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Abstract
The symmetry energy describes how the energy of nuclear matter rises as
one goes away from equal numbers of neutrons and protons. This is very
important to describe neutron rich matter in astrophysics. This article reviews
our knowledge of the symmetry energy from theoretical calculations, nuclear
structure measurements, heavy-ion collisions, and astronomical observations.
We then present a roadmap to make progress in areas of relevance to the
symmetry energy that promotes collaboration between the astrophysics and the
nuclear physics communities.
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1. Introduction

The liquid-drop formula of Bethe and Weizsäcker [1, 2] models the nucleus as an
incompressible quantum drop consisting of Z protons, N neutrons, and mass number A = Z+N.
In particular, the nuclear binding energy is expressed in terms of a handful of empirical
parameters that capture the physics of a quantum drop. That is,

B(Z, N) = aV A − aSA2/3 − aC
Z2

A1/3
− aA

(N − Z)2

A
+ · · · . (1)

The volume term aV represents the binding energy per nucleon of a large symmetric drop
in the absence of long-range Coulomb forces. In turn, the next three terms denote binding-
energy corrections resulting from the development of a nuclear surface, the Coulomb repulsion
among protons, and the Pauli exclusion principle and strong interactions that favor symmetric
(N = Z) systems. Although refinements to the mass formula have been made to account for the
emergence of nuclear shells, the structure of this 75 year-old formula has remained practically
unchanged.

In the thermodynamic limit in which both the number of nucleons and the volume are
taken to infinity but their ratio remains fixed at the saturation density, the binding energy per
nucleon may be written as

ε(α) ≡ −B(Z, N)

A
= −aV + Jα2, (2)

where J ≡ aA and α = (N − Z)/A is the neutron–proton asymmetry. Note that we have
neglected long-range Coulomb forces (which would render the drop unstable) and have
assumed that both Z and N are individually conserved. Such a simple expression suggests
that the binding energy per nucleon of a large symmetric drop of density ρ0 ≈ 0.15 fm−3 is
aV ≈ 16 MeV and that there is an energy cost of J ≈ 32 MeV in converting all protons into
neutrons. However, in reality the liquid drop is not incompressible, so the semi-empirical mass
formula, while highly insightful, fails to describe the response of the liquid drop to density
fluctuations. This information is contained in the equation of state (EOS) which dictates the
dependence of the energy per nucleon on both the density and the neutron–proton asymmetry9.
Following equation (2), we may write the EOS of asymmetric matter as

E (ρ, α) = E (ρ, α = 0) + S(ρ)α2 + · · · (3)

where E (ρ, α = 0) is the EOS of symmetric nuclear matter and S(ρ) is the symmetry energy:

S(ρ) ≡ 1

2

(
∂2E (ρ, α)

∂α2

)
α=0

≈ E (ρ, α = 1) − E (ρ, α = 0). (4)

Although the value of the symmetry energy at a density of ρ ≈ 0.1 fm−3 is fairly well
constrained by the masses of heavy nuclei, at present its density dependence is poorly known.
Note that the EOS of asymmetric matter is mainly characterized by the density dependence
of the symmetry energy (∂S/∂ρ) which is essential for the understanding of the structure of
neutron-rich nuclei, particle yields in heavy-ion collisions, and properties of neutron stars. To

9 The EOS and therefore the symmetry energy, are defined without model-dependent concepts. They include the
effects of all kind of correlations in nuclear matter, such as the cluster correlations that are important at low densities.
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characterize the departure of the symmetry energy from its value at saturation, it is customary
to perform a Taylor series expansion around saturation density. That is [3],

S(ρ) = J + Lx + 1
2 Ksymx2 + · · · (5)

where x = (ρ − ρ0)/3ρ0. In particular, an enormous effort has been, and continues to be,
devoted to determine the slope of the symmetry energy L,

L ≡ 3ρ0

(
∂S

∂ρ

)∣∣∣∣
ρ0

. (6)

The nuclear symmetry energy describes the increase in energy as matter changes away from a
symmetric configuration of equal numbers of neutrons and protons (or up and down quarks).
Observables involving moderately neutron-rich nuclei up to very neutron-rich astrophysical
systems are highly sensitive to the density dependence of the symmetry energy. Interpretation
of these observables is often hindered, however, by uncontrolled extrapolations. The following
two examples serve to illustrate this point. The first example involves the composition of the
outer crust of a neutron star which is known to emerge from a simple dynamics that is solely
sensitive to the masses of moderate to extreme neutron-rich nuclei [4–6]. Whereas the masses
of many of these nuclei have been measured accurately, the masses of highly exotic nuclei
such as 118Kr rely on extrapolations into regions far away from the range of validity of nuclear-
structure models. Another example that will be discussed in greater detail in section 5 involves
the simultaneous determination of the mass and radius of neutron stars from observations of
x-ray bursts. Although promising, at the present time systematic uncertainties in the analysis
of x-ray bursters continue to hinder the reliable extraction of stellar radii. Thus the need for a
systematic and comprehensive program to determine the density dependence of the symmetry
energy becomes critical. Some important first steps along this direction have already been
given; (see [7, 8] and references contained therein). The aim of this contribution is to offer a
way forward by fostering dialogue among the nuclear and astrophysical communities on how
best to achieve this common goal.

Ideally, one would like to calculate the density dependence of the symmetry energy
starting from quantum chromodynamics (QCD). Indeed, dense QCD is intimately connected
to nuclear physics and astrophysics and offers a fertile testing ground for our understanding
of quantum-field theories in the non-perturbative regime. Moreover, the rich phase diagram of
baryonic matter is believed to exhibit unique and novel states of matter that should be directly
predicted by QCD. Unfortunately, at present no theoretical framework is available to study
dense matter from first principles. Whereas lattice QCD has been very successful in simulating
the thermal component of the EOS, progress in describing matter at finite baryon density has
been exceedingly slow. Thus, in practice one must rely on phenomenological approaches
calibrated from both laboratory experiments and astrophysical observations. As such, existing
and forthcoming rare-isotope facilities will play an essential role in elucidating the nature of
the phase diagram of strongly interacting matter and will provide critical inputs for refining
the theoretical models of dense matter.

The density dependence of the symmetry energy plays a critical role in shaping the
structure of finite nuclei. In particular, the neutron-skin thickness of heavy nuclei is highly
sensitive to the difference between the symmetry energy at saturation density (as in the nuclear
core) and the symmetry energy at lower densities (as in the nuclear surface). Ultimately, the
thickness of the neutron skin emerges from a competition between the surface tension and
the slope of the symmetry energy L. Moreover, the electric dipole polarizability, described
below, is also highly sensitive to the density dependence of the symmetry energy. The dipole
polarizability is an ideal complement to the neutron-skin thickness because the symmetry
energy acts as the restoring force.
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The density dependence of the symmetry energy also has a profound impact on a variety
of astrophysical phenomena. At very low densities, uniform neutron-rich matter becomes
unstable against cluster formation. The onset of the instability and the formation of clusters is
controlled by the symmetry energy; this may be important during the collapse of the core of
a massive star or during the merger of two neutron stars. As such, the symmetry energy may
play an important role in setting the conditions under which r-process nucleosynthesis occurs.
Moreover, for densities of ρ ≈ (2–3)ρ0 a significant component of the pressure of neutron-rich
matter is determined by ∂S/∂ρ, and this in turn determines the neutron-star radius. Finally, at
even higher densities, the symmetry energy controls the proton fraction, which in turn dictates
whether enhanced neutrino cooling of neutron stars, via the direct Urca process is possible
[9], see section 5.2.

In the laboratory, the density dependence of the symmetry energy can be probed via
heavy-ion collisions at different beam energies and with nuclei having a wide range of neutron–
proton asymmetries. Indeed, heavy-ion collisions provide the only means to study the EOS of
asymmetric matter under controlled laboratory conditions. In particular, low-energy heavy-ion
collisions can produce warm, dilute neutron-rich matter that closely resemble the conditions
in the neutrinosphere (i.e., the surface of last neutrino scattering) in a core-collapse supernova.
At higher beam energies, collisions of neutron-rich heavy ions may shed light on the symmetry
energy at densities of ρ ≈ 2ρ0, a region that is critical in the development of the neutron-star
radius. At these energies, pion production and particle flow may serve as useful probes of
the symmetry energy at high densities. Critical to the success of this endeavor, however, is
the reliability of transport models in distilling details of the symmetry energy from heavy-ion
observables.

The purpose of this review is to provide a roadmap for future progress in studying the
symmetry energy. After the brief motivation presented in this Introduction, we continue
by discussing recent progress and ongoing efforts in a variety of topics of relevance to
the symmetry energy, such as microscopic calculations, dilute neutron-rich matter, nuclear
structure, neutron-star matter, and heavy-ion collisions. We then conclude with a description
of our vision for a ‘way forward’ in each of these areas.

2. Calculations of the symmetry energy

Our inability to calculate the symmetry energy from first principles increases the importance
of both laboratory experiments and astronomical observations. One can, however, calculate S
from first principles in the high temperature, low density regime. Furthermore, chiral effective
field theory provides promising results for S at ρ � ρ0. At higher densities, a variety of
calculations exist but these rely on mostly phenomenological approaches. In what follows, we
review calculations of the symmetry energy at high temperatures in section 2.1, at densities
near ρ0 in section 2.2, and finally at high densities in section 2.3.

2.1. Symmetry energy at high temperatures and low densities

At temperatures T � MeV and densities ρ � ρ0, one can calculate S exactly using a
virial expansion [10]. In this limit the EOS may be expanded in powers of the fugacity
zi = exp(μi/T ), where μi is the chemical potential for species i. The virial expansion is
valid near the classical limit of zi � 1. Quadratic coefficients of the virial expansion are
calculated from nucleon–nucleon (NN), nucleon–light-cluster, and light-cluster–light-cluster
elastic scattering phase shifts. Note that there are important contributions from alpha particles
that can significantly increase the symmetry energy. The symmetry energy computed from the
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virial expansion provides an exact critical benchmark for supernova simulations (see section 3)
that can be probed in the laboratory with heavy-ion collisions; (see, for example, [11]). At
temperatures �50 MeV or above, one can extend the virial expansion to also include pion
degrees of freedom. At low densities and even higher temperatures T � 100 MeV, where
μi/T � 1, one can calculate S directly from QCD simulations. In general, lattice QCD can
calculate the EOS for any temperature—in the limit of zero baryon density. Although lattice
simulations at arbitrary densities are hindered by the conspicuous ‘sign problem’, progress
in this area has been achieved by expanding around the zero baryon density limit. Indeed,
if the EOS is expanded in powers of the chemical potential to the temperature, lattice QCD
simulations have been successful in calculating the relevant coefficients through order (μi/T )4

[12, 13]. In a future work, we will use these coefficients to constrain the symmetry energy
at high temperatures. Although symmetry energy effects at high temperatures may be small
relative to the large thermal energies, these model-independent QCD results provide important
benchmarks in the calibration of theoretical models.

