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Abstract—This paper describes the development and testing of
a wavelet-like filter, named the SNAP, created from a neural ac-
tivity simulation and used, in place of a wavelet, in a wavelet trans-
form for improving EEG wavelet analysis, intended for brain-com-
puter interfaces. The hypothesis is that an optimal wavelet can be
approximated by deriving it from underlying components of the
EEG. The SNAP was compared to standard wavelets by measuring
Support Vector Machine-based EEG classification accuracy when
using different wavelets/filters for EEG analysis. When classifying
P300 evoked potentials, the error, as a function of the wavelet/filter
used, ranged from 6.92% to 11.99%, almost twofold. Classification
using the SNAP was more accurate than that with any of the six
standard wavelets tested. Similarly, when differentiating between
preparation for left- or right-hand movements, classification using
the SNAP was more accurate (10.03% error) than for four out of
five of the standard wavelets (9.54% to 12.00% error) and interna-
tionally competitive (7% error) on the 2001 NIPS competition test
set. Phenomena shown only in maps of discriminatory EEG ac-
tivity may explain why the SNAP appears to have promise for im-
proving EEG wavelet analysis. It represents the initial exploration
of a potential family of EEG-specific wavelets.

Index Terms—Brain-computer interface (BCI), data-specific
wavelets, electroencephalography (EEG), pattern classification,
pattern recognition, time-frequency representations, wavelet
analysis.

I. INTRODUCTION

HUMAN SCALP electroencephalographic measurements
(EEGs) are one way to peer into the activity of the brain.

There are several distinct neural rhythms found in EEGs which
are created by subsystems of different sizes [1]. Accurate inter-
pretation of EEGs, optimally on a single-trial basis, is critical for
such applications as brain-computer interfaces (BCIs). When
many trials are averaged together, there is often a characteristic
waveform that can be recognized. However, on a single-trial
basis that characteristic waveform is often too far below the
noise floor to be observed.

The original goal of this research was to create an EEG-clas-
sification algorithm for eventual use in a BCI. The focus of this
paper is an EEG-specific wavelet-like filter that was created with
the hope of optimizing EEG signal analysis and thus improving
classifier and eventual BCI performance. This paper describes
the creation of a filter for use in place of a wavelet in EEG
wavelet analysis and documents, through extensive testing, its
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performance compared to standard wavelets. The platform for
comparison, the EEG-classification algorithm that was the orig-
inal goal, is also described.

A. Context for Wavelet-Like Filter Creation

From the standpoint of developing a classification algorithm,
performance depends on the signal analysis, feature selection,
and classification methods used. The EEG-classification algo-
rithm used in this paper employs the discrete wavelet trans-
form (DWT) for signal analysis. The wavelet transform’s output
can be significantly affected by the choice of wavelet (the basic
waveshape) with which the signal is analyzed [1]–[3]. As a re-
sult, the choice of wavelet can also have a significant impact
on the quality of the results with regard to the classifier, which
takes the wavelet coefficients as input features. There is no stan-
dard method for selecting the best wavelet, and some wavelets
are more appropriate than others for particular types of input
signals [4]–[7].

For example, the Haar (square wave) wavelet is more appro-
priate for analyzing a sum of square waves than any other stan-
dard wavelet; a single Haar coefficient from wavelet analysis, at
the right scale and time, can encode one entire cycle of a square
wave by itself [8].

“[L]ike a key designed to fit a lock, the best analyzing func-
tion for a neuroelectric event is one that matches that event in
shape as closely as possible” [7]. This is also supported in [1].
One must average many trials to visually observe most known
neuroelectric events, such as the P300 evoked potential; they
are rarely observed in single-trial data. Therefore, instead of de-
signing a filter for single-trial analysis that matches a specific
neuroelectric event, the goal of this work is to create a filter that
matches the neural activity underlying the neuroelectric events.
This is consistent with the view of [9] that, when considering
which wavelet to use, it is important to take the input signal’s
underlying structure into account. A wavelet that encapsulates
the “underlying component structure” has not yet been docu-
mented in the literature [7]. Samar, Swartz, and Raghuveer [1]
state that one could potentially improve system performance
(i.e., EEG classification) through wavelet shape manipulation.
Such a filter could possibly produce superior classification per-
formance across many different tasks and their associated neu-
roelectric events.

The filter developed in this paper is created from a simple
model of neural activity. It is not wavelet shape manipulation [1]
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but creation, based on a model to give the resulting filter mean-
ingful properties. It is designed to correspond with a general os-
cillation of neuronal activity, presumed to be a basic underlying
component of EEGs. The waveshape generated by the model of
neural activity was, after minor adjustments, a wavelet-like filter
usable in the Matlab DWT [10].

B. EEG-Classification Algorithm (The Platform)

Before using the algorithm described in this paper as a plat-
form for comparing wavelets, it was necessary to validate its
ability to classify EEGs with reasonable accuracy regardless of
the wavelet used. By applying the algorithm to the data of the
Neural Information Processing Systems (NIPS) BCI Workshop
Data Competition [11], it was possible to directly compare its
performance to that of algorithms that had been entered into
the competition. Its performance was internationally competi-
tive and is documented in the RESULTS.

The algorithm first performs signal analysis on the data using
a wavelet transform. Wavelet analysis produces a multiresolu-
tion measurement of energy across time and frequency, and is
therefore well suited for transient signals like those in EEGs. It
essentially finds correspondences between the input signal and a
wavelet (a filter with very specific mathematical properties): the
wavelet’s length is dilated to measure correspondence with dif-
ferent frequency bands and shifted to measure correspondence
with the signal in different regions of time.

