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Abstract

We present an optimization approach to the weak approximation of a general class of stochastic differ-
ential equations with jumps, in particular, when value functions with compact support are considered.
Our approach employs a mathematical programming technique yielding upper and lower bounds of the
expectation, without Monte Carlo sample paths simulations, based upon the exponential tempering of
bounding polynomial functions to avoid their explosion at infinity. The resulting tempered polynomial
optimization problems can be transformed into a solvable polynomial programming after a minor ap-
proximation. The exponential tempering widens the class of stochastic differential equations for which
our methodology is well defined. The analysis is supported by numerical results on the tail probability
of a stable subordinator and the survival probability of Ornstein-Uhlenbeck processes driven by a stable
subordinator, both of which can be formulated with value functions with compact support and are not
applicable in our framework without exponential tempering.
Keywords: exponential tempering, Lévy process, stable subordinator, Ornstein-Uhlenbeck process, semidef-
inite programming, tail probability estimation, survival probability estimation.
2010 Mathematics Subject Classification: 60H10, 65C30, 60G51, 90C22.

1 Introduction

Stochastic differential equations have long been used to build realistic models in economics, finance, bi-
ology, the social sciences, chemistry, physics and other fields. For practical applications such as moment
and tail probability estimations, or expected utilities, we need to estimate the expected value of the solu-
tion of stochastic differential equations. The so-called weak approximations via the time discretization of
Euler-Maruyama type has been the most standard approach, that is, |E[V (XT )]−E[V (X∆

T )]| ≤ C∆β , where
{Xt : t ∈ [0,T ]} is a solution of a suitable stochastic differential equation, V is a smooth function and X∆

T
indicates the time discretization approximation of XT with time step ∆ > 0. The theoretical investigation of
time discretization schemes in diffusion settings has been thoroughly presented in Kloeden and Platen [7],
while stochastic differential equations with jumps have also been studied, for example, in Protter and Talay
[15].

In contrast to Monte Carlo simulations of discretized sample paths, methodologies leading to the compu-
tation of bounds for the expectation have been proposed and investigated in various fields of application by
several authors, for example, Bertsimas, Popescu and Sethuraman [2], Eriksson and Pistorius [3], Helmes,
Röhl and Stockbridge [4], Lasserre and Prieto-Rumeau [8], Lasserre, Prieto-Rumeau and Zervos [9], Suzuki,
Miyoshi and Kojima [18], to mention just a few. It is known that there exist two types of formulation of this
framework, both of which arrive at a semi-definite programming in the end. One is the so-called generalized
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moment problem that makes use of the semi-definiteness of (localizing) moment matrices1. The other is a
polynomial optimization approach for which sum-of-squares relaxation efficiently works. In this paper, our
discussion is based on the latter formulation, mainly because it provides a more intuitive way to discuss how
the proposed method works. Note also that from an optimization point of view, those two formulations are
dual to one another. (See, for example, Nishihara, Yagiura and Ibaraki [10] for a related discussion.)

Our methodology can be described roughly as follows. First, one employs a function with arguments
both in time and in state, which bounds from above (or from below) at time T the value function uniformly
over the support of XT . One further restricts the infinitesimal generator of the bounding function to be non-
positive (or non-negative) over the whole space. Under all those constraints, the well-known Dynkin formula
guarantees that the bounding function concentrated at the deterministic initial point (0,X0) serves as an upper
(or lower) bound of the expectation. The final step is to minimize the upper bound (or maximize the lower
bound). For this approach to make practical sense, one has to restrict the class of bounding functions to an
extent where the optimization is solvable. In this respect, the most general class of differentiable functions
for the Ito formula is too abstract to be tractable. To address this issue, the existing literature focuses
on diffusion process with polynomial coefficients. Also, a more general class of stochastic differential
equations including jumps is considered by the authors [5], for which standard Monte Carlo simulations
are no longer implementable in terms of computational time, or often impossible due to nonavailability of
simulation methods. The extension from the diffusion setting is not trivial due to the difference operator of
the jump component in the infinitesimal generator.