2.2. Symmetry energy near saturation density

Chiral effective field theory is a powerful approach in which nuclear interactions are
systematically expanded in powers of the momentum transfer over a typical chiral (e.g.,
pion mass) scale. Perhaps the most important feature of the chiral approach is its hierarchical
nature. That is, provided that the chiral expansion converges, two-nucleon forces dominate
over three-nucleon forces, which in turn are more important than four-nucleon forces, and
so on. This allows one to perform many-body calculations for which the complexity of the
Hamiltonian is manageable. This approach has been used successfully for nuclear structure,
see for example [14]. Recently, [15] used many-body perturbation theory to calculate the
energy of infinite neutron matter to order N3LO by including two-, three-, and four-nucleon
forces. Moreover, given the systematic nature of the expansion, estimates of the theoretical
uncertainties were also provided. To provide estimates for both the symmetry energy J and
slope L at saturation density, they approximate the symmetry energy (as in equation (4)) as the
difference between the energy of pure neutron matter—which they calculate—and the energy
of symmetric nuclear matter, which they do not calculate but instead adopt the empirical
saturation point. The following values were reported [15]: S0 ≡ J = (28.9–34.9) MeV and
L = (43–67) MeV. However, note that do not calculate the EOS of pure neutron matter much
beyond saturation density, as the chiral expansion may converge poorly at higher densities.

2.3. Symmetry energy at high densities

At present neither laboratory experiments nor astronomical observations place stringent
constraints on the symmetry energy at high densities. Calculations of S at high densities
are hindered by large uncertainties related to the poor convergence of the chiral expansion.
For example, [16] calculate the energy of pure neutron matter up to densities of ρ � 3ρ0 using
quantum Monte Carlo techniques with phenomenological two- and three-nucleon forces. In
particular, by varying the three-nucleon force, they find a sharp linear correlation between S0

and L. However, without proper theoretical guidance it is unclear whether the form of their
three-nucleon force is reliable. Moreover, without a proper expansion (chiral or otherwise)
it is also unclear whether four-nucleon (or higher order) forces could make a significant
contribution at high densities. Thus, it is likely that these calculations may have large theoretical
uncertainties at high densities. Note that there are also calculations of the symmetry energy
using Brueckner many-body theory with phenomenological two- and three-nucleon forces,
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see for example [17, 18]. However, these calculations may also suffer from large uncertainties
related to their phenomenological Hamiltonians and the role of many-nucleon forces.

At this time, we have no clear ab initio method to calculate the symmetry energy at
high densities. Perhaps very phenomenological approaches can still provide useful insight. As
examples, we mention two very different approaches. In [19, 20] a lattice of Skyrmions is used
to calculate the symmetry energy, while [21] calculates the symmetry energy in holographic
QCD.

We now summarize section 2. Chiral effective field theory provides a promising way
to calculate the symmetry energy for uniform matter at low densities. At very low densities,
matter is likely nonuniform and this must be taken into account when calculating the symmetry
energy. One way to do this is by including clusters in a virial expansion. Unfortunately, all
present calculations of the symmetry energy at high densities (above nuclear saturation) may
have large uncertainties related to the form of the interactions. Therefore one may need to rely
instead on phenomenological models, astrophysical observations, and heavy ion experiments.

3. Symmetry energy at very low densities in non-uniform matter

At low densities, uniform nuclear matter becomes unstable against cluster formation. Indeed,
at densities of ρ � ρ0/2 the inter-nucleon separation becomes comparable to the range of
the NN interaction, so it becomes energetically favorable for the system to fragment into
neutron-rich clusters. Cluster formation significantly increases the symmetry energy at very
low densities and this may be of relevance to the modeling of core collapse supernovae
(CCSN). These giant stellar explosions radiate away the large gravitational binding energy of
a neutron star (∼100 MeV nucleon−1) by emitting ≈1058 neutrinos. Much of the ‘action’ in
CCSN happens near the neutrinosphere, which defines the transition region between interacting
and free-streaming neutrinos. The neutrinosphere is composed of a warm low-density gas of
neutron-rich matter at temperatures of T ∼ 5 MeV and densities of ρ ∼ 0.01ρ0. Here the
neutrino mean-free path becomes comparable to the size of the system.

Recently, several groups have come to appreciate that in addition to a free gas of neutrons
and protons, the neutrinosphere may also contain light nuclei [10, 22] and may display
important many-body correlations [23]. These many-body effects can have a significant impact
on neutrino transport by modifying the neutrino opacity and ultimately the emitted neutrino
spectra [24, 25]. In particular, this may be important for nucleosynthesis in the innermost
regions of CCSN.

Remarkably, many properties of the neutrinosphere can be directly reproduced in the
laboratory with heavy-ion collisions. Temperatures of about 5 MeV are easy to achieve, while
low subnuclear densities can be studied, for example, by observing intermediate velocity
fragments from peripheral collisions [11]. Perhaps the most difficult property to simulate in
these collisions is the large neutron-to-proton ratio present in the neutrinosphere. However, new
and forthcoming radioactive beam facilities, such as RIBF (Radioactive Isotope Beam Facility)
(already in operation) and FRIB (Facility for Rare Isotope Beams) (planned for 2020), allow
heavy-ion collisions involving systems with widely varying neutron–proton asymmetries.
By comparing results between neutron-deficient and neutron-rich systems, one should be
able to extrapolate to systems with extreme neutron excess; see section 6. By measuring the
composition of light clusters, these laboratory experiments should be able to infer the symmetry
energy and the corresponding EOS of asymmetric nuclear matter at very low density. In turn,
these measurements should provide critical inputs for new microscopic approaches to warm,
dilute matter that face the challenge of accounting for many-body correlations and for the
concomitant development of nuclear clusters.
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4. Symmetry energy and nuclear structure

4.1. Neutron skins

Starting with the pioneering work of Hofstadter in the late 1950’s [26] and continuing to
this day, measurements of charge distributions of nuclei using elastic electron scattering
have provided knowledge of charge radii with remarkable accuracy across the nuclear chart
[27, 28]. In contrast, probing neutron densities has traditionally relied on hadronic experiments
that are hindered by large and uncontrolled uncertainties. Compared to electron scattering
where the reaction mechanism (i.e., one-photon exchange) is well understood, the reaction
mechanism in the case of hadronic probes is complex due to the non-perturbative nature
of the scattering process [29, 30]. Moreover, whereas the underlying elementary electron–
nucleon interaction remains largely unchanged in the nuclear medium, the in-medium hadron–
nucleon interaction acquires non-trivial density and momentum dependence. Finally, although
Coulomb distortions may be significant in the case of electron scattering from heavy nuclei,
the Coulomb interaction, unlike the hadron–nucleus optical potential, is known exactly. These
large hadronic uncertainties make impossible to cleanly separate the reaction dynamics from
nuclear-structure effects. Indeed, the uncertainties are so dramatic, that earlier studies of
elastic proton scattering from both 40Ca and 208Pb at a variety of incident energies yield
hugely contradictory results in the extraction of their respective neutron radii [29]. Also
note that in kinematic regions where the uncertainties are minimized—but certainly not
eliminated—proton–nucleus scattering appears insensitive to even gross details of the neutron
density [31].

Recently, the Lead Radius Experiment (PREX) at the Thomas Jefferson National
Accelerator Facility (Jefferson Lab) has pioneered parity-violating measurements of neutron
radii by relying on the significantly larger weak charge of the neutron relative to that of the
proton [32, 33]. Measurements of the parity-violating asymmetry APV at Jefferson Lab using
longitudinally polarized electrons is an established technique that has been used successfully
to probe the quark structure of the nucleon [34–42]. The parity-violating asymmetry is defined
as the difference in the cross section between right- and left-handed longitudinally polarized
electrons relative to their sum. That is,

APV = σR − σL

σR + σL
. (7)

This powerful technique provides a unique opportunity to measure the weak charge form factor
of the nucleus—and hence its neutron radius Rn—in a relatively clean and model-independent
way [43–46]. Indeed, PREX has provided for the first time model-independent evidence—
at the 1.8σ level—in favor of a neutron-rich skin in 208Pb and successfully demonstrated
the feasibility of this technique for measuring neutron densities with an excellent control of
systematic errors [32, 33]. The neutron-skin thickness, defined as the difference between the
neutron (Rn) and proton (Rp) root-mean-square radii was reported to be

R208
skin = R208

n − R208
p =0.33+0.16

−0.18 fm. (8)

In a follow-up already approved experiment ‘PREX-II’, the uncertainty in the determination
of R208

n will be reduced by a factor of 3, to ±0.06 fm.
The neutron-skin thickness of 208Pb is strongly sensitive to the density dependence of

the symmetry energy. In particular, R208
skin is strongly correlated to the slope of the symmetry

energy L [47]. This correlation is strong because it emerges from simple, yet robust, physical
arguments. In the spirit of the liquid-drop model, surface tension favors the formation of a
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spherical drop of uniform equilibrium density. However, for a neutron-rich system it is unclear
whether the extra neutrons should reside in the surface or in the core. Placing them in the
core is favored by surface tension but disfavored by the symmetry energy, which is large at
saturation density. Conversely, moving them to the surface increases the surface tension but
reduces the symmetry energy. Hence, the neutron-rich skin of a heavy nucleus emerges from
a competition between the surface tension and the difference between the symmetry energy
at saturation density and at a lower surface density. In particular, for a stiff symmetry energy,
namely one that increases rapidly with density, it is energetically favorable to move most of the
the neutrons to the surface where the symmetry energy is low; this generates a thick neutron
skin.

Given that at zero temperature the difference between the symmetry energy at two
neighboring density points is directly proportional to the symmetry pressure L, a strong
correlation between R208

skin and L is expected. Indeed, Roca-Maza et al [38] find a strong
correlation (with a correlation coefficient of r = 0.979) between R208

skin and L using a large and
representative set of energy density functionals (EDFs). A linear fit to the predictions of all
the models displayed in [38] yields:

R208
skin = rs

2

(
L + Ls ± δLs

Ls

)
, (9)

where the three fitting parameters are given by rs = 0.2 fm, Ls = 68.7 MeV, and
δLs = 6.8 MeV represents the 70% prediction-band error. In particular, this suggests that
a ±0.06 fm error in the measurement of R208

skin would translate into a 1σ error in L of
�L(0.06 fm) = 40.8 MeV. To properly estimate the final uncertainty in the determination of
L, one should add both theoretical and experimental errors in quadrature.