Once the signals are analyzed using a wavelet transform, a
subset of the wavelet coefficients is selected for input into the
classifier. In this EEG-classification algorithm, the criterion is
discriminability. Discriminability is a standard statistical mea-
sure of how well a feature indicates which class the EEG signal
belongs to; it measures the relative overlap of the two classes’
distributions of values for that feature [12]. It is defined in (1) as

(1)

where refers to discriminability, refers to the mean of a dis-
tribution, and refers to the standard deviation of a distribution.
Subscripts identify the class.

The selected features from the signal analysis are then used
to train the classifier. In this EEG-classification algorithm, a
Support Vector Machine (SVM) with a polynomial kernel was
chosen as the classifier. The SVM parameter settings are de-
termined through a grid search, performed by finding the algo-
rithm’s tenfold cross-validation error for every combination of
parameter values within the ranges considered (see Section I-C
below and Section V-D of WAVELET COMPARISON THROUGH

PATTERN CLASSIFICATION). The parameter settings that yielded
the least cross-validation error were used.

C. Background on Methods Employed in the Platform
Algorithm

Wavelet analysis was chosen because of its property of mul-
tiresolution. The Fourier Transform (or Fast Fourier Transform,
the FFT) is an example of an analysis method without this prop-
erty [1]. For example, one must use a relatively short window of
FFT analysis to clearly observe the relatively short P300 evoked
potential in the EEG and a relatively long window of analysis

to clearly observe the relatively long Bereitschaftspotential in
the EEG. By separating the signal into “packages” in which dif-
ferent levels of detail (scale/frequency) are prominent, it is pos-
sible to look at all levels at once, each at the appropriate resolu-
tion [1]. This is done in wavelet analysis.

The classifier employed in the EEG-classification algorithm,
a polynomial SVM, combines high-dimensional embedding
and maximum margin hyperplane optimization [13]. Maximum
margin optimization is a way to optimize a hyperplane: the
hyperplane is adjusted to be in between but as far as possible
from the training examples that are closest to those of the
other class [13]. Some general rules cannot be expressed as a
straight line or hyperplane, but it is much harder to optimize a
curvy boundary than a straight/planar one. High-dimensional
embedding is a way to optimize a curvy boundary using planar
boundary optimization techniques; it expands the dimensions
of the feature space by adding dimensions that are the products
of the original dimensions [13].

This polynomial SVM uses a kernel, which is a similarity
measure between the feature vectors of two tokens. It is defined
in (2), where represents the index of the token from class A,
represents the index of the token from class B, and indicates
the parameter value that sets the amount of high-dimensional
embedding [52]

(2)

The total number of dimensions in the new space is deter-
mined by the highest degree of the variable, which, in (2), is the
result of the dot product after expanding the binomial. The de-
gree parameter sets the number of times that binomial is multi-
plied by itself to achieve its fully expanded state. In this new fea-
ture space, the hyperplane is optimized using maximum margin
optimization. When converted back into the original space, it
still separates the tokens as it did when optimized, even though
the tokens may not be as linearly separable as they were in the
higher-dimensional feature space [13]. Though the polynomial
SVM can create very nonlinear decision boundaries, it becomes
a linear classifier when the degree parameter is set to one.

SVMs theoretically determine the hyperplane’s position
without local minima through the use of convex optimization
for a given set of “hyperparameters” [14]. The hyperparameters,
hereafter simply referred to as parameters, are the degree and
regularization parameters that control the balance between the
hyperplane’s complexity and its specificity to the given training
data [14]. Yet there are local minima in the SVM’s performance
as those parameters are varied. Generally, a grid search is
employed to find the best combination of parameter values
[14]. The SVM’s performance is recorded in a matrix as each
combination of parameters’ values is tried, within set limits
[14]. Valid statistical methods for assessing SVM performance
include cross-validation, bootstrapping, and forward prediction
[15]. Tenfold cross-validation was chosen for the described
EEG-classification algorithm.

There are more advanced methods for determining the best
combination of parameter values. Through approximations or
heuristics, these methods attempt to circumvent extensive pa-
rameter searches [16], but the variations in SVM performance
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can be very hard to predict (see Section V-D of WAVELET

COMPARISON THROUGH PATTERN CLASSIFICATION). The pa-
rameter settings can have a significant impact on overall
performance.

II. RELATED WORK

A. Optimizing EEG Wavelet Analysis

Finding or creating the optimal wavelet for EEG analysis, or
any particular type of signal, has been the subject of much in-
vestigation. The method that most closely resembles that which
is used in this paper is found in [7], [17], [18] and demon-
strated in [19]. This method involves the construction of a Meyer
wavelet; the difference in spectrum between this constructed
wavelet and the neuroelectric waveform of interest is minimized
via least-squares [7]. DWT high- and low-pass filters are then
derived from the constructed wavelet such that any signal can be
analyzed with this matched Meyer wavelet using the DWT [7].
It should be most appropriate for signals with waveforms sim-
ilar to the waveform the wavelet was originally made to match.
The method presented in this paper differs in that, instead of
constructing a wavelet that matches a particular signal’s wave-
form, a wavelet is designed to match the underlying activity of
neuroelectric waveforms (and thus less specific to any one type
of waveform).

Others have constructed wavelets using fractal interpolation
functions [20] or by creating “super-wavelets” from linear com-
binations of standard wavelets [21]. It was demonstrated that
super-wavelets can be produced with waveshapes very closely
matched to those of the signal being analyzed [21]. Note that
these super-wavelets do not necessarily conform to the require-
ments of a filter usable in the DWT.