The approach that we develop in this paper is a remarkable improvement of the methodology of [5],
in particular when considering value functions with compact support. In [5], bounding functions must be
in polynomial form to arrive at a polynomial programming, while in principle, any polynomial function
necessarily explodes at infinity whenever it is constrained to be either non-positive or non-negative. Due to
this explosion at infinity, bounds are likely to be very far from the true value in particular when considering
stochastic differential equations with very heavy tails and a value function with compact support. Such sit-
uations are often of practical interest, for example, the tail probability estimation of a stochastic differential
equation with jumps. To address this issue, we introduce the exponential tempering of bounding polyno-
mial functions so that the explosion never occurs at infinity. It is the theoretical basis that the optimization
problem with the exponential tempering employed can still be transformed into a solvable polynomial pro-
gramming after a minor approximation. Moreover, it turns out that exponential tempering widens the class
of stochastic differential equations, for which every step of our method is well defined.

The rest of this paper is organized as follows. Section 2 provides some basic exposition of the optimiza-
tion approach of the authors [5] and illustrates why the optimization approach fails to yield tight bounds for
functions with a compact support, for example, in the tail probability estimation. Section 3 introduces our
approach based upon exponential tempering of bounding functions and investigates how to transform the
tempered polynomial optimization problem to a solvable polynomial programming after a minor approx-
imation. Section 4 presents two numerical examples to illustrate that our approach yields tight bounds in
estimation of tail probabilities and survival probabilities. Section 5 indicates the direction of future research,
including an investigation of estimation quality with respect to exponential tempering, an empirical study
of its range of applicability, and the challenge of extending this work to multivariate stochastic differential
equations. In the appendix, we provide a brief sketch of the method-of-moments approach, that is dual to
polynomial optimization.

1Another approach to the generalized moment problem is the linear programming relaxation based on the Hausdorff moment
conditions. See Lasserre and Prieto-Rumeau [8] for a comparison of the performances of SDP and LP approaches.
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2 Motivation

Let us begin this section with general notations which will be used throughout the text. We define R0 :=
R\{0}, R+ := (0,+∞), and denote by N the set of positive integers. We write B(A) for the Borel σ -field
of a set A ⊆ R. For k ∈ N, ∂k indicates the partial derivative with respect to k-th argument. We denote by
Ckt ,kx the class of continuous functions which are kt-times continuously differentiable with respect to the
first variable and kx-times continuously differentiable with respect to the second variable. We denote by Cp

the class of polynomial functions in the form of

fp(t,x) = ∑
B(0,0)

ckt ,kxt
kt xkx , (2.1)

where
B(l,m) :=

{
(kt ,kx) ∈ N2 : kt ≥ l, kx ≥ m, kt + kx ≤ K

}
,

for a fixed even natural number K, while {ckt ,kx}B(0,0) is a sequence of constants. Throughout the paper,
we fix the even natural number K. (Note that the class Cp depends on this K.) We fix (Ω,F ,P) as our
underlying probability space.

Let T > 0. Consider a one-dimensional stochastic differential equation

dXt = a0 (t,Xt)dt +a1 (t,Xt)dWt +
∫
|z|≤1

b(t,Xt−,z)(µ −ν)(dz,dt)

+
∫
|z|>1

b(t,Xt−,z)µ(dz,dt), t ∈ [0,T ], (2.2)

where the initial state X0 is fixed at a constant in R, {Wt : t ≥ 0} is a standard Brownian motion and µ is
a Poisson random measure on R0 whose compensator is given by the Lévy measure ν , that is, a σ -finite
measure defined on R0 satisfying ∫

R0

(
|z|2 ∧1

)
ν(dz)<+∞. (2.3)

Here, we assume that for each t ∈ [0,T ], the functions a0(t,x), a1(t,x) and b(t,x,z) in (2.2) satisfy the usual
conditions such as at most linear growth and Lipschitz so that the solution of (2.2) is well defined. (For
example, see Theorem 1.19 of Øksendal and Sulem [11] and Section 6.2 of Applebaum [1].) We henceforth
equip our underlying probability space with the natural filtration (Ft)t∈[0,T ] generated by {Xt : t ∈ [0,T ]}.
Moreover, throughout this study, we assume that b(t,x,z) ̸= 0 and ν ̸= 0 to avoid triviality. Moreover, we
use the notation

X := inf{B ⊆ R : P(Xt ∈ B, t ∈ [0,T ]) = 1, B connected} ,

where {Xt : t ∈ [0,T ]} is defined in (2.2). Note that by imposing that the set X is connected, it may be
significantly larger than the state space of the sample paths. (For example, if {Xt : t ∈ [0,T ]} is a standard
Poisson process, then its state space is N∪{0}, while the above definition yields X = [0,+∞).) This larger
space will be required for optimization problems.