We close this section with a brief comment on the frequently assumed correlation between
R208

skin and the symmetry energy at saturation density J = S(ρ0). Whereas we have invoked
robust, physical arguments in favor of a strong correlation between R208

skin and L, the correlation
between R208

skin and J, or ratherJ and L, has a different physical origin. Farine et al in 1978
first noted a correlation between J and L [48]. Indeed, it has been recognized for a long
time that nuclear ground-state properties—especially nuclear masses of neutron-rich nuclei—
determine rather accurately the value of the symmetry energy at a sub-saturation density
ρ ≈ 0.1 fm−3 ≈ (2/3)ρ0, that represents an average between the central nuclear density
ρ0 and some characteristic surface density. In particular, [49] using the family of Skyrme
CSkp functionals to fit ground-state properties of double magic nuclei found a value of
S(ρ = 0.1 fm−3) = 25.4 ± 0.8 MeV. A comparable analysis by [50] using the masses
of 38 spherical nuclei gives a value of the symmetry energy at a slightly higher density
of S(ρ = 0.11 fm−3) = 26.65 ± 0.2 MeV. Given such an accurate determination of the
symmetry energy at ρ ≈ (2/3)ρ0, the correlation between J and L is readily obtained from
invoking equation (5). That is,

S(ρ = 2ρ0/3) = J − L

9
+ Ksym

162
+ · · · ≈ J − L

9
. (10)

Thus, the correlation between J and L emerges from the accurate determination of the masses
of neutron-rich nuclei, rather than in the case of R208

skin and L which arises from the competition
between surface tension and the density dependence of the symmetry energy.

4.2. Isoscalar monopole resonance

The isoscalar monopole resonance measures the collective response of the nucleus to density
variations. Pictorially, this collective excitation in which protons and neutrons oscillate
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in phase around the equilibrium density may be perceived as a nuclear breathing mode.
Given that symmetric nuclear matter saturates, the pressure at saturation density vanishes.
Thus, the giant monopole resonance (GMR) probes the curvature of the EOS at saturation
density, or equivalently, the incompressibility coefficient of symmetric nuclear matter K0.
However, the accurate determination of K0 requires the formation of a strong collective
peak that involves many nucleons and exhausts most of the energy weighted sum rule.
Thus, the coherent response of the system is sensitive to the incompressibility coefficient
of neutron-rich matter K0(α) rather than to only K0; here α= (N−Z)/A is the neutron–proton
asymmetry. As such, K0(α) is sensitive to the density dependence of the symmetry energy.
Indeed, the incompressibility coefficient of asymmetric nuclear matter may be written as
follows [3]:

K0(α) = K0 + Kτ α
2 ≡ K0 +

(
Ksym − 6L − Q0

K0
L
)

α2, (11)

where Q0 is often referred to as the skewness parameter and is proportional to the third
derivative with respect to the density of the energy per particle of symmetric nuclear matter
evaluated at saturation density. That is,

ESNM = −aV + 1
2 K0x2 + 1

6 Q0x3 + · · · . (12)

Note that the expression for K0(α) given in equation (11) is exact to second order in α.
In principle, to constrain both K0 and Kτ one would measure the distribution of monopole
strength for nuclei with significantly different values of α. In practice, however, access to
the symmetry energy is hindered by the relatively low neutron–proton asymmetry of stable
nuclei. Nevertheless, in an effort to determine the incompressibility of neutron-rich matter, a
pioneering experiment was carried out at the Research Center for Nuclear Physics (RCNP) in
Osaka, Japan [51, 52]. The experiment succeeded in measuring the distribution of isoscalar
monopole strength in all stable Tin isotopes having an even number of neutrons, namely, from
112Sn to 124Sn. Although the neutron–proton asymmetry along this isotopic chain varies from
α = 0.11–0.19, the sensitivity to Kτ is poor—even for neutron-rich 124Sn. Although unrelated
to the symmetry energy, the experiment uncovered a puzzle that remains to be solved: ‘Why is
Tin so soft?’ [53]. That is, why do models that successfully reproduce GMR energies in 90Zr,
144Sm, and 208Pb, overestimate the corresponding centroid energies along the full isotopic
chain in Sn.

4.3. Electric dipole polarizability

The oldest known and perhaps most prominent collective nuclear excitation is the isovector
giant dipole resonance (GDR). This mode of excitation is perceived as an out-of-phase
oscillation of neutrons against protons. Given that this oscillation results in the separation
of two dilute quantum fluids—one neutron-rich and the other one proton-rich—the symmetry
energy acts as the restoring force. The GDR is one state that contributes to the electric dipole
polarizability. By using a covariance analysis with an accurately-calibrated density functional,
it was recently demonstrated that the electric dipole polarizability αD is a strong isovector
indicator that is highly correlated to the neutron-skin thickness of heavy nuclei [54]. Shortly
after, using a large number of EDFs, it was confirmed that such a correlation is robust—
although some systematic model dependence emerged [55].

In an effort to elucidate the connection between the dipole polarizability and the density
dependence of the symmetry energy, insights from the macroscopic liquid-droplet model are
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Figure 1. (a) Predictions from a large number of EDFs for the electric dipole
polarizability and neutron-skin thickness of 208Pb as discussed in [55]. Constrains from
both RCNP [60, 61] and the future PREX-II experiment (the latter assuming a projected
0.06 fm error at the PREX central value [32]) have been incorporated into the plot.
(b) Predictions from a large number of EDFs for α208

D times the symmetry energy at
saturation density J as a function of R208

skin. The lightly and darkly shaded regions in panel
(b) represent the 99.9% and 70% confidence bands, respectively. These results were first
reported in [59].

particularly helpful [56–59]. Within a droplet model (‘DM’) approach, the electric dipole
polarizability takes the following simple form:

αDM
D ≈ πe2

54

A〈r2〉
J

[
1 + 5

3

L

J
εA

]
, (13)

where 〈r2〉 is the mean-square radius of the nucleus and εA = (ρ0 − ρA)/3ρ0 accounts for the
difference between the saturation density ρ0 and an appropriate average density of the nucleus
A is ρA. To show the value of this qualitative formula in the particular case of 208Pb, we display
on the left-hand panel of figure 1 the correlation between α208

D and R208
skin as predicted by a large

number of EDFs [55]. Although a clear correlation between the dipole polarizability and the
neutron-skin thickness is observed, there is an appreciable scatter in the predictions; this yields
a correlation coefficient of r=0.77. Note that by imposing the recent experimental constraint
from α208

D [60, 61] several models, especially those with a very stiff symmetry energy, may
already be ruled out. Notably, if the follow-up PREX experiment (PREX-II)—with a projected
uncertainty of 0.06 fm—finds that its central value of R208

skin = 0.33 fm remains intact, then
all models displayed in the figure will be ruled out! [62]. Although provocative, we want to
underscore that the above statement is contingent upon confirmation by PREX-II of PREX’s
large central value. At present, PREX with its large errors bars (R208

skin =0.33+0.16
−0.18 fm) is unable

to exclude the majority of models included in figure 1. Although the correlation displayed in
figure 1(a) is evident, equation (13) suggests that the dipole polarizability times the symmetry
energy at saturation density (αDJ) should be far better correlated to L (or equivalently to R208

skin)
than αD alone [59]. Thus, the right-hand panel of figure 1 displays Jα208

D as a function of R208
skin as

predicted by an augmented set of EDFs [59]. Remarkably, the fairly large spread in the model
predictions has been practically eliminated by simply scaling α208

D by the J associated to each
model. With a correlation coefficient of r = 0.97, this suggests that accurate measurements
of both R208

skin and α208
D may provide stringent constraints on J and L. Finally, we note that
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novel experimental techniques now provide access to other nuclear excitations—such as
isovector-quadrupole and spin-dipole resonances—that appear to be sensitive to the density
dependence of the symmetry energy. For a recent comprehensive review see [63].

5. Symmetry energy at high densities in neutron stars

The structure of spherical neutron stars in hydrostatic equilibrium is uniquely determined
by the EOS of neutron rich matter, namely, the pressure as a function of energy density.
The EOS depends on the interactions between nucleons and impacts nuclear-structure and
heavy-ion observables. Therefore, a measurement in one domain—be it astrophysics or in the
laboratory—can have important implications in the other.

5.1. Neutron star radii

Observations of neutron star masses and radii directly constrain the EOS. Indeed, a complete
determination of the Mass-versus-Radius relationship will uniquely constrain the EOS [64].
Critically important to this task is the recent observation of a two solar mass neutron star
by [65]. The determination of the stellar mass is very clean and accurate as it depends on
the measurement of Shapiro delay in the pulsar’s radio signal by the gravitational well of its
white dwarf companion. Furthermore, the existence of massive neutron stars has now been
confirmed with the discovery of a second two solar mass neutron star [66]. These observations
have immediate and important implications: the pressure of matter at high densities must be
sufficiently large to support a two solar mass neutron star against the gravitational collapse
into a black hole. In particular these observations rule out many soft (low pressure) EOS—
including those containing hyperons or nearly free quarks and gluons. However, neutron stars
could still harbor quark matter or hyperons in their cores provided the (poorly constrained)
strong interactions among these exotic constituents can significantly increase the pressure at
high densities.

Combined mass and radius estimates for several neutron stars have been inferred from
observations of x-ray bursts [67–72]. X-ray bursts are thermonuclear explosion triggered by
the accretion of matter from a companion unto the surface of the neutron star. In some bursts
the luminosity becomes large enough to reach the Eddington limit, in which the photosphere
is pushed outward from the radiative momentum flux. Thus, at the moment after the burst peak
when the photosphere ‘touches down’, the flux observed by a remote observer at a distance D
should be

FEdd,∞ = GMc

κD2
[1 − 2β(R)]1/2. (14)

Here β(R) = GM/Rc2 is the compactness, M is the gravitational mass, R is the local radius, i.e.,
R = (2π)−1 × {circumference of equipotential surface}, and κ is the opacity, which depends
on the composition of the photosphere. The subscript ‘∞’ denotes quantities measured by a
distant observer.

In the latter, cooling, stage of the burst, the ratio of the observed flux F∞ to a fitted peak
temperature Tbb,∞ is roughly constant. This ratio is therefore identified with the observed
angular area of the neutron star,

F∞
σT 4

eff,∞
=

(
R

D

)2

[1 − 2β(R)]−1. (15)

Here σ is the Stefan–Boltzmann constant, and the observed effective temperature Teff,∞ is
related to Tbb,∞ via a composition-dependent correction factor fc.
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Observations of both photospheric expansion and thermal cooling emission from a
given system therefore allow a separate determination of both R and M from equations (14)
and (15). Although in principle this is a powerful technique, there are important complications
that may hinder the reliability of the method. For example, the correction fc required to model
stellar atmospheres are large, presently uncertain, and may vary between different sources.
Moreover, it is not yet clear from which x-ray burst systems, and at what time during the burst,
one can extract the most accurate radii, nor is it entirely certain that the radii sampled by both
observations are identical [69]. Improved models of x-ray bursts (e.g., [73]) may be able to
address these uncertainties and allow for a more reliable determination of stellar radii.