The matching pursuit technique is another method for decom-
posing a signal using waveforms that are similar to those of the
signal being analyzed [7]. This technique finds the weighted
combination of waveforms (or “atoms”) that is closest to the
input signal using a predefined waveform library [7], [17]–[19],
[22]. The flexibility can become a disadvantage, though [7]. In-
stead of using one waveform that is specifically related to the
activity of interest, any waveform in the library may be used
[7]. And if the dominant activity in any particular signal is noise,
the library waveform that most closely resembles that noise will
likely dominate the output of the analysis [7]. If the waveform
that most resembled the activity of interest were the only wave-
form in use, perhaps it would have picked out the activity of
interest without being as affected by the noise [7]. More infor-
mation on library-based methods and adapted waveforms can
be found in [23].

Other approaches to the problem of choosing or creating a
wavelet include the examination of the wavelet’s properties,
such as its frequency selectivity, degree of regularity, and how
many vanishing moments it has [4].

B. Signal Analysis, Feature Selection, and Classification

There is a wide variety of signal analysis methods currently
in use in BCI-oriented EEG-classification algorithms; these
methods have a large effect on the overall performance [24].
Autoregressive (AR) model parameters, Principal Component

Analysis (PCA), Independent Component Analysis (ICA),
common spatial pattern analyses, temporal filtering, power
spectral density, temporal and spatial filtering, and wavelet
analysis are all documented in the literature [24]–[30]. Once
the signals are analyzed using the signal analysis method(s), it
is often necessary to select a subset of the analysis’s output for
input into a classifier. For instance, a learning vector quantizer
(LVQ) has been used to select electrodes and frequency bands
[29], [31]. Also in the BCI literature, many different methods
have been used for classification, such as linear and nonlinear
discriminant analysis, supervised neural networks, and SVMs
[29], [30], [32]–[34].

C. Current BCI Systems’ Accuracies

There are several types of signals or features evident in EEGs
that have been used to transmit information through BCIs. They
are well represented by the datasets available through the past
two BCI dataset competitions, the 2001 Neural Information Pro-
cessing Systems (NIPS) BCI Workshop Data Competition [11],
[35] and the 2003 BCI Competition [36]. EEG-classification al-
gorithms are applied to these datasets with the task of differen-
tiating between classes of signals and/or determining the sub-
jects’ intent.

1) Algorithms’ Accuracies for EEG Differentiation: Both
competitions included differentiation between left- and
right-hand movements of some nature, either actual or imag-
inary. The movements (real or imagined) can be detected by
the associated event-related synchronizations and resynchro-
nizations (ERS and ERD) of the mu/beta rhythms [29]. In
the first competition, error on actual hand movements ranged
between 4% and 46%, with a mean of 16%. For this type of
task, the expected error was 50% if classification had been
made by chance. When the same task was addressed in the
second competition, error ranged between 16% and 49%, with
a mean of 32%. For the third dataset, it was the same task but
with imagined instead of actual hand movements, and data was
available from nine different subjects [11], [37]. Across all nine
subjects, the competition entrants’ results ranged from 12% to
40%, with a mean of 28% [11], [37].

Another general area of focus has been the self-regulation
of slow cortical potentials (SCPs) and mu/beta rhythms. For
this task, a cursor’s movement is based on these potentials
or rhythms, and the subject learns to self-regulate them (e.g.,
their amplitude) as he/she learns to move the cursor toward
specific targets [29]. The algorithm is applied to interpret the
EEG and determine which target the subject was intending to
move the cursor toward [11], [36]–[38]. Error on SCP differen-
tiation ranged from 11% to 49%, with an average of 22% [36],
[38]. This particular task also had an expected error of 50%
if classification had been by chance. For the mu/beta rhythm
self-regulation, there were four possible targets; therefore the
expected error if classification had been by chance was 75%
[36], [38]. The entrants’ error ranged from 28% to 76%, with a
mean of 56% [36], [38].

The final common task for which a dataset was available was
determining which letter the subject was focusing on based on
his/her P300 evoked potentials to flashes of different columns
and rows of a matrix of letters [39]. Since testing on this dataset
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Fig. 1. (a) Matrix of letters to which the subject was responding. In this
image, the third row is being flashed. Courtesy of [46]. (b) P300 recognition
and nonrecognition responses.

is documented in this paper, there is a more detailed description
in the DATA AND SUPPORTING SOFTWARE section. Classification
by chance would give an expected error of 97% [36], [38]. All
competition entrants combined data from multiple evoked po-
tentials [36], [38]. Five entrants attained zero error and two reg-
istered 55% and 65% error [36], [38].

2) Established BCI Systems: The Wadsworth BCI system
developed by Wolpaw, McFarland, and their colleagues uses
mu/beta rhythm amplitude [29], [40]–[42]. The Graz BCI
system utilizes ERD and ERS of the mu/beta rhythms (pro-
duced by motor imagery) [29]. The BCI described in [43] uses
simple calculation tasks in addition to motor imagery [29].

III. DATA AND SUPPORTING SOFTWARE

Two public domain datasets of actual EEG data were used for
experimentation in this study: the EEG Self-Paced Key Typing
dataset [44], [45], from the Neural Information Processing Sys-
tems (NIPS) BCI Workshop Data Competition [11]; and the
P300 Speller Paradigm dataset [46], from the BCI Competition
of 2003 [36]. Both datasets enable a researcher to work with data
from a laboratory-quality EEG machine. It is also much easier
to compare algorithms when they have been tested on the same
set of data [15], [24]. These particular datasets are the basis of
much research.

All code for processing this data was developed in Matlab
[51], supplemented by the Matlab Signal Processing Toolbox
[25] and Matlab Wavelet Toolbox [10], Schwaighofer’s SVM
toolbox [52], and SNNAP, a neuron action potential simulator
[53].