Our interest throughout this study is in approximating the expectation

E [V (τ,Xτ)] .

Here, V is a function mapping from [0,T ]×R to R, piecewise polynomial in t and x and such that its support
is a bounded subset of [0,T ]×KV where KV is a bounded set and E[|V (τ ,Xτ)|] < +∞. Note that the
function V may have discontinuities. Moreover, τ is an (Ft)t∈[0,T ]-stopping time taking its values in [0,T ].
For the computation of E[V (τ ,Xτ)], standard techniques include the Monte Carlo simulation of sample paths
through the time discretization of stochastic differential equations, or even some exact knowledge of sample
paths such as series representation of the Poisson jump component. Let us illustrate difficulties arising in
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the approximation of stochastic differential equations with jumps in a simple setting, fix X0 > 0, τ = T ,
a0(t,x) = a1(t,x)≡ 0, and b(t,x,z) = xz, that is, (2.2) reduces to a Doléans-Dade stochastic exponential

dXt = Xt−

∫
R0

z(µ −ν)(dz,dt), X0 > 0, (2.4)

which is a martingale with respect to its natural filtration. Assume further that the Lévy measure ν is
supported on (−1,+∞). It is elementary that the Ito formula yields

d lnXt =−
∫
(−1,+∞)

zν (dz)dt +
∫
(−1,+∞)

ln(1+ z)µ (dz,dt) ,

or equivalently,

Xt = X0 exp
[
−t

∫
(−1,+∞)

zν (dz)+
∫ t

0

∫
(−1,+∞)

ln(1+ z)µ (dz,ds)
]
. (2.5)

It follows from (2.5) that Xt > 0, a.s. For the computation of E[V (T,XT )], a standard technique is the Monte
Carlo simulation with the sample generation of the marginal XT . Let us discuss some typical drawbacks in
simulation of XT defined by (2.4).

(i) In the explicit solution (2.5), we are required to keep track of the Poisson random measure µ for
simulation of the term

∫ T
0
∫
(−1,+∞) ln(1+ z)µ(dz,ds), which can be done by using its shot noise

series representation. (See Rosiński [16] for details.) It is however usually difficult to find a shot
noise representation in a convenient form. In addition, it is often extremely expensive to use shot
noise series representation for computational purposes, since shot noise series for an infinite Lévy
measure is infinite as well.

(ii) We may instead rely on the time discretization of sample paths through (2.4), while the resulting
marginal law may not be reasonably accurate. (In this example, it may take negative values, while
initially XT > 0, a.s. For details about the discretization error, see, for instance, Kloeden and Platen
[7].) Estimation results for E[V (T,XT )] could then be completely misleading.

(iii) It is rare to know how to simulate increments
∫ t2

t1

∫
R0

z(µ −ν)(dz,dt), with some exceptions such as
gamma processes and stable processes. Moreover, Lévy processes have no scaling property, except
for stable processes (including Brownian motion). Hence, it is often not as simple as in the diffusion
setting to examine different stepsizes of the Euler-Maruyama scheme.

In the diffusion setting, the above issues often do not arise. Namely, increments of Brownian motion can
easily be generated and have scaling property; stochastic differential equations are often explicitly solvable
(see Chapter 4.4 of Kloeden and Platen [7] for various such examples). Those comparisons illustrate the
difficulty of sample paths simulation for stochastic differential equations with jumps.

Meanwhile, completely different approaches have recently been investigated in Kashima and Kawai [5]
for a general setting with jumps, based upon semi-definite mathematical programming providing us with
upper and lower bounds of the expectation without generating random numbers. Let us first review their
mathematical programming based approaches in brief. For f ∈C1,2([0,T ]×X ;R), the Ito formula yields

d f (t,Xt) = A f (t,Xt)dt +∂2 f (t,Xt)a1(t,Xt)dWt +
∫
R0

Bz f (t,Xt−)(µ −ν)(dz,dt), a.s.,

where

A f (t,x) := ∂1 f (t,x)+∂2 f (t,x)a0(t,x)+
1
2

∂ 2
2 f (t,x)a1(t,x)2

+
∫
R0

(
Bz f (t,x)−∂2 f (t,x)b(t,x,z)1(0,1](|z|)

)
ν(dz), (2.6)
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and for z ∈ R0,
Bz f (t,x) := f (t,x+b(t,x,z))− f (t,x) , (2.7)

provided that for each (t,x) ∈ [0,T ]×X ,∫
|z|>1

|Bz f (t,x)|ν(dz)<+∞.