Perhaps at present the cleanest way to extract neutron-star radii is from the observation
of quiescent low mass x-ray binaries (qLMXB) in globular clusters. Such neutron stars are
assumed to have accreted matter from a companion in the past, but are currently in a quiescent
phase where they simply ‘glow’ in soft x-rays as they cool. Often they are assumed to have
hydrogen atmospheres for which there are very accurate calculations of the emergent spectrum.
The main argument in support of this assertion is that other heavier elements will rapidly sink
in the very strong gravitational field and ultimately leave behind a hydrogen atmosphere [74].
Moreover, there is no evidence that these neutron stars are strongly magnetized, which makes
the spectral models simpler. As a result, the observed effective temperature Teff,∞ can be
determined directly by spectral fitting, which removes the systematic uncertainty in fc, and
the observed angular area can then be determined from equation (15). Although by itself this
technique does not allow for independent determinations of M and R for a single source,
observations of multiple stars—when combined with a constraint such as a functional form
for the EOS [75] or an assumed dependence for R(M) [76], permits the extraction of both.
Although these measurements contain the distance D, one can use x-ray binaries in globular
clusters—dense collections of up to a million stars—that have relatively well-established
distances.

Recently [76] determined neutron-star radii from fitting the spectra of five qLMXBs with
models appropriate for a nonmagnetic hydrogen atmosphere. Furthermore, they assumed that
neutron-radii are approximately independent of mass, namely, R(M) = R0. Indeed, such an
assumption is consistent with many—although not all—models of the EOS over a wide range
of masses [77]. By adopting such an assumption, [76] were able to fit the combined data sets
with a single neutron-star radius,

R0 = 9.1+1.3
−1.5 km, (16)

where the quoted errors are for the 90% confidence level. This fitting does not account for
causality nor pulsar observations indicating that the maximum neutron star mass is greater
than approximately 2.0 M	 [65, 66]; imposing these conditions as priors may change the
result [78]. With these caveats, however, equation (16) is intriguing as it suggests stellar radii
significantly smaller than those predicted by many theoretical models; at least models with
non-exotic constituents [77]. Moreover, such a small radius coupled with the observation of
neutron stars with M ≈ 2.0 M	 greatly constrains the EOS. On the one hand, the pressure near
(2–3)ρ0 must be small enough to accommodate small radii; on the other hand, the pressure
must increase significantly at high densities in order to support massive neutron stars.

Unfortunately, there are important complications in applying the Stefan–Boltzmann law
(equation (15)) to extract neutron-star radii. First, in order to determine the luminosity L∞
one needs an accurate distance to the star. Whereas globular clusters provide reliable distance
estimates, systematic differences at the ≈20% level remain between various techniques (see
[79] and references therein). Second, one must correct for interstellar absorption, which
may be important in the far- ultraviolet and soft x-ray energies. The systematic uncertainty
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associated to the distance measurement should be eliminated with the imminent launch of the
Gaia spacecraft by the European Space Agency. Gaia will determine parallax angles (i.e.,
trigonometric distances) with an unprecedented accuracy of 2% (or better) for millions of
stars on these globular clusters (see [80], and references therein). However, relying on the
Stefan–Boltzmann law assumes that neutron stars may be modeled as black bodies—which in
general they are not. Indeed, one must fit the observed spectrum to a model atmosphere that
depends on the composition and perhaps on the stellar magnetic field. In addition, by using
a single effective temperature Teff,∞ in equation (15) one assumes spherical symmetry. If the
temperature distribution is anisotropic, however, (for example from anisotropic heat conduction
in a strong magnetic field) then the extracted stellar radius may be inaccurate. Note that there
is no evidence for a strong magnetic field and pulsations in the x-ray flux are not observed.

Perhaps the simplest way to accommodate neutron stars with small radii as in equation (16)
is for the EOS to be soft up to densities of ρ � (2–3)ρ0, (see [69], and references therein).
This would suggest that the neutron skin-thickness of 208Pb should also be small—a fact that
can be directly tested via parity violating electron scattering at Jefferson Lab; see section 4.1.
Alternatively—and more intriguing—the pressure at low densities could be large, leading to
a thick neutron skin in 208Pb. This would require a rapid softening of the EOS in order for
the pressure at (2–3)ρ0 to be small enough to accommodate equation (16). Such rapid density
dependence could come from a change in the structure of dense matter, possibly from a phase
transition, that could be probed with heavy-ion collisions. Note that regardless of the softening
mechanism, the EOS must stiffen again at higher densities in order to support massive neutron
stars.

In summary, the following three observables are sensitive to the EOS at different densities.
First, the neutron-skin thickness of 208Pb is sensitive to the pressure at ρ0 and below. Second,
the radius of an 1.4 M	 neutron star is sensitive to the pressure over a range of densities,
but is most sensitive to densities in the range (2–3)ρ0 [81]. Finally. the maximum mass of a
neutron star is particularly sensitive to the pressure at high densities. Therefore, the density
dependence of the EOS can be deduced by comparing these three observables.

5.2. Neutron star cooling

Modeling of cooling neutron stars [82] predated their first detection. For an exhaustive review
of neutron star cooling, see [9]; here we just give a summary of the salient features involving
the nuclear symmetry energy. The core of a neutron star is in β-equilibrium. To maintain this
equilibrium, the following reactions are in balance:

n → p + e− + ν̄e (17)

p + e− → n + νe. (18)

For degenerate npe− matter, integration of the cross-section over the available phase space
gives a characteristic T 6 temperature dependence to the neutrino emissivity, known as the
direct Urca (dUrca) process. The reactions (17) and (18) cannot, however, simultaneously
satisfy momentum and energy conservation unless the proton fraction x ≡ ρp/(ρp + ρn) is
greater than approximately 0.11 [83]. As a result, for sufficiently low proton fraction the
reaction proceeds via a bystander particle (for example),

n + n → n + p + e− + ν̄e (19)

n + p + e− → n + n + νe, (20)

and similar reactions for which the bystander particle is a proton. These reactions have a T 8

temperature dependence and have a much lower rate at temperatures �0.1 GK, which are
typical core temperatures for observed cooling neutron stars.
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The pressure of nuclear matter at densities near saturation is proportional to ∂S/∂ρ.
If this term increases rapidly with density, then it is energetically favorable for the proton
fraction to be large. Moreover, if this trend holds at larger densities, then the interior of the
neutron star may reach a proton fraction x > 0.11 before the star reaches its maximum mass.
If so, then there is a neutron star mass threshold MdUrca above which direct Urca reactions
(equations (17) and (18)) can occur. To date, all observed isolated cooling neutron stars are
consistent with standard (i.e., no enhanced or dUrca) cooling [84]). Note that enhanced cooling
could make isolated neutron stars so cold and dim that they are not observed. Indeed, there
are many supernova remnants with no detected central compact object [85, 86]. While it is
perhaps unlikely that all of the missing sources could be black holes, our knowledge of stellar
evolution and collapse is insufficient to draw firmer conclusions.

Quiescent neutron stars in transient low-mass x-ray binaries (qLMXBs) offer another test
for the presence of enhanced cooling. When the neutron star accretes, compression of matter
in the crust raises the electron and neutron chemical potentials, which induce nuclear reactions
[87–89] that in turn heat the neutron star crust and core. The crust and core temperatures come
into equilibrium [90] in which the heat deposited in the crust is radiated via neutrinos from
the core or photons from the surface during quiescent periods when the accretion rate is very
low or zero. Observations of qLMXBs can therefore inform us about the interior temperature
and the strength of neutrino emission in the neutron star [91].

Most observed qLMXBs are consistent with having standard cooling [92], given the large
uncertainties in the long-term mean-mass accretion rates. However, there are two notable
exceptions. The first is SAX J1808.4−3658, which is a pulsing, accreting neutron star. For this
source only an upper limit on the thermal component of the luminosity is reported, at 1.1 ×
1031 erg s−1 [92]. This implies a core temperature (20–30)MK [93]. If this core temperature
is set by balancing accretion-induced heating with neutrino cooling then the presence of
enhanced cooling is required. An even colder neutron star is in the transient 1H 1905+00 for
which only an upper limit of 2.4 × 1030 erg s−1 on the luminosity is reported [94]. For this
system, the time-averaged mass accretion rate is unknown, unfortunately, so more quantitative
evaluations of the neutrino cooling are not possible.

If enhanced cooling is not observed, this suggests that the symmetry energy at high
densities is not large so that dUrca is not possible. Furthermore, the beta decays of additional
hadrons such as hyperons, if present, are suppressed (for example by large pairing gaps).
Alternatively, if enhanced cooling is confirmed, in at least some neutron stars, then one can
constrain the particles responsible for the cooling. Determining the high density symmetry
energy from heavy ion collisions, section 6, can rule in, or out, dUrca. If dUrca is ruled out, this
suggests the enhanced cooling is from the beta decay of other strongly-interacting particles
such as hyperons, mesons, or quarks. This would demonstrate that dense matter contains other
constituents in addition to just neutrons and protons.

6. The symmetry energy and heavy-ion collisions

Heavy-ion collisions provide the only means to investigate the behavior of the symmetry energy
at high densities within a laboratory environment by compressing nuclear matter from moderate
to high densities. At low incident energies—from 30 to 150 MeV per nucleon—expansion
after the initial compression creates a low density region where symmetry-energy effects
including cluster formation can be studied. The forces resulting from such a compression
and the subsequent expansion influence strongly the motion of the ejected matter and provide
observables that are sensitive to the EOS. Extracting information of relevance to the symmetry
energy presents a serious challenge given the relatively low neutron–proton asymmetry of the
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colliding ions. To overcome this obstacle one makes use of the fact that the forces associated
with the symmetry energy affect differently the various members of an isospin multiplet.
Enhanced sensitivity to the density dependence of the symmetry energy is then obtained by
comparing neutron- against proton-like observables. As full equilibrium is never reached in
heavy-ion collisions, experimental analyses depend heavily on theoretical transport models.

The dynamical theories underlying these transport models rely on various assumptions
and approximations. For the most part these models are based either on a semi-
classical approximation to the time-dependent Hartree–Fock equations (Boltzmann– Uehling–
Uhlenbeck (BUU)) or on molecular dynamics simulations that incorporate quantum effects
(such as quantum molecular dynamics (QMD) and antisymmetrized molecular dynamics
(AMD)). These models include a mean-field potential usually with momentum dependence
plus a collision term with in-medium NN cross sections, which describes the dissipative
features of the collision. The mean field also includes a ‘tunable’ density dependence for the
symmetry energy. Since the transport equations are not solvable directly, they are treated by
simulations. Given their critical role in the interpretation of heavy-ion collisions, we provide
in a separate subsection (section 6.3) a brief description of transport models, their current
development, and ways to improve the consistency and reliability of their predictions.

Investigations on the EOS of symmetric nuclear matter have been very successful in
understanding a wide set of observables—such as flows of nucleons and light particles, and
kaon production [95, 96]—from transport-model predictions. These efforts have provided
significant constraints on the EOS of symmetric nuclear matter. A similar comprehensive
effort is now needed to place more stringent constraints on the density dependence of the
symmetry energy. Consequently heavy-ion collisions have increasingly been used in recent
years to probe the symmetry energy over a wide range of densities by varying the incident
energy, impact parameter, and isospin asymmetry of the colliding system. In the following
sections observables used to probe the symmetry energy are introduced, first at sub-saturation
densities, followed by a discussion of the observables proposed for super-saturation densities.
In each density domain, difficulties in the theoretical description of these observables are
identified and strategies to clarify them and improve their predictive power are discussed.