A. P300 Letter Recognition Task

The P300 Speller Paradigm dataset [46] was designed for de-
velopment of a system that can interpret which letter the subject
is concentrating on, based on his/her P300 evoked responses
to flashed letters [39]. The subject’s EEG was recorded while
looking at a display of a 6 6 matrix of characters (see Fig. 1)
[39], [47], [48]. The subject concentrated on one specific letter
while rows and columns of this matrix were rapidly flashed one
at a time. The EEG reflects a detectable recognition response
when a flashed row or column contains the letter the subject is
concentrating on. Potentially, the subject could type by concen-
trating on letters in the flashing matrix one at a time. Each of the
six rows and six columns (the stimuli) were flashed in a random

Fig. 2. Average potentials on the C3 and C4 electrodes during (a) left-hand
movement and (b) right-hand movement.

order while the subject concentrated on one letter. To ensure
there was enough data for determining which letter the subject
was concentrating on, the twelve stimuli were each flashed, in
random order, a total of fifteen times before the subject moved
on to concentrate on the next letter. Therefore, for each letter,
there were fifteen responses to each stimulus. The letter the sub-
ject was concentrating on can be found by determining which
column and row elicited recognition responses.

To reduce the time necessary to train and test the algorithm
on the data, for each letter, the 15 responses to each stimulus
were averaged together; the classifier’s task was to differen-
tiate between these averaged recognition and nonrecognition
responses.

B. Left- versus Right-Hand Movements

The Self-paced Typing dataset [44] consists of EEG poten-
tials recorded from one subject, who pressed keys with either
the left or right hand in self-chosen order and timing. Only data
from the C3 and C4 electrodes were used; those two electrodes
are over the left and right hemispherical primary motor cortex,
where the largest Bereitschaftspotentials (BPs) occur (see
Fig. 2). The BP, also known as the readiness potential, is a
slowly increasing negative voltage [49], [50]. Its intensity is
greatest on the side of the brain that controls the hand about
to move. It precedes the voluntary initiation of movement and
is the known distinguishing characteristic between left- and
right-hand movements. The classifier’s task was single-trial
differentiation.

IV. CREATION OF A WAVELET-LIKE FILTER FOR

EEG ANALYSIS

A. Developing the Model of Underlying Neural Activity

A model was built to approximate the simplest underlying ac-
tivity in the brain, based on the hypothesis that this most basic
underlying neural activity was a propagating wave of depolar-
ization through a population of neurons. The model was con-
structed with consideration for how such activity would be mea-
sured by EEG electrodes.

While large ensembles of neurons bristle with voltage poten-
tials and chemical transmissions, the majority of the recorded
EEG signals are produced by potentials of one type of cell,
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Fig. 3. (a) Histogram of 10 000 normally distributed random numbers,
simulating the density of neuron firings over time. (b) The simulated neuron
action potential, showing the starting resting state, depolarization, natural
overshoot, and return to the resting state. (c) Time placement of neuron action
potentials using random numbers. (d) Sum of neuron action potentials after
shifting the resting level to zero.

the pyramidal cells [54]. These cells have apical dendrites that
are locally aligned and perpendicular to the brain’s surface,
generating electromotive forces that the electrode can pick up
[54]–[56]. Many neurons are interfaced with the pyramidal
cells by synapses along these apical dendrites [54]–[56]. As the
presynaptic neurons fire, postsynaptic potentials are generated
within local regions of the apical dendrite, creating differences
in voltage along its length and an electromotive field that an
EEG electrode above can pick up [54]–[56]. These apical
dendrites have the ability within themselves to generate action
potentials; the action potentials sustain synaptic currents that
would otherwise diminish into nonexistence [54]–[56]. Yet
most of the EEG is produced by pyramidal cells’ summated
synaptic potentials [54]–[56]. The shorter the interval between
presynaptic potentials, the more likely it is that the postsynaptic
potentials overlap in time, elevate the membrane potential past
the threshold, and initiate an action potential in the postsynaptic
cell [54].

It was hypothesized that, from the EEG electrode’s perspec-
tive, a wave of activity would first appear when the summa-
tion of postsynaptic potentials created dipoles and triggered ac-
tion potentials from the apical dendrites on the outer range of
the electrode’s region of sensitivity. This wave would stimulate
the surrounding neurons in the network, which would stimulate
even more neighbors, until it grew into a peak of activity and
then eventually died away, the wave of activity having passed
on to another region of the brain.

To model this, a neuron action potential was obtained from a
simulator, and ten thousand normally distributed random num-
bers were generated (see Fig. 3). The normal distribution was
chosen because the actual distribution was not known, and the
normal distribution is often assumed when that is the case. For
each random number, a simulated neuron action potential was
added to an array, its position in time determined by the random
number’s value. The result was a sum of ten thousand simulated

neuron action potentials; the density of firings was normally dis-
tributed over time.

Because of the possibility of using different distributions
and action potential types, there is the potential for a family of
wavelet-like filters that may have varying degrees of success
depending in part on the accuracy of the approximation (combi-
nation of distribution and action potential shape) and the nature
of the cortex or mental/physical task to which it is applied.

B. Conforming to the Requirements of a DWT Filter

The resulting array of simulated voltage samples over time
begins with a few action potentials, builds up to a peak, and
dies away according to a normal curve. In order to use this sum
of neuron action potentials as a filter in the Matlab DWT [10],
certain requirements had to be met [57]. The DWT uses two
filters to decompose signals: a low-pass (the scaling function)
and a high-pass (the wavelet).

The majority of the energy of the sum of neuron action poten-
tials belonged to the lower half of the spectrum, so it was trans-
formed into the low-pass filter, from which the high-pass filter
(its quadrature mirror filter) was calculated. To transform the
sum of neuron action potentials into a DWT low-pass filter, the
waveshape’s properties were adjusted to conform to the DWT
low-pass filter spectral, sum, norm, and length requirements.

