)

(29)

Fig. 6 Denoising performance comparisons of “House” with the noise deviation σ = 10 by different

methods. a Noisy image. b Denoised image by wavelet thresholding. c Denoised image by TV. d Denoised

image by K-SVD. e Denoised image by BM3D. f Denoised image by the proposed method
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where I1 and I2 denotes two images of size N1 × N2, I1(i, j) represents the pixel value on

the ith row and jth column of I1. The SSIM index is defined as:

SSIM(I1, I2) = (2μI1μI2 + C1)(2σI1I2 + C2)

(μ2
I1

+ μ2
I2

+ C1)(σ
2
I1

+ σ 2
I2

+ C2)
(30)

where μI1 and σI1 denote the average gray values and the variance for I1, σI1I2 represents

the covariance between the two images I1 and I2, and the symbolsC1 andC2 are two small

Fig. 7 Denoising performance comparisons of “Barbara” with the noise deviation σ = 50 by different

methods. a Noisy image. b Denoised image by wavelet thresholding. c Denoised image by TV. d Denoised

image by K-SVD. e Denoised image by BM3D. f Denoised image by the proposed method
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constants [43]. The higher the value of PSNR or SSIM, the closer is the denoised image I2

to the original image I1, hence the more accurate is the denoising.

The comparison of quantitative results is shown in Tables 1 and 2. A visual comparison

is shown in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16.

Let’s first see the PSNR and SSIM results by different methods on the five test images.

The statistical results of the five methods are given in the PSNR measure in Table 1.

The results show that the proposed method outperforms the three denoising methods:

Fig. 8 Denoising performance comparisons of “Barbara” with the noise deviation σ = 70 by different

methods. a Noisy image. b Denoised image by wavelet thresholding. c Denoised image by TV. d Denoised

image by K-SVD. e Denoised image by BM3D. f Denoised image by the proposed method
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Fig. 9 Denoising performance comparisons of “House” with the noise deviation σ = 50 by different

methods. a Noisy image. b Denoised image by wavelet thresholding. c Denoised image by TV. d Denoised

image by K-SVD. e Denoised image by BM3D. f Denoised image by the proposed method

wavelet thresholding, TV, and K-SVD, in all cases. Compared to the BM3D, for the two

images: “Barbara” and “House”, the proposed method has the lowest PSNR value under

some noise level variations, but for the rest of images, the proposedmethod has the higher

PSNR measures than BM3D. The statistical results of the five methods are also recorded

in the SSIM measure as shown in Table 2. Based on these results, we can deduce that our

proposed method is always better than the other denoising methods, which assures the

efficiency of our algorithm.
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Fig. 10 Denoising performance comparisons of “House” with the noise deviation σ = 70 by different

methods. a Noisy image. b Denoised image by wavelet thresholding. c Denoised image by TV. d Denoised

image by K-SVD. e Denoised image by BM3D. f Denoised image by the proposed method

Let us then focus on the visual quality evaluation of these denoising algorithms. We

take two example images: “Barbara” and “House”, to show that although BM3D has higher

PSNR measures than the proposed method under some noise level variations for these

two images, the proposed method has better visual quality than the BM3D method. To

show the performance under different levels of noise, for the two images: “Barbara” and

“House”, we show the results under low-level noise with standard deviation σ = 10 and
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Fig. 11 Denoising performance comparisons of “Flinstones” with the noise deviation σ = 10 by different

methods. a Noisy image. b Denoised image by wavelet thresholding. c Denoised image by TV. d Denoised

image by K-SVD. e Denoised image by BM3D. f Denoised image by the proposed method

high-level noise with σ = 50 and σ = 70. For the rest of images, we show the denoising

results with the noise deviation σ = 10 and σ = 70, by different methods. The Figs. 5,

6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16 demonstrate the denoising results produced by the

proposed method and the state-of-the-art denoising methods: wavelet thresholding, TV,

K-SVD, and BM3D. The results show that under low-level noise with σ = 10, the denoised

images by the proposed method and the BM3Dmethod are very similar in real visual per-

ception, and they have much better visual quality than all the other methods. Under high
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Fig. 12 Denoising performance comparisons of “Flinstones” with the noise deviation σ = 70 by different

methods. a Noisy image. b Denoised image by wavelet thresholding. c Denoised image by TV. d Denoised

image by K-SVD. e Denoised image by BM3D. f Denoised image by the proposed method

noise levels, the results show that the edges are well preserved, the textures and more

details are better restored, and least artifacts exist in the result of our proposed method.

The performance of the wavelet thresholding approach, the K-SVD, and the TV denois-

ing method is the worst in various noise levels; it is easy to see that the restored images

contain too many artifacts, the image edges and flat areas are blurred, and a number of

details and textures are lost. It also found in the experiments that the proposed method

has much better visual quality than the BM3D method that produces too many artificial

ringing effects which are caused by stacking the image blocks and erroneous grouping.
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Fig. 13 Denoising performance comparisons of “Bridge” with the noise deviation σ = 10 by different

methods. a Noisy image. b Denoised image by wavelet thresholding. c Denoised image by TV. d Denoised

image by K-SVD. e Denoised image by BM3D. f Denoised image by the proposed method

Depending on the size of the image, the execution of the main proposed algorithm

requires an average of 17 s to 2 min on Intel(R) Core(TM) i3-2330M CPU 2.20 GHz com-

puter. The average time required by the other algorithms to complete their executions

is given as follows: the wavelet thresholding approach for image denoising: 2 to 5 s, the

sparse representation-based K-SVD denoisingmethod in the image domain: 15 s to 2min,

the TV denoisingmethod: 12 to 30 s, and the BM3D denoisingmethod: 5 to 15 s. The pro-

posed algorithm is slower than the other denoising methods, due to the use of the K-SVD

as a dictionary learning algorithm that needs many iteration steps.
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Fig. 14 Denoising performance comparisons of “Bridge” with the noise deviation σ = 70 by different

methods. a Noisy image. b Denoised image by wavelet thresholding. c Denoised image by TV. d Denoised

image by K-SVD. e Denoised image by BM3D. f Denoised image by the proposed method

Our proposed method performs better than the state-of-the-art denoising methods,

due to themerits of the wavelet transform and to the use of an adaptive dictionary devoted

to noise reduction instead of using the thresholding operator.

4 Conclusion

We propose in this work a new method for image denoising. The approach taken aims

at exploiting the merits of the wavelet transform: sparsity, multi-resolution structure,

similarity with the human visual system, and good localization properties both in space
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Fig. 15 Denoising performance comparisons of “Fingerprint” with the noise deviation σ = 10 by different

methods. a Noisy image. b Denoised image by wavelet thresholding. c Denoised image by TV. d Denoised

image by K-SVD. e Denoised image by BM3D. f Denoised image by the proposed method

and frequency, to adapt an unsupervised dictionary learning algorithm for creating a

dictionary devoted to eliminate the useless information while keeping most significant

ones. Experiments illustrate that the proposed method achieves a better performance

than some other well-developed denoising methods, especially in PSNR, SSIM index, and

visual effects. In future work, we will be focusedmore on reducing the computational cost

of the proposed model.
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Fig. 16 Denoising performance comparisons of “Fingerprint” with the noise deviation σ = 70 by different

methods. a Noisy image. b Denoised image by wavelet thresholding. c Denoised image by TV. d Denoised

image by K-SVD. e Denoised image by BM3D. f Denoised image by the proposed method
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