6.1. Heavy-ion collisions at low densities

Heavy-ion collisions at incident energies from about 35 to 150 MeV per nucleon give access to
the symmetry energy at densities from about 50% above ρ0 down to about 0.1ρ0. The initially
compressed nuclei expand toward low densities where many intermediate mass fragments
are formed. Nucleons and light clusters such as deuterons, tritons, and alpha particles are
emitted during the fragmentation process as well as from the excited primary fragments. By
selecting collision geometries from peripheral to central collisions, one can study a number
of phenomena which depend on the transport of isospin and thus provide information on the
density dependence of the symmetry energy.

In semi-peripheral collisions the amount of isospin diffusion (N/Z equilibration) between
collision partners of different neutron–proton asymmetries is driven by the symmetry energy
at subsaturation densities. The degree of isospin diffusion is quantified in terms of an isospin
transport ratio by comparing reaction systems with different combinations of neutron-rich
and neutron-poor projectiles and targets. For example, by using heavy-ion collision data of
112Sn and 124Sn in identical and mixed combinations at 50 MeV nucleon−1, constraints on the
symmetry energy were obtained for densities in the range ρ = ρ0/3 to ρ0 using several isospin
diffusion observable [97] under the assumption that clusters do not affect the symmetry energy
in the region where isospin diffusion occurs.
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Figure 2. Constraints on the density dependence of the symmetry energy from both
heavy-ion collisions and nuclear-structure observables. Left: correlation between S0

and the slope of the symmetry energy L at saturation density (see text for a detailed
description). Right: the symmetry energy S(ρ) as a function of baryon density (see text
for a detailed description).

Constraints on the density dependence of the symmetry energy obtained from heavy-ion
experiments are shown in figure 2 in two representations and are compared against those
obtained from nuclear-structure observables discussed in section 4. On the left-hand panel of
figure 2 we display constraints on the symmetry energy S0 ≡ J and its slope L at saturation
density. The blue hatched area labeled HIC(Sn + Sn) was determined from isospin diffusion
observables measured in mid-peripheral collisions of Sn isotopes [97]. A constraint on the
symmetry energy obtained in recent measurements of the mean N/Z distributions of the emitted
fragments with radioactive ion beams of 32Mg on a 9Be target at 73 MeV per nucleon is shown
by the area enclosed by the dashed purple line labeled HIC(RIB) [98]. (Note, that the limits of
S0 in these two areas only indicate the range of values used in the transport simulations and are
not to be interpreted as experimental limits on S0 from HICs.) These constraints from HICs
are compared against those obtained from nuclear structure; in particular, from studies of (a)
isobaric analogue resonances (blue dashed polygon) [99], (b) the electric dipole polarizability
in 208Pb (gold shaded region) [59, 60, 100] both with better than 90% confidence limit (Cl),
and (c) nuclear binding energies using the UNEDF0 EDF (two red curves forming part of an
ellipsoid, about 90% Cl) [101]. These are basically independent constraints, and one may get a
stronger constraint in principle by finding the overlap region in the plane of S0 and L. However,
for each of these constraints, we observe a strong correlation between S0 and L, suggesting
that the observable is sensitive to the symmetry energy at low densities.

As alluded in section 4.1, the masses of neutron-rich nuclei place a stringent constraint
on the value of the symmetry energy around ρ = (2/3)ρ0; see equation (10). In particular,
two analyses with Skyrme functionals found the rather tight values of S(ρ = 0.1 fm−3) =
25.4 ± 0.8 MeV [49] and S(ρ = 0.11 fm−3)= 26.65 ± 0.2 MeV [50]. These values have been
plotted in the right-hand panel of figure 2 as an open square and an open circle, respectively.

On the right-hand panel of figure 2 we show a different interpretation of the constraints
by focusing directly on the density dependence of the symmetry energy S(ρ). The shaded
area labeled HIC(Sn+Sn) results from the analysis also shown on the left of isospin diffusion
observables from [97]. From the analysis of isobaric analogue states (IAS) by [99] two
constraints have been reported. The area enclosed by the dashed blue line comes from the
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same IAS analysis shown on the left-hand panel. The area enclosed by the solid blue line results
when the IAS analysis is supplemented with additional constrains from neutron-skin data Rskin.
Note that the addition of neutron-skin information reduces significantly the constraint area—
especially near saturation density. This is natural given the strong correlation between Rskin

and the slope of the symmetry energy L, noted earlier. However, one should remember that
the extraction of Rskin from hadronic experiments is beset by large theoretical uncertainties.

The symmetry energy at very low density obtained from the analysis of cluster production
in HICs as discussed in section 3 is shown enclosed by a box in the right-hand panel of
figure 2. Here it should be noted that this analysis determines the symmetry energy with strong
cluster correlations at a temperature of several MeV, depending on the density. Due to the large
temperature dependence of the symmetry energy at very low density, it cannot be compared
directly to the symmetry energy at higher densities.

Altogether we see from figure 2 that heavy-ion results are consistent with those extracted
from nuclear-structure information. This lends credibility to the use of heavy-ion collisions
as a probe of the symmetry energy at supra-saturation densities, a region inaccessible to
nuclear-structure experiments (see section 6.2).

In central collisions of neutron-rich systems one observes isospin fractionation, namely, a
differentiation of the isospin distribution among the reaction products [102, 103]. In a neutron-
rich environment the neutron mean-field potential is more repulsive than that of the proton.
This enhances the neutron emission in such a way that the neutron-to-proton ratio of the
emitted particles (gas) is larger than that of the formed fragments (liquid). Then, the spectra
and the spectral ratios of emitted particles should be a direct probe of the symmetry energy.
The experimental ratios at low energies in the center-of-mass system are large, much beyond
Coulomb effect expectations. However, a complete understanding of this phenomenon has not
yet been achieved because of two aspects of the transport models. The first one is associated
with the isovector momentum dependence—also expressed as the neutron–proton effective
mass difference—which is highly uncertain and influences the high-energy part of the particle
spectra. The second one involves the treatment of cluster formation which affects the low-
energy particle spectra. As discussed in section 3 and in [104], cluster formation increases the
symmetry energy at very low densities and may affect neutrino transport in the neutrinosphere.
Cluster formation is important in heavy-ion collisions—especially in the expansion phase. For
example, in the final state of Sn+Sn collisions at 50 MeV nucleon−1, about 90% of the protons
in the system are bound in clusters and heavier fragments. However, the treatment of cluster
formation in transport theories, including how to take into account the physical level density of
the in-medium clusters which may contain bound and resonance states, is a difficult problem,
which will be discussed more in section 6.3.

Neutron detection efficiencies are often uncertain, thus ratios of n/p ratios, i.e. double
ratios, of systems with different asymmetry have been obtained, which are hopefully less
affected by the neutron efficiency, but some of the sensitivity of the single n/p ratio may be
reduced in the double ratios. Alternatively, one has measured t/3He ratios, which display
similar trends as the n/p ratios. However, their theoretical description requires a better
description of the cluster production mechanism. For example, a recent theoretical and
experimental study finds that the formation of alphas is important in describing the triton to
3He spectra and spectrum ratio. The problem of describing cluster formation can be somewhat
alleviated by constructing ‘coalescence invariant’ quantities, i.e., observables summed over all
light clusters, which show much better agreement between theory and experiment [105, 106].

Furthermore intermediate mass fragments are copiously emitted in lower energy heavy-ion
collisions, which is a process not only interesting in itself but which also contains information
on the symmetry energy. It has been shown [107, 108] that different reaction mechanisms from
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isospin fractionation in the disintegrating system to isospin migration to the low-density neck
region, as well as cluster correlations, depend on the density-dependence of the symmetry
energy [105, 109, 110].

In the current situation, possible ways to go forward are (1) to find observables
which can be predicted with minimum uncertainty from cluster production by available
transport models, (2) to compare the predictions of different models in detail until the
physical origins of different predictions become clear (see subsection on transport models,
section 6.3), (3) to establish improved models that can consistently describe the global reaction
dynamics (including cluster and fragment formation) together with the observables sensitive
to the symmetry energy. Efforts for solutions to the options (2) and (3) are particularly
important. Specifically, models should be able to describe many experimental observables
simultaneously.

On the experimental front, measurements with larger isospin asymmetry made possible
with the availability of high intensity rare isotope beams provide higher sensitivities to the
symmetry energy and will be able to further clarify these issues and establish the understanding
of particle emissions in neutron-rich systems. An experiment that measures isospin diffusion
using radioactive beams of 109In on a 124Sn target (�(δ) = 0.093) has recently been performed
at RIKEN. A more desirable reaction is to use a radioactive 132Sn beam on a 112Sn target
(�(δ) = 0.135). By increasing the asymmetry by more than 50%, improved uncertainty
limits of the constraints are expected.

6.2. Heavy-ion collisions at higher densities

Although there has been enormous progress in elucidating the nature of cold hadronic matter
at very high densities directly from QCD [111], the density region where these predictions
apply is out of reach of experimental tests in high energy heavy-ion collisons and even at the
enormous densities that exist in the core of neutron stars. Hence, for these density regions one
must rely on theoretical models that, unfortunately, differ dramatically in their prediction of the
high-density behavior of the EOS [112]. A major source of these difficulties is the incomplete
knowledge of the short range isovector correlations [113]. In order to constrain the models
one must rely on both laboratory experiments with energetic heavy ions and astronomical
observations of neutron stars.

Observations of massive neutron stars [65, 66] imply that the high-density component
of the EOS must be stiff. The recent analysis by [76] seems to suggest that neutron stars
have small radii, implying a rather soft symmetry energy in the region of ρ = (2–3)ρ0 (see
section 5). In combination, both of these results—large stellar masses and small radii—pose
serious challenges to theories of hadronic matter without exotic degrees of freedom.

Intermediate and high-energy (relativistic) heavy-ion collisions with rare isotope beams
can be used to study neutron-rich systems that attain this range of densities for short-time
intervals and may help elucidate the nature of these puzzles. At collision energies from about a
hundred MeV to a few GeV, nuclear matter is compressed from about 1.5 up to 3.5ρ0 in a short
time interval of about (10–100) fm c−1 or about 10−22 s. For example, the top panel of figure 3
shows the time evolution of the central density in a Au + Au collision at 1 GeVu−1, suggesting
that nucleonic matter may be compressed to almost 3ρ0 for a period of about (5–10) fm c−1.

The big challenge to theoretical descriptions of heavy-ion collisions is the extraction of
properties relevant to the high-density phase from the experimental observables constructed
from the particles detected in the final stages of the reactions. As in the case of low-density
matter, the aim is to magnify the impact of the symmetry energy by measuring differences
or ratios of observables involving charge-symmetric pairs of particles, such as n/p, t/3He or
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Figure 3. Time evolution of a central Au + Au collision at en energy of E =1 GeVu−1.
Top panel: density in the central cell in units of saturation density ρ0. Bottom panel:
multiplicities of produced �(−,0,+,++) and π(−,0,+) particles. The curves correspond to
calculations with different assumptions on the symmetry energy: stiff (dotted), linear
(dashed), soft (dot-dashed), only kinetic symmetry energy (solid) [114].