The Daubechies 4 (Db4) low-pass filter’s waveshape was
similar to the sum of neuron action potentials, so it was chosen
as a guide during the transformation process [8]. The similarity
can be observed by comparing the overall shape of the sum
of neuron action potentials in Fig. 3(d) and the Db4 scaling
function (in the time domain) in Fig. 4(a). They both have
heavily damped single sine wave-like shapes.

Since the Db4 wavelet in the Matlab Wavelet Toolbox [10] is
eight samples long, the length of the sum of neuron action po-
tentials was also set to eight samples. The Db4 low-pass filter
has no energy in the highest-frequency bin of its FFT; there-
fore the energy in the highest-frequency bin of the eight-sample
sum of neuron action potentials was removed by taking its com-
plex FFT and setting the energy in the highest-frequency bin
of both the real and imaginary portions to zero. The inverse
FFT was applied to the modified spectrum to reconstruct the
waveform of the resulting low-pass filter. Its magnitude FFT
spectrum is shown in Fig. 5. By adjusting the filter’s ampli-
tude and sum, it was made to conform to the Matlab DWT
low-pass filter requirements of a sum of 1.0 and a norm of

. The final step before using the filter in wavelet anal-
ysis was installing it as a scaling function (low-pass filter) in the
Matlab Wavelet Toolbox [10], [57]. Once installed, the Wavelet
Toolbox calculates the filter’s quadrature mirror filter to obtain
its corresponding wavelet (high-pass). This pair of wavelet- and
scaling-function-like filters was named the Sum of Neuron Ac-
tion Potentials or SNAP filter (see Figs. 4 and 6).

Reference [58] describes wavelet-like filters as having a con-
stant , the proportion of filter bandwidth to center frequency.
During wavelet analysis, the wavelet is dilated to measure en-
ergy at different scales (frequency bands), but by definition, the
dilation does not change the shape of the wavelets/filters. There-
fore, they all retain a constant .
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Fig. 4. Wavelets in the time domain, including the final version of the new
filter labeled as “SNAP.” (a) Low-pass and (b) high-pass. Note: The Haar at the
scale shown has just two points.

Fig. 5. SNAP filter magnitude FFT spectrum.

The SNAP filter also conforms to all the DWT filter re-
quirements specified by the Matlab Wavelet Toolbox [10],
notably, having the appropriate spectral properties to be used as
a high-pass/low-pass pair for DWT or CWT decompositions,
even though it does not have other complex mathematical
properties that, for instance, enable standard wavelets to per-
fectly reconstruct the input signal. Therefore, though it is not
a wavelet, the SNAP filter is a wavelet-like filter that can be
used in a wavelet transform to analyze signals and produce
coefficients for use as features in a classifier.

Fig. 6. SNAP filter in the time domain.

C. Relevance of SNAP Filter to Different Scales of EEG
Wavelet Analysis

The SNAP filter is designed to correspond with a general os-
cillation of neuronal activity. Since there are several distinct
neural rhythms found in EEGs that are created by subsystems
of different sizes [1], this filter may perform well regardless of
scale. The possibility of developing scale-specific EEG filters is
addressed in Section VII.

V. WAVELET COMPARISON THROUGH

PATTERN CLASSIFICATION

There are many ways of evaluating a wavelet’s appropriate-
ness for a specific type of signal, and a very direct method
was used in this study. A classifier was trained and tested to
differentiate between EEG signals from two different classes,
such as left- and right-hand movements. The classifier identi-
fied the class of an EEG signal based upon its wavelet coef-
ficients. By training and testing the classifier using a different
wavelet to generate the coefficients each time, it is possible to
compare how effective the wavelets are, relative to each other.
The process comprises wavelet analysis, feature selection, and
SVM classification.

A. Preprocessing and Signal Analysis for P300 Letter
Recognition Data

The P300 Speller Paradigm dataset [46] is a continuous
stream of EEG data from a large array of electrodes. The Cz
electrode was chosen after reviewing the dataset’s documen-
tation, in which a chart displays high correlations between
signal variance at the Cz electrode and whether or not the
flashed row/column included the letter being concentrated on.
The documentation also includes a demonstration analysis that
employed data from just the Cz electrode.

Segments of data were extracted from the Cz electrode
stream; each segment was 600 ms long, beginning at the same
time as the onset of the flash of the stimulus. The segments
were separated into two groups, recognition and nonrecogni-
tion responses, based on the labels provided with the data. As
explained in DATA AND SUPPORTING SOFTWARE, each set of
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Fig. 7. P300 recognition and nonrecognition responses: (a) Average of all
recognition responses. (b) CWT analysis of the averaged signal above it.
(c) Average of all nonrecognition responses. (d) CWT analysis of the averaged
signal above it. (e) Discriminability map produced from the dataset. Note:
Discriminability is calculated from the wavelet coefficients of the individual
trials, not an averaged signal.

fifteen segments (responses) was averaged into one segment to
reduce the time necessary to train and test the classifier. These
averaged segments were then analyzed with a DWT (at the
maximum possible decomposition of seven scales), resulting
in a set of wavelet coefficients to be used as inputs for the
classifier.