One of the important building blocks of our approach is the Dynkin formula;

E [ f (τ,Xτ)]− f (0,X0) = E
[∫ τ

0
A f (s,Xs)ds

]
, (2.8)

where τ is an (Ft)t∈[0,T ]-stopping time taking its values in [0,T ]. We briefly summarize the conditions under
which the formula makes sense. Throughout this paper, we write (with some abuse of notation)

E0 := inf{B ⊆ [0,T ]×R : P((τ, Xτ) ∈ B) = 1, B connected} ,
E1 := inf{B ⊆ [0,T ]×R : P((t, Xt) ∈ B, t ∈ [0,τ)) = 1, B connected} ,
E2 := E0 ∪E1.

Lemma 2.1. Let f ∈C1,2(E2;R) and assume that for each (t,x) ∈ E1, the function A f (t,x) in (2.6) is well
defined. Then, the Dynkin formula (2.8) holds if at least one of the following conditions is satisfied;

(i) E[| f (τ,Xτ)|]<+∞, and for almost surely all t ∈ [0,τ), E[|A f (t,Xt)|]<+∞,
(ii) E[

∫ τ
0 (∂2 f (s,Xs)a1(s,Xs))

2ds]<+∞ and E[
∫ τ

0
∫
R0
(Bz f (s,Xs))

2ν(dz)ds]<+∞.

Proof. It is trivial that the formula holds when (i) is satisfied. Next, if (ii) is satisfied, then the stochastic
process { f (t,Xt)− f (0,X0)−

∫ t
0 A f (s,Xs)ds : t ∈ [0,τ ]} is a square-integrable local martingale with respect

to the filtration (Ft)t∈[0,T ].

Remark 2.2. In case of no jump component, there exist other trivial conditions for the Dynkin formula to
hold, such as the function f has compact support, the stopping time τ is the first exit time for a bounded
subset of X , and so on. Those conditions are no longer readily valid when the Poisson jump is involved,
due to the local difference operator Bz of (2.7).

To proceed with our discussion, assume that both a0(t,x) and a1(t,x) are polynomial in t and x and the
coefficient b is decomposed as b(t,x,z) = b1(t,x)b2(z), where b1(t,x) is polynomial both in t and x, and
where b2 : R0 7→R such that

∫
R0

|b2(z)|k ν(dz)<+∞, for k = 2, . . . ,K. Consider the following optimization
formulation

min{ckt ,kx}B(0,0)
fp(0,X0)

s.t. fp(t,x)≥V (t,x) on E0,
A fp(t,x)≤ 0 on E1,
fp ∈Cp(E2;R).

(2.9)

Let us emphasize that decision variables of this optimization problem (and all in what follows) are the
coefficients {ckt ,kx}B(0,0) in the definition of the polynomial (2.1). By further assuming E[|Xt |K ] < +∞ for
t ∈ [0,T ], we have

A fp(t,x) = ∑
B(1,0)

ckt ,kxkttkt−1xkx + ∑
B(0,1)

ckt ,kxt
kt kxxkx−1a0(t,x)

+
1
2 ∑

B(0,2)
ckt ,kxt

kt kx(kx −1)xkx−2a1(t,x)2

+ ∑
B(0,2)

ckt ,kxt
kt

kx−2

∑
k=0

kxCkxkb1(t,x)kx−k
∫
R0

b2(z)kx−kν(dz).

5



This implies that the optimization (2.9) is a polynomial programming problem. If the problem (2.9) is feasi-
ble, it provides us with an upper bound fp(0,X0) of the expectation E[V (τ ,Xτ)], in view of the inequalities

E [V (τ ,Xτ)]≤ E [ fp(τ ,Xτ)]≤ fp(0,X0),

due to (2.8).
In general, polynomial optimization problems are NP hard. However, if the degrees of fp, that is, K is

fixed, sums-of-squares relaxation enables us to solve the problem efficiently. (For details, we refer to Parrilo
[12].) To obtain lower bounds of E[V (τ,Xτ)], we are only to find gp ∈ Cp(E2;R) through the polynomial
programming

max gp(0,X0)
s.t. gp(t,x)≤V (t,x) on E0,

A gp(t,x)≥ 0 on E1,
gp ∈Cp(E2;R).