π−/π+. In anticipation of these critical experiments, at least two time projection chambers
(TPC) are being commissioned: the active target time projection chamber (AT-TPC) at
NSCL/FRIB and the SAMURAI-TPC detector at RIKEN, where an experimental program
involving central collisions of 132Sn+124Sn and 124Sn+112Sn at 200 and 300 MeV per nucleon
is being planned.

There already exist some data and corresponding transport-model predictions for flow
and pion ratio observables, but the available experimental and theoretical information is far
from complete. The existing data (from the Kaos and FOPI collaborations at GSI) involve
nucleon, light cluster, and pion observables measured mainly in Au+Au reactions at energies
between 400 MeV and 1.5 GeV per nucleon [115, 116]. These data were primarily obtained and
analyzed for investigating the EOS of symmetric matter. However, the scarcity of neutron data
and the lack of projectile-target systems with a wide range of neutron–proton asymmetries
limits the sensitivity of these data to the symmetry energy. New measurements have been
and will continue to be performed to overcome these limitations. Beams of widely different
asymmetries from advanced rare isotope facilities will play a pivotal role in future studies
by providing selective sensitivity to the symmetry energy while minimizing variations in the
contributions from the symmetric matter EOS. In addition to studying the collisions of Sn
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isotopes including unstable neutron rich (e.g., 132Sn) and neutron poor (e.g., 108Sn) beams,
a program is being developed to measure reaction systems with the same mass, such as
112Sn + 112Sn and 112Ru + 112Sn and highly asymmetric systems such as 36Ca + 112Sn and
52Ca+ 124Sn. These very asymmetric reactions provide a larger lever arm in the determination
of critical isospin-dependent inputs for transport models, such as the symmetry potentials and
the in-medium NN collisions cross sections.

Similarly as at lower densities, primary discriminators of symmetry-energy effects are
expected to involve differences in neutron and proton observables, such as spectra and spectral
ratios of emitted neutrons and protons or t and 3He, as well as flow differences. The differences
in neutron and proton potentials including the momentum dependence or the effective mass
difference influence the asymmetry of the flow and the production of secondary particles.
Some calculations suggest that at higher densities ratios of isospin yields and flows may be
more sensitive to the nucleon mass splitting than to the density dependence of the symmetry
energy [117]. If so, this provides an opportunity to determine separately both the momentum
dependence of the interaction and the density dependence of the symmetry energy at high
densities.

The collective motion induced by the pressure developed in the compressed region is
quantified in terms of a Fourier series of the azimuthal distribution, where the first two
coefficients are known as the transverse and elliptic flow. Of these, the elliptic flow probes the
emission perpendicular to the reaction plane, and is therefore sensitive to pressure gradients
in the high-density region of the collision. Thus, differences (or ratios) of the neutron–proton
elliptic flow are regarded as sensitive probes of the high-density component of the symmetry
energy. Indeed, there are indications that the elliptic-flow ratio of neutrons to protons is
sensitive to the symmetry energy at supra-normal densities from the analysis of FOPI/LAND
experiments at GSI [118, 119].

In high-energy collisions new particles are copiously produced. In particular, the ratio of
negatively to positively charged pions π−/π+ has been proposed as a probe of the symmetry
energy at high densities [120, 121]. Two estimates of pion production—the isobar model and
the assumption of chemical equilibrium—both predict a strong sensitivity to the asymmetry
of the medium and thus to the symmetry energy. In heavy-ion collisions pions are primarily
produced in NN-collisions via the excitation and subsequent decay of the �-resonance. If the
medium is neutron rich, the more abundant nn collisions will increase the production of �0 and
�− resonances, leading ultimately to an enhanced π−/π+ ratio. For example, the excitation
of the �− resonance and its ensuing nπ− decay is driven exclusively by the nn → p�−

reaction and thus should significantly enhance the π−/π+ ratio in a neutron-rich medium.
Some theoretical analyses moreover predict that the mean-field effects and the threshold
effects in the production of the particles influence the ratio in opposite directions, making
predictions more critical [120]. Thus, imposing meaningful constraints on the symmetry
energy depends crucially on a good understanding of the π -� dynamics in the medium. This
constitutes a serious theoretical challenge, as, e.g., one must understand how the pion and �

propagators (mass and width) are modified in the nuclear medium. Moreover, the propagation
of particles with finite width has to be approximated. It has been noted that the sensitivity
of pion production to the symmetry energy increases at lower incident energies where the
in-medium masses of nucleons, Deltas, and pions (i.e. the real parts of their self-energies)
provide critical threshold effects for particle production. In the bottom panel of figure 3 we
display the time evolution of both the � and pion multiplicities. Comparing to the upper
panel it is seen that Deltas exist mainly during the dense phase of the collision, while the pion
multiplicities change also during the expansion phase due to reabsorption and charge exchange
scattering.
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At present it seems that the different transport codes make different assumptions about
the relevant self-energies for nucleons, Deltas, and pions as well as for the elastic and inelastic
cross sections. This may contribute to the large differences in the model predictions of the pion
ratio [120–123]. Currently, it is not clear whether a stiff or a soft symmetry energy provides
a better description of the data. Indeed, in the calculations of [121] a very soft symmetry
energy was postulated for the explanation of the experimental data, in strong disagreement
with the conclusions from flow measurements [118] . Clearly, the current situation needs to
be clarified. There is also a need for more data on pion spectra and pion flow for systems
with fixed total charge and different asymmetry—to clearly distinguish between Coulomb
and symmetry-energy effects. Such experiments will provide valuable constraints on transport
models and should help to understand the situation. Eventually, pion yields should become a
very useful source of information on the symmetry energy.

Pions are created and reabsorbed via the formation of � resonances. Reabsorption and
pionic charge exchange increase with energy, and thus decrease the sensitivity to the high
density phase of the collision, as seen in the bottom panel of figure 3. In this respect the
investigation of kaon production could be advantageous and has been proposed as a sensitive
probe of the symmetry energy [120]. In contrast to pions, K0 and K+ mesons—which carry
a strange antiquark—interact weakly with matter and have rather long mean-free paths and
should therefore be good probes of the high density phase of the collision. In fact, the ratio of
K+ mesons produced in collisions of light to heavy nuclei has provided in the past a robust
observable for the stiffness of the EOS for symmetric matter [96]. Similarly, the ratio of K0

(produced mainly from nn collisions) to K+ (produced mainly from pp collisions) has been
predicted to be sensitive to the high-density behavior of the symmetry energy [114]. As in
the case of pion production, the strongest sensitivity is expected near the kaon-production
threshold, as many kaons are produced via pion-baryon reactions in the nuclear medium. To
isolate symmetry-energy effects, the density and isospin dependence of the kaon self-energy
must be properly understood [124]. Past measurements [125] suffered from very different
acceptances for K0 and K+, requiring double ratios, but high-statistics measurements may
now be possible with the HADES detector at GSI.

6.3. Transport codes

Transport models follow the evolution of the colliding system under the influence of mean-
field potentials and of dissipation (encoded in a collision term). These models have been very
successful for many years in both predicting and explaining many phenomena in heavy-ion
reactions. However, in spite of this success questions remain—partly related to the formulation
and partly to the implementation of the models. Given the critical role that transport models
have in interpreting the experimental results of heavy-ion collisions, a way forward in the
study of the symmetry energy requires an increase in the predictive power and reliability of
transport codes. In this subsection we address some of these difficulties and propose ways to
overcome them.

Different transport approaches have been developed over the years. Boltzmann-like
approaches, known, e.g., under the names of BUU or stochastic mean field, describe the
evolution of the single particle phase space density. In principle, they have to be augmented
by a fluctuation term, leading to the Boltzmann–Langevin equation; various attempts in this
directions have been put forward (see [126], and references therein). On the other hand,
molecular dynamics approaches start from classical molecular dynamics and introduce finite
size wave-packets, usually without anti-symmetrization (QMD). Collisions between these
wave-packets lead to dissipation and to fluctuations which are controlled by the width of
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the particles. An significant further development is AMD (and approximately constrained
molecular dynamics), which includes anti-symmetrization between the wave packets, and
thus represents a quantum-mechanical transport model. The essential difference between
Boltzmann and molecular dynamics approaches is the amount of fluctuation introduced into
the evolution of the system. In general, fluctuations are important when the evolution enters
a spinodal region of the phase diagram, where the phase transition leads to the formation
of fragments or light clusters. This is very important in collisions in the low density region
(see subsection 6.1) but also at higher densities clusters constitute an essential fraction of the
ejectiles. A reliable description of cluster production is therefore crucial in the comparison
with experiments.

The effect of cluster formation on the reaction dynamics and of isospin migration driven
by both density and isospin gradients has been studied using a version of the BUU approach
that treats clusters (deuterons, tritons, and 3He, but not alpha particles) as distinguishable
degrees of freedom [105]. The collision terms couple the equations for the different particles.
In the QMD and AMD approaches which employ nucleon wave packets, a cluster can be
naturally described by placing the appropriate wave packets at the same phase space point.
However, the probability of forming a cluster is then governed by the classical phase space
in which the quantum bound state or resonance contribution is missing. In a recent version
of AMD, the collision term has been improved in order to better incorporate the probability
that one (or both) of the colliding nucleons form a cluster (with A = 2, 3 and 4) with other
particles in the system [127, 128]. Care should be taken, that when light clusters are treated
as new degrees of freedom in the transport approach, their effect should not also be included
into the parameterization of the EOS, particularly not in the symmetry energy. Both BUU
and AMD calculations including clusters demonstrate that cluster formation can change the
reaction dynamics and fragmentation mechanism [105, 127, 128]. This effect may explain the
differences in the isospin transport ratios obtained with usual BUU calculations [129] relative
to QMD calculations which have different cluster formation probabilities [97].

The dynamical evolution of particles with finite width (‘off-shell transport’) is in principle
understood in the framework of the Kadanoff–Baym equations, but usually neglected or treated
in simple approximations. It is expected, however, to be important in the sub- or near-threshold
production of particles, like pions, �-resonances, or strange particles, which are important
probes of the symmetry energy at higher density.

The physical input into transport simulations are the mean-field potential, often derived
from an EDF, and the in-medium elastic and inelastic cross sections. Both of these are often
parametrized independently of each other, even though, in principle, they are related by a
consistent approximation to the in-medium effective T -matrix, e.g., in the Brueckner–Hartree–
Fock approximation. A consistent approach in all models is a highly desirable goal. We note
that an important check involves solving the transport models in a confined box to simulate the
conditions of thermally equilibrated systems. This can test the relation between the adopted
effective interaction and the corresponding EOS [130–132]. Moreover, it can provide useful
links to dynamical conditions, such as those found in the core and crust of neutrons stars and
in supernovae explosions.