B. Preprocessing and Signal Analysis for Left- versus
Right-Hand Movements

The Self-paced Typing dataset [44] is a collection of seg-
ments, each 1500 ms long and ending 120 ms before a keypress.
For each segment, the difference between the C3 and C4 elec-
trodes was calculated. This is referred to as the bipolar deriva-
tion (the first spatial derivative) [29]. It emphasizes the lateral
dissimilarity between EEG signals from the left and right motor
cortices, over which the C3 and C4 electrodes are positioned
[29]. The difference signals were then analyzed with a DWT (at
the maximum possible decomposition of ten scales), resulting
in a set of wavelet coefficients to be used as inputs for the clas-
sifier. The wavelet analysis of these difference signals did yield
coefficients with greater discriminability, defined in (1), than the
coefficients from wavelet analysis of the C3 and C4 electrodes
individually.

Fig. 8. Left- and right-hand movement data: (a) Average of all right-hand
movements. (b) CWT analysis of the averaged signal above it. (c) Average of
all left-hand movements. (d) CWT analysis of the averaged signal above it.
(e) Discriminability map produced from the dataset. Note: Discriminability is
calculated from the wavelet coefficients of the individual trials, not an averaged
signal.

C. Feature Selection

A subset of the wavelet coefficients (the coefficients pro-
duced by wavelet analysis) was selected as input (features)
for the classifier. Computational limitations affecting SVM
training constrained the maximum number of coefficients used
to approximately 100 (5% of the total number produced by
wavelet analysis of the Self-paced Typing dataset and 50% of
the total produced by wavelet analysis of the P300 dataset).
The coefficients were rank-ordered by discriminability, and
the classifier was trained on the coefficients with highest
discriminability, where was determined by the grid search
method described in Section V-D. There was no threshold for
the discriminability of selected coefficients.

In order to visualize the discriminability values, signals were
analyzed with the continuous wavelet transform (CWT). In con-
trast to the DWT, the CWT produces the same number of coeffi-
cients for each scale. The resulting coefficients can be arranged
in a matrix and plotted as an image in which the coefficients’
discriminability values are mapped to a color map. It produces
a “discriminability map” across frequency and time. The dis-
criminability maps in Figs. 7(e) and 8(e) show the regions of fre-
quency and time where coefficients with high discriminability
were located. Due to the clarity of CWT discriminability maps
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and the ease of their creation, DWT discriminability maps were
not made. Yet it is possible to create them.

Note: During cross-validation, as shown in the pseudo-code
in Section V-D, the features’ discriminabilities were calculated
from the cross-validation training set data only. This helped pre-
vent overfitting.

D. Pattern Classification

Once the features were ranked by discriminability, the clas-
sifier, a polynomial SVM, was trained and tested using tenfold
cross- validation on the data. To find the best parameter values, a
grid search, which is a standard method, was used. Cross-valida-
tion [13] was performed for every combination of values within
set ranges for the following parameters: the polynomial SVM
kernel’s degree, which sets the level of high-dimensional em-
bedding; the SVM cost parameter, which controls the classi-
fier’s specificity to the training data; and the number of fea-
tures used. For each combination of parameter values, 90% of
the signals were randomly chosen to serve as the training set.
The SVM was trained on the training set and tested on the re-
maining 10% of the signals (those not included in the training
set). This was repeated ten times for each combination of pa-
rameter values; the average error rate across all ten test sets
was recorded. Finally, the combination of parameter values with
which the SVM yielded the lowest cross-validation error rate
was recorded, along with the error rate itself.

The following pseudo-code outlines this SVM parameter grid
search.

• For degree 1 through 5
• For cost setting A through E
• For number of coefficients 1 through
100, skipping by 10
• For 10 cross-validation (CV) sets
• Create CV training and test set
• Calculate discriminability values
from CV training set

• Select features
• Train SVM on CV training set
• Forward CV test set through trained

SVM
• Calculate accuracy on CV test set

• End
• Average accuracy across all 10 CV

test sets
• End
• End
• End

Note that the SVM degree parameter’s range includes the de-
gree of one, at which the SVM is a linear classifier. Therefore,
the grid search method has the opportunity to select, based on
cross-validation error, either a linear decision boundary or the
most appropriate degree of nonlinearity.

With the goal of reducing the number of settings tried for
each parameter and thus reducing computation time, a series of
plots was made to observe whether some parameter values were
clearly superior to others. As demonstrated in Fig. 9, there is no

Fig. 9. Cross-validation error over SVM polynomial degree and cost settings,
using the SNAP wavelet and 21 coefficients on the self-paced typing dataset.

apparent trend toward better or worse cross-validation error for
any values of degree or cost. There were also no apparent trends
for the number of features used.

The process of calculating cross-validation error for each
combination of parameter settings was repeated for each
wavelet. Total computational time per wavelet was approxi-
mately eight hours on a Dell Inspiron 8200. The majority of
this time was consumed by the repeated training of the SVM.
It may be reasonable to assume that, after SVM training, which
would be done off-line anyway, this process could be applied in
a real-time system. The DWT, an algorithm with an efficiency
of , would be applied to the EEG data, and the fraction
of its output coefficients that was selected during training as
discriminable features would then be inputs to the trained SVM
[59]. The SVM would determine each new signal’s class by its
relationship to the SVM hyperplane, a relatively fast process
[32].

E. The Continuous Wavelet Transform (CWT) Experiment

Since the SNAP filter’s waveshape is most similar to that of
the Db4, and the Db4 was used as a guide during the SNAP
filter’s transformation into a DWT low-pass, an additional ex-
periment was conducted to test whether the process of creating
a filter based on action potentials had not, in effect, re-created
the Db4 wavelet or a variant of it.

The left- and right-hand movement data were preprocessed as
before, but CWT, not DWT, analysis was conducted. The dis-
criminability values for all the CWT coefficients were sorted
by value and plotted (see Section V-C). This was performed
once using the SNAP filter and once using the Db4. (The CWT
uses the high-pass counterpart of the filter/wavelet by defini-
tion.) The CWT was chosen because it measures the correspon-
dences between the wavelet/filter and the signal at many more
points in time and scale than the DWT. This increases the prob-
ability that the wavelet/filter will be compared with the signal at
the time and scale at which it matches the signal most closely.
If the discriminabilities of the Db4’s and SNAP’s CWT coeffi-
cients are very similar, then this would indicate that they them-
selves are very similar.

F. NIPS 2001 Brain-Computer Interface Workshop: Post
Workshop Data Competition

The EEG-classification algorithm was used to compare the
tested filter/wavelets’ relative effectiveness. To validate its use
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TABLE I
P300 LETTER RECOGNITION TASK

*The Haar’s associated error rate is not included in the range of errors
referenced in the abstract because it is such an extreme outlier.
Note: The set of wavelets tested on this dataset was expanded and altered
after testing was first performed on the left- and right-hand data. Specif-
ically, the Daubechies 2 (Db2) and Haar wavelets were added, and the
Symlet 3 (Sym3) wavelet replaced the Symlet 6 wavelet.

as a platform for wavelet comparison, its own efficacy was
compared to that of the six entries in the 2001 NIPS EEG
dataset competition [11]. The algorithm’s filter/wavelet was set
to the SNAP, and the SVM-related parameters (degree, cost,
and number of features) were set to the values recorded when its
lowest cross-validation error was attained. It was trained on all
the data (which had previously been split up into training and
test sets for cross-validation). The trained algorithm was then
tested on the official competition test set, data the algorithm
had never previously been trained or tested on.

VI. RESULTS

A. P300 Letter Recognition

The level of performance of each wavelet on the P300 letter
recognition task is summarized in Table I. The wavelets tested
are in order from best algorithm performance to worst.

The algorithm’s error rate, as a function of the wavelet/filter
used, ranged from 6.92% to 11.99%, almost twofold, when dif-
ferentiating between P300 recognition and nonrecognition re-
sponses to flashed letters. Using the SNAP filter, the algorithm
attained 6.92% error, better than that for any of the six standard
wavelets tested (7.14% to 11.99% error, excluding the seventh
wavelet, the Haar, at 50% error).

B. Left- versus Right-Hand Movement

The level of performance of each wavelet on the left- versus
right-hand movement task is summarized in Table II. The SNAP
filter, with which the algorithm attained 10.03% error, is ranked
second out of six standard wavelets, which ranged from 9.54%
to 12.00% error. The range of accuracy for this task is not as
great as for the P300 letter recognition task, but it is still pos-
sible to see the relative success of each wavelet. Across both
datasets a general trend may be observed; the SNAP filter or
Coif3 wavelet performed best, followed by the Biorthogonal,
Symlet, and Daubechies wavelets, in that order.

C. A CWT Coefficient Discriminability Value Comparison of
the Left- versus Right-Hand Movement Data

The discriminability values for the CWT coefficients were
sorted by value and plotted in Fig. 10, which shows that the
SNAP coefficients were consistently more discriminable than

TABLE II
LEFT- VERSUS RIGHT-HAND MOVEMENT TASK

Fig. 10. Discriminability values of the Db4 CWT coefficients are plotted with
a dotted line. The discriminability values of the SNAP CWT coefficients are
plotted with a dashed line.

the Db4 coefficients. The slope of the SNAP sorted-discrim-
inabilities graph was gentler than the Db4’s since the trend of
greater discriminability continued across virtually all SNAP
coefficients. The comparison of discriminability values of the
SNAP and Db4 CWT coefficients is another confirmation that
they are indeed distinct filters, despite the fact that the Db4 was
used as a guide during the SNAP filter’s transformation.

D. NIPS 2001 Brain-Computer Interface Workshop Post
Workshop Data Competition Results [11], [37]

When ranked by performance on the competition test set for
the left- versus right-hand movement dataset, the EEG-classifi-
cation algorithm described in this paper (which, for this test,
was using the SNAP filter) yielded an error rate of 7% (see
Table III). It was not a formal entry in the competition, but
its performance was only 2 percentage points behind the en-
tries from the NASA Ames Research Center and Tsinghua Uni-
versity and 3 percentage points behind the competition winner.
It was also 6 percentage points more accurate than the next most
accurate entry.

VII. DISCUSSION

The wavelet/wavelet-like filter utilized in the EEG-classifi-
cation algorithm had a marked effect on overall performance on
the datasets tested. The algorithm’s legitimacy as a platform for
wavelet comparison was validated by its internationally com-
petitive performance on the NIPS competition test set [11]. Of
the nine that were tested, the SNAP filter and the Coif3 wavelet
performed best and appear to be most appropriate for EEG anal-
ysis. The results are encouraging because the SNAP and Coif3
performed the best on two datasets (two different tasks and two
different subjects). One task is a voluntary movement and the
other involves the recognition response to a flashed column/row
of letters.

These two different tasks have substantially different types
of distinguishing characteristics that the SNAP and Coif3 were
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TABLE III
NIPS 2001 BCI POST WORKSHOP DATA COMPETITION

RESULTS ON THE COMPETITION TEST SET

used to encode into wavelet coefficients. The most obvious dis-
tinguishing characteristic for the left- versus right-hand move-
ment task is the BP, a steadily increasing difference in voltage
(nearly DC) across the two sides of the motor cortex. When
the P300 letter recognition task signals are averaged over many
trials, the prominent distinguishing characteristic is a positive
spike in voltage 300 ms after the flash.