In all approaches, the set of transport equations constitutes a complex system of nonlinear
integro–differential equations which cannot be solved in closed form. One usually relies on
simulations, for example, by test-particle methods in the BUU approach. In particular, the
collision term is evaluated stochastically. In such simulations, some of the implementations
are not necessarily dictated by the underlying equations and are handled differently in the
numerical codes. Hence—even within the same theoretical framework—different versions
of codes with varying procedures and inputs have been developed, though are often not
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properly documented. Thus, seemingly similar calculations have led to substantially different
results. Clearly, this is an unsatisfactory state of affairs. This situation has stimulated various
efforts for code comparison [133–136]. Earlier attempts to analyze the situation took place
in workshops at Trento in 2004 (for particle production at 1 GeVu−1 [133]) and in 2009
(for flow at 100 MeVu−1 and 400 MeVu−1). During the 2009 workshop calculations of the
main transport codes with identical physical inputs were compared with respect to the main
global observables—such as yields, rapidity distributions and flow observables. Although in
general good qualitative agreement was found, the degree of quantitative agreement requires
improved understanding of the calculated observables in order to test finer details of the EOS,
particularly those related to the symmetry energy. To clarify the source of these discrepancies,
internal quantities, such as the number, energy distribution, and blocking of collisions, were
investigated and, indeed, showed large differences. This is significant, since differences in the
collision term can strongly influence particle production near thresholds.

A consensus among the practitioners of the transport codes is that a continuation and
stabilization of such comparisons is a worthy and timely project. Indeed, a new workshop in
China where many groups are engaged in transport calculations using a variety of codes has
been organized. The aim of the workshop is to compare, verify, and validate the reliability of
the most widely used codes, and to document properly versions of the codes together with
benchmark examples. This endeavor should strengthen considerably the impact of heavy-ion
research on the investigation of the nuclear EOS—particularly on the symmetry energy at high
densities. From the remaining differences between codes it will allow to estimate systematic
theoretical uncertainities.

7. Conclusions and a way forward

The last few years have seen enormous progress in our understanding of the density dependence
of the symmetry energy. However, significant challenges lie ahead. The present document
provides a roadmap that continues to foster dialogue and promotes collaborations between
the astrophysics and the nuclear-physics communities. We articulate a way forward in areas
of relevance to the symmetry energy—such as nuclear structure, heavy-ion collisions, and
neutron stars—by proposing new terrestrial experiments and astrophysical observations at
next generation facilities. In what follows we summarize our vision for the future of the
symmetry energy.

7.1. A way forward at very low densities

The symmetry energy at very low densities is of great relevance to the neutrinosphere
region in core collapse supernovae. The neutrinosphere—the surface of last scattering for
the neutrinos—is composed of a low density gas of neutron-rich matter at temperatures of
about T = 5 MeV and densities of ρ ≈ 0.01ρ0. Under these conditions neutron-rich matter is
unstable against cluster formation, as the formation of light nuclei is energetically favorable.
The existence of light clusters could modify the neutrino opacity and ultimately affect the
conditions for nucleosynthesis. Remarkably, many properties of the neutrinosphere may be
simulated in the collision of heavy ions. New experiments involving heavy-ion collisions
with very neutron-rich (or proton-rich) nuclei at present and near future radioactive beam
facilities will be able to reproduce many neutrinosphere conditions. Moreover, measurement
of the yields and distribution of light fragments may help elucidate the dynamics of the
neutrinosphere. In particular, comparing these yields to transport models with improved
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descriptions of light clusters should allow more accurate supernova simulations of neutrino
spectra and nucleosynthesis.

7.2. A way forward with neutron skins

The neutron-skin thickness of heavy nuclei is a strong isovector indicator that correlates
strongly to the density dependence of the symmetry energy—particularly to the symmetry
slope L. The sensitivity of Rskin to L emerges from a competition between surface tension
and the difference between the symmetry energy at the center and surface of the nucleus.
In particular, for a stiff symmetry energy, it is favorable to push the excess neutrons to the
surface where the symmetry energy is small. Thus, models with large L tend to produce thicker
skins. The upcoming PREX-II experiment promises to determine the neutron-skin thickness
of 208Pb with a ±0.06 fm accuracy. Using the strong correlation between R208

skin and L leads to a
determination of L with an accuracy of �Lexp = 40.8 MeV. Given that the model predictions
suggest an intrinsic theoretical error of �Lth = 6.8 MeV (see equation (9)), we expect a
cumulative error in the determination of L of

�L =
√

�L2
exp + �L2

th = 41.4 MeV. (21)

We note that the quoted theoretical error may be underestimated, as the set of models used to
extract such a value, although representative, is not unique. Can one improve on the limit on
�L? Clearly, if a follow-up to PREX-II is feasible and the statistical accuracy of ±0.02 fm is
attained, then the error in L could be significantly reduced to only �L = 15.2 MeV.

Whereas PREX-II will place a stringent constraint on the density dependence of the
symmetry energy (particularly on L), models predicting neutron radii of medium mass and light
nuclei are affected by nuclear dynamics beyond L. In particular, the calcium radius experiment
(CREX) will provide new and unique input into the isovector sector of nuclear theories and
the high precision measurement of R48

n (±0.02 fm) will help build a critical bridge between ab
initio approaches [137] and nuclear density functional theory [138]. Note that CREX results
can be directly compared to new coupled cluster calculations that are sensitive to three-neutron
forces [139, 140]. Moreover, both 48Ca and 208Pb—which are the basis of the approved CREX
and PREX-II experiments [141]—are doubly-magic with a relatively simple nuclear structure,
making them ideal candidates for accurate measurement of the parity-violating asymmetry. In
particular, the closed-shell nature of both nuclei results in a large energy gap (of a few MeV)
to the first excited state. In combination with the high-resolution spectrometers at Jefferson
Lab, this has the enormous advantage of ensuring that only the elastic electrons are captured
in the detectors.

Finally, other nuclei such as 120Sn and its heavier stable isotopes as well as measurements
at other momentum transfers needed to map out the nuclear surface, should be considered.
However, it appears that measurements on open-shell nuclei such as Sn may not be as feasible
or as cleanly interpretable as PREX and CREX [142]. At present it is unclear whether any
of the stable Sn-isotopes may display a higher sensitivity to L than 48Ca or 208Pb. Thus, an
important next step is to generate ‘sensitivity plots’ for several semi-magic nuclei. Ultimately,
the concordance between CREX, PREX, and TREX (‘Tin Radius EXperiment’) may provide
the best hope for a stringent constraint on the density dependence of the symmetry energy.

7.3. A way forward with giant resonances

Besides the neutron-skin of heavy nuclei, the distribution of isoscalar monopole strength has
been found to be sensitive to the density dependence of the symmetry energy. Unfortunately,
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this sensitivity is hindered by the relatively small neutron excess of the stable nuclei explored
to date. Thus, an important step forward is to measure the distribution of monopole strength in
exotic (very neutron-rich) nuclei at next generation radioactive beam facilities. In particular,
mapping GMR centroid energies outside the stable 112Sn–124Sn region is likely to provide
valuable insights. Moreover, such an experimental campaign may also help elucidate the
softness of Tin.

In the case of the isovector giant dipole resonance (GDR), the electric dipole polarizability
αD was shown to be a strong isovector indicator. In particular, the combination of α208

D times the
symmetry energy at saturation density J was seen to be strongly correlated to the neutron-skin
thickness R208

skin. Although photo-absorption experiments have been used for decades to probe
the structure of the GDR, it is critical to delve into the low-energy region for a proper account
of αD. Indeed, for the case of the exotic 68Ni nucleus, the PDR alone accounts for about
25% of αD. Here too the systematic exploration of the isovector dipole strength along the
chain of Sn-isotopes, for both stable and exotic nuclei, may provide new insights into the
problem.

7.4. A way forward in theory

An accurately calibrated microscopic theory that both predicts and provides well-quantified
theoretical uncertainties is one of the goals of modern nuclear energy density functionals
(EDFs) [101, 143]. The need to quantify model uncertainties in an area such as theoretical
nuclear physics is particularly urgent as models that are fitted to experimental data are then
used to extrapolate to the extremes of density and isospin asymmetry. Ambitious theoretical
programs aimed at calibrating future EDFs using ground-state properties of finite nuclei,
their collective response, and neutron-star properties—supplemented by a proper covariance
analysis—are well on their way. A promising first step along these lines has already been taken
in [144].

7.5. A way forward in astrophysics

There is now a small number of neutron stars with joint mass and radius constraints from
spectral fitting. Constraining the EOS by a joint fit is a powerful means of extracting information
about dense matter. To realize this potential will require the elimination of systematic errors
in distance and spectral fitting. With the anticipated parallax measurements from the Gaia
mission, the uncertainty in globular cluster distances will be drastically reduced. Furthermore,
the distances to nearby field neutron stars with identified companions, such as Cen X-4, will be
known. Nearby neutron stars, with a higher flux, would make a good target for spectral fitting.
Spectroscopy of the companion might also constrain the composition of the accreted material
and therefore the emergent spectrum. Improved distances would also help in the determination
of mass and radius from x-ray bursts, if reliable models of the spectral evolution during the
burst can be made. Future timing missions such as LOFT10 and NICER11 may provide further
constraints on the mass-radius relation via rotation-resolved spectroscopy of pulsations. It may
also be possible to extract the compactness M/R from observations of spectral edges observed
in bursts with strong photospheric expansion [145, 146].

Further work should explore the implications of a small (9 km) neutron star radius. Such
a small radius implies a softening of the symmetry energy for ρ0 � ρ � 2ρ0, which can
be probed by heavy-ion collisions. The softening needed for such small radii also suggests

10 Large Observatory For x-ray Timing www.isdc.unige.ch/loft/.
11 Neutron star Interior Composition ExploreR http://heasarc.gsfc.nasa.gov/docs/nicer/.
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that the proton fraction remains low, and might preclude the onset of direct Urca neutrino
cooling. Further searches for cold, isolated neutron stars, as well as faint qLMXBs such as
SAX J1808.4−3658 and 1H 1905 + 00 can inform us about the distribution of neutron stars
with enhanced neutrino cooling.

Finally, the symmetry energy influences other quantities, such as the crust/core transition
density and the fractional moment of inertia of the crust; it also affects the region of the
crust with strongly deformed nuclei, the ‘pasta’ phase. These affect transport properties, such
as the Ohmic resistivity of the neutron star crust, that might play a role in other observable
phenomena (see, e.g., [147]).