Yet the discriminability maps [Figs. 7(e) and 8(e)] indicate
that there may be more complex phenomena that could not be
observed by other means of visualization. This is most evident
for the P300 data: unlike the single positive spike visible when
P300 data are averaged together, the discriminability map shows
two very distinct regions of discriminability from 250 to 340 ms
and from 430 to 520 ms after the flash. The discriminability map
for the left- versus right-hand movement data also shows regions
of discriminability other than that of the BP. The map shows
increasing discriminability in the lowest frequencies beginning
0.75 s before the onset of finger movement, which agrees with
the definition of the BP, but it also shows regions of discrim-
inability between 1.5 and 1.3 s before the onset of finger move-
ment. These additional phenomena, though visible in the dis-
criminability maps, may be too subtle to pick out in raw data.
They may also be averaged out of the averaged signals, even
though other distinguishing characteristics are more visible after
averaging (see Figs. 1(b) and 2). They may be still visible in
the discriminability maps because discriminability is calculated
from the wavelet coefficients of all the individual trials, not av-
eraged signals.

The SNAP and Coif3’s superior performances on both
EEG datasets may indicate that they are particularly suited to
encoding, not specific distinguishing characteristics like P300
recognition responses or BPs, but the underlying activity of
which they are composed. Wavelets and wavelet-like filters that
are well suited to encoding the underlying activity of EEGs
are of value because such filters would then, presumably, be
effective at encoding any distinguishing characteristic made up
of such underlying activity. This general applicability may be
much more desirable than having a particular filter or wavelet
that is only appropriate for encoding, for instance, BPs, espe-
cially since the discriminability maps indicate that there are
more distinguishing characteristics than those that are already
well-known. Encoding all the distinguishing characteristics is
critical since they are what the classifier relies on to determine
to which class an EEG signal belongs. EEG data may generally
be made up of underlying activity that the SNAP and Coif3
may be particularly well suited to encode.

The one complicating factor is that the two datasets were pre-
processed such that the voluntary movement data were actually
the difference between two electrodes, and the P300 data were
actually the average of several responses to flashes. Therefore,
the data that were analyzed still included the underlying activity,
but not in its original form. Despite this, the SNAP and Coif3’s
performances were consistently superior to those of the other
tested wavelets. The SNAP and Coif3’s performances were also
too close for meaningful comparison to each other.

Because of the SNAP filter’s effectiveness on both datasets,
the data does not disprove the hypothesis that, due to its neu-
ronal-model-derived shape, the SNAP filter may have a connec-
tion to the underlying neural activity that produces the poten-
tials associated with both voluntary motor tasks and visual tasks.
Furthermore, this model of neural activity was not optimized in
any way to maximize the SNAP filter’s performance. One could
perform a grid search (similar to finding the best settings for the
SVM parameters in this study) across a range of neuron action
potential types and distributions to optimize the model and pro-
duce more effective versions of this filter. There is a possibility
of finding versions that are particularly well suited for certain
cortices, time scales, and/or mental tasks. The model of neural
activity used in this study was not designed for any specific size
or type of network of neurons.

The results are even more intriguing when one compares the
original intention and the end result. The original intention was
to create a filter that could be used in place of a wavelet in wavelet
analysis and that matched the underlying activity of the brain.
For DWT analysis, two filters are needed, a high-pass (wavelet)
and a low-pass (scaling function). And though both filters are
integral to the analysis, most of the resulting DWT coefficients
are calculated directly using the high-pass (wavelet) and only
indirectly from the low-pass (scaling function). Therefore, one
would ideally make the high-pass filter into the filter that matched
the underlying neural activity. Yet the sum of neuron action po-
tentials could only serve as the low-pass filter (scaling function)
due to its spectral properties. Therefore, when using the SNAP
filter pair, the majority of the coefficients are produced not by the
low-pass filter derived from the sum of neuron action potentials,
but by its quadrature mirror filter, the SNAP high-pass.
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Despite this reversal, the data indicated that the SNAP filter
pair was one of the most appropriate of those tested for EEG
analysis. One possible explanation is that when the signal is
decomposed into the approximations and details, the sums of
neuron action potentials are preserved in the approximations
and, since the detail filter (wavelet) is a high-pass filter, the on-
and offsets of the sums (looking at the summations essentially as
pulses) are encoded, though less efficiently, in two or more detail
coefficients. Since wavelet analysis is inherently a multiresolu-
tion analysis, the sums of neuron action potentials occurring on
different time scales could be isolated at different scales of the
wavelet analysis.

Potentially, the SNAP filter could be the first of an entire
family. It may be possible to construct filters from a variety of
neuronal models. There may even be models that could serve as
the high-pass filter for the creation of a high-pass matched filter
pair, in which the high-pass is the filter that matches the under-
lying EEG components.

Interestingly, the wavelet packet decomposition algorithm
uses both the high- and low-pass filters to directly calculate
output coefficients [57]. Therefore, regardless of whether the
sum of neuron action potentials is transformed into the scaling
function or wavelet, the wavelet packet algorithm would be
able to utilize the direct correspondence between the signals
and the EEG-component-matching filter of the pair. Employing
the SNAP filter in wavelet packet analysis would then make
the frequency-inverted relationship no longer an issue. Even
if a neuronal model produces a waveform best suited for a
bandpass filter but which cannot be utilized in the DWT, like
the Mexican Hat wavelet [8], it could potentially be employed
in the continuous wavelet transform.

Additionally, even though wavelets are constrained to having
the same shape for every scale, variations of the neuronal model
may be particularly applicable to certain scales of EEG decom-
position and analysis. One could construct a filter bank in which
each scale is analyzed using a filter specifically designed for
that time scale. The successful creation of new filters and filter
banks may be a way to further probe the neuronal mechanisms
behind the EEG, explore data-specific wavelet-like filters, and
yield better EEG analyses for pattern classification in applica-
tions like BCIs.
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