7.6. A way forward for heavy-ion collisions

Heavy-ion collisions provide the only means to study the density, isospin, and temperature
dependence of the equation of state (EOS) under controlled laboratory conditions. The large
dynamic range accessible with heavy-ion collisions allows for the exploration of the symmetry
energy in very dilute matter up to several times the saturation density. Specifically, the
region at about twice saturation density is critical for the determination of neutron-star radii.
Placing strong constraints on the high-density component of the EOS of symmetric nuclear
matter represents an important achievement in studies of energetic heavy-ion collision. The
community is now investigating the density dependence of the symmetry energy by comparing
neutron and proton observables, and in general isospin partners in light clusters, using reactions
with different neutron–proton asymmetries. Already a series of experiments of heavy-ion
collisions with energies in the Fermi energy range have constrained the symmetry energy from
about 20% above ρ0 down to about 1/3 ρ0. These constraints agree well with, and in some
cases even sharpen, the constraints from nuclear structure studies of exotic nuclei. With the
availability of facilities for the production of very asymmetric beams these possibilities are
greatly enhanced. The present focus is to improve experimental and theoretical uncertainties
of the constraints at low density and on constraining the symmetry energy at supra-saturation
densities, where it is rather poorly known from microscopic calculations, and where there
are very few experimental data. A way forward will be to do new experiments that take
advantage of studying reactions of wide asymmetries using rare isotope beams to access a
range of densities from below to well above saturation density with carefully chosen systems
and observables which enhance the sensitivity to the symmetry energy.

Transport calculations are essential to extract the information about the equation of state
from the complex heavy-ion collision process. By considering appropriate observables, like
ratios of isospin-sensitive quantities, it has already been possible to obtain much information
about the symmetry energy. But it has also been learned that transport calculations have to
be refined to give a better description of fluctuations, cluster and particle production, and
generally have to improve the consistency and reproducibility between different codes. A
planned series of workshops on code evaluation and comparison is an important step in this
direction.

7.7. A way forward for dense QCD

Quantum chromodynamics is presently the ultimate theory of the strong interaction. As such,
it determines the rich and complex structure of the phase diagram of strongly interacting
matter. At low baryon density and high temperatures, collisions of heavy ions at facilities
of increasing energy and sophistication are providing hints on the transition from hadronic
matter to deconfined quark matter. At the opposite extreme, namely, high densities and low
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temperatures, neutron stars offer the best (and perhaps unique) view of cold, dense matter.
The Facility for Antiproton and Ion Research (FAIR) in Europe provides the best alternative
at bridging the gap. However, theoretical guidance into the detailed structure of the QCD
phase diagram is hindered by the intrinsically non-perturbative nature of QCD. Although
much progress has been made, enormous challenges remain. For example, QCD predicts
that at ultra-high densities and low temperatures—where the up, down, and strange quarks are
effectively massless—the ground state is a superconductor with a unique ‘color-flavor locking’
pairing scheme [148]. Unfortunately, the enormous densities that may be required for this phase
to develop may not be reached in the stellar cores. So the QCD ground state at the densities
of relevance to neutron stars remains an important challenge. On the other hand, lattice QCD
provides powerful insights into the nature of the phase (or rather crossover) transition at finite
temperature and zero baryon density (or equivalently zero chemical potential μ). While at
present lattice simulations at arbitrary values of the chemical potential are hindered by the
vexing ‘sign problem’, renewed interest in the QCD phase diagram has seen the emergence
of various alternatives, including a Taylor series (akin to the virial expansion) in the small
parameter μ/T . In particular, the main virtue of these exact lattice results is that they provide
critical benchmarks for assessing the reliability of other theoretical approaches.
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[104] Typel S, Röpke G, Klähn T, Blaschke D and Wolter H H 2010 Phys. Rev. C 81 015803
[105] Coupland D D S, Lynch W G, Tsang M B, Danielewicz P and Zhang Y 2011 Phys. Rev.

C 84 054603
[106] Zhang Y, Li Z, Zhou C and Tsang M B 2012 Phys. Rev. C 85 051602
[107] Amorini F et al 2009 Phys. Rev. Lett. 102 112701
[108] Cardella G et al 2012 Phys. Rev. C 85 064609
[109] Rizzo J, Colonna M, Baran V, Toro M D, Wolter H and Zielinska-Pfabe M 2008 Nucl. Phys.

A 806 79
[110] De Filippo E et al 2012 Phys. Rev. C 86 014610
[111] Alford M G, Rajagopal K and Wilczek F 1999 Nucl. Phys. B 537 443
[112] Brown B A 2000 Phys. Rev. Lett. 85 5296
[113] Xu C and Li B-A 2010 Phys. Rev. C 81 064612
[114] Ferini G, Gaitanos T, Colonna M, di Toro M and Wolter H H 2006 Phys. Rev. Lett. 97 202301
[115] Reisdorf W et al (Fopi Collaboration) 2007 Nucl. Phys. A 781 459
[116] Reisdorf W et al (Fopi Collaboration) 2012 Nucl. Phys. A 876 1
[117] Giordano V, Colonna M, di Toro M, Greco V and Rizzo J 2010 Phys. Rev. C 81 044611
[118] Russotto P et al 2011 Phys. Lett. B 697 471
[119] Cozma M D, Leifels Y, Trautmann W, Li Q and Russotto P 2013 Phys. Rev. C 88 044912
[120] Ferini G, Colonna M, Gaitanos T and di Toro M 2005 Nucl. Phys. A 762 147

29

http://dx.doi.org/10.1088/0004-637X/722/1/33
http://dx.doi.org/10.1088/0004-637X/742/2/122
http://dx.doi.org/10.1088/0004-637X/747/1/76
http://dx.doi.org/10.1088/0004-637X/747/1/77
http://dx.doi.org/10.1088/0004-637X/749/1/69
http://dx.doi.org/10.1086/170860
http://dx.doi.org/10.1088/2041-8205/765/1/L5
http://dx.doi.org/10.1088/0004-637X/772/1/7
http://dx.doi.org/10.1016/j.physrep.2007.02.003
http://arxiv.org/abs/1305.3242
http://dx.doi.org/10.1088/0004-637X/761/1/51
http://dx.doi.org/10.1086/319702
http://dx.doi.org/10.1038/207364a0
http://dx.doi.org/10.1103/PhysRevLett.66.2701
http://dx.doi.org/10.1088/0004-637X/707/2/1131
http://dx.doi.org/10.1086/421065
http://dx.doi.org/10.1086/501441
http://dx.doi.org/10.1143/PTP.62.957
http://dx.doi.org/10.1103/PhysRevC.85.055804
http://dx.doi.org/10.1086/311578
http://dx.doi.org/10.1051/0004-6361:20034191
http://dx.doi.org/10.1086/513140
http://dx.doi.org/10.1086/341066
http://dx.doi.org/10.1086/521079
http://dx.doi.org/10.1126/science.1078070
http://dx.doi.org/10.1140/epja/i2005-10313-x
http://dx.doi.org/10.1103/PhysRevLett.102.122701
http://dx.doi.org/10.1103/PhysRevC.88.041601
http://arxiv.org/abs/1307.4130
http://arxiv.org/abs/1307.2706
http://dx.doi.org/10.1103/PhysRevC.82.024313
http://dx.doi.org/10.1016/S0375-9474(01)01671-2
http://dx.doi.org/10.1103/PhysRevC.68.051601
http://dx.doi.org/10.1103/PhysRevC.81.015803
http://dx.doi.org/10.1103/PhysRevC.84.054603
http://dx.doi.org/10.1103/PhysRevC.85.051602
http://dx.doi.org/10.1103/PhysRevLett.102.112701
http://dx.doi.org/10.1103/PhysRevC.85.064609
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.307
http://dx.doi.org/10.1103/PhysRevC.86.014610
http://dx.doi.org/10.1016/S0550-3213(98)00668-3
http://dx.doi.org/10.1103/PhysRevLett.85.5296
http://dx.doi.org/10.1103/PhysRevC.81.064612
http://dx.doi.org/10.1103/PhysRevLett.97.202301
http://dx.doi.org/10.1016/j.nuclphysa.2006.10.085
http://dx.doi.org/10.1016/j.nuclphysa.2011.12.006
http://dx.doi.org/10.1103/PhysRevC.81.044611
http://dx.doi.org/10.1016/j.physletb.2011.02.033
http://dx.doi.org/10.1103/PhysRevC.88.044912
http://dx.doi.org/10.1016/j.nuclphysa.2005.08.007


J. Phys. G: Nucl. Part. Phys. 41 (2014) 093001 Topical Review

[121] Xiao Z, Li B-A, Chen L-W, Yong G-C and Zhang M 2009 Phys. Rev. Lett. 102 062502
[122] Feng Z-Q and Jin G-M 2010 Phys. Lett. B 683 140
[123] Hong J and Danielewicz P 2013 arXiv:1307.7654
[124] Prassa V, Gaitanos T, Ferini G, di Toro M, Lalazissis G A and Wolter H H 2010 Nucl. Phys.

A 832 88
[125] Lopez X et al 2007 Phys. Rev. C 75 011901
[126] Colonna M 2013 Phys. Rev. Lett. 110 042701
[127] Ono A 2013 J. Phys.: Conf. Ser. 420 012103
[128] Ono A 2013 J. Phys.: Conf. Ser. 436 012068
[129] Li B-A and Chen L-W 2005 Phys. Rev. C 72 064611
[130] Furuta T and Ono A 2006 Phys. Rev. C 74 014612
[131] Baran V, Colonna M, di Toro M and Larionov A B 1998 Nucl. Phys. A 632 287
[132] Papa M 2013 Phys. Rev. C 87 014001
[133] Kolomeitsev E E et al 2005 J. Phys. G: Nucl. Part. Phys. 31 741
[134] Kohley Z et al 2012 Phys. Rev. C 85 064605
[135] Colonna M, Ono A and Rizzo J 2010 Phys. Rev. C 82 054613
[136] 2014 Int. Workshop on Simulations of Low and Intermediate Energy Heavy Ion Collisions

(Shanghai, China, 8–12 January 2014) www.physics.sjtu.edu.cn/hic2014/
[137] Forssén C, Hagen G, Hjorth-Jensen M, Nazarewicz W and Rotureau J 2013 Phys. Scr. T 152

014022
[138] Bender M, Heenen P-H and Reinhard P-G 2003 Rev. Mod. Phys. 75 121
[139] Hagen G, Hjorth-Jensen M, Jansen G R, Machleidt R and Papenbrock T 2012 Phys. Rev. Lett.

109 032502
[140] 2013 Calcium Radius Experiment (CREX) Workshop at Jefferson Lab (Newport News, VA,

17–19 March 2013) www.jlab.org/conferences/crex/
[141] 2014 The PREX and CREX Proposals http://hallaweb.jlab.org/parity/prex
[142] Ban S, Horowitz C J and Michaels R 2012 J. Phys. G: Nucl. Part. Phys. 39 015104
[143] UNEDF Collaboration 2012 Building a Universal Nuclear Energy Density Functional

http://unedf.org
[144] Erler J, Horowitz C, Nazarewicz W, Rafalski M and Reinhard P-G 2012 arXiv:1211.6292
[145] Weinberg N N, Bildsten L and Schatz H 2005 Astrophys. J. 639 1018
[146] ’t Zand J J M and Weinberg N N 2010 Astron. Astrophys. 520 A81
[147] Pons J A, Vigano D and Rea N 2013 Nature Phys. 9 431
[148] Alford M G, Schmitt A, Rajagopal K and Schäfer T 2008 Rev. Mod. Phys. 80 1455
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