(2.10)

As previously mentioned, this optimization approach does not require the sample paths simulation at all
towards the approximation of the expectation.

Let us close this section by pointing out some possible drawbacks of the above methods, which leads to
the motivation of our study.

(i) In principle, the weak approximation problem is supposed to be well-posed, whenever E[|V (τ,Xτ)|]<
+∞. On the contrary, most of the existing approaches listed above require that the marginals τ and
Xτ have finite moments of higher order. However, this requirement may rule out some interesting
problem settings, such as stochastic differential equations driven by a stable Lévy process, that we
will deal with in Section 4. In addition, it is sometimes difficult to check whether the requirement is
actually satisfied, in particular when stochastic differential equations are involved.

(ii) Suppose that we are interested in a probability estimation of a non-negative marginal XT , that is, the
stopping time τ is frozen at T and E[V (T,XT )] = E[1(XT ∈ [0,θ ])] for some θ > 0. We will observe
that limx↑+∞ fp(T,x) = +∞, since fp(T,x) is polynomial in x and must be no less than V (T,x) over
X . When the marginal XT has very heavy tail, bounds are likely to be very far from the true value,
that is,

gp(0,X0)≤ E [gp(T,XT )]≪ E [V (T,XT )]≪ E [ fp(T,XT )]≤ fp(0,X0).

By a similar reasoning, if X = R, for example, then lim|x|↑+∞ A fp(t,x) =−∞ due to the constraint
A fp(t,x)≤ 0 over [0,T ]×X . If this is the case, then we will observe

gp(0,X0)≪ E [gp(T,XT )]≪ E [V (T,XT )]≪ E [ fp(T,XT )]≪ fp(0,X0).

Let us emphasize again that the explosion at infinity necessarily occurs, whenever the bounding
functions are of a polynomial form. As an exception, the use of smooth piecewise polynomial may
avoid the explosion at infinity. However, this method easily increases the computing burden and is
not applicable to stochastic differential equations with jumps as discussed in Kashima and Kawai
[6].

To address those issues, we introduce the exponential tempering of bounding functions in the next section.

3 Exponential Tempering of Bounding Functions

As before, we assume that both a0 and a1 are in Cp(E1;R) and the coefficient b can be decomposed as
b(t,x,z) = b1(t,x)b2(z). In principle, our approach is based on the replacement of the polynomial fp(t,x)
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with its tempered f (t,x) = e−βx fp(t,x), and the optimization problem

min f (0,X0)
s.t. f (t,x)≥V (t,x) on E0,

A f (t,x)≤ 0 on E1,

f (t,x) = e−βx fp(t,x) on E2,
fp ∈Cp(E2;R),

(3.1)

where the decision variable is again the set of coefficients {ckt ,kx}B(0,0) given in (2.1). With this optimization
problem, in couple with a counterpart for lower bounds, we aim at finding bounds for E[V (τ ,Xτ)] based
upon a set of inequalities

g(0,X0)≤ E [g(τ ,Xτ)]≤ E [V (τ,Xτ)]≤ E [ f (τ ,Xτ)]≤ f (0,X0), (3.2)

where g(t,x) = e−βxgp(t,x) for some gp ∈Cp(E2;R).
Prior to the development of our method, let us discuss conditions for the function A f (t,x) to be well

defined. Rather than trying to cover a general class, we focus our attention on the class of Lévy-driven
stochastic differential equations, which is sufficiently large for practical use in most situations. Throughout
this paper, we will write

Aβ fp(t,x) := ∂1 fp(t,x)+(−β fp(t,x)+∂2 fp(t,x))a0(t,x)

+
1
2
(
β 2 fp(t,x)−2β∂2 fp(t,x)+∂ 2

2 fp(t,x)
)

a1(t,x)2

+
∫
R0

(
e−βb1(t,x)b2(z) fp (t,x+b1(t,x)b2(z))− fp(t,x)

−(−β fp(t,x)+∂2 fp(t,x))b1(t,x)b2(z)1(0,1](|z|)
)

ν(dz). (3.3)

Proposition 3.1. Consider the optimization problem (3.1). Fix (t,x) ∈ E1. Let b2(z) = z and let ν be
supported on R+. If

(i) βb1(t,x)> 0, or
(ii)

∫
z>1 e−βb1(t,x)zz(K∨1)ν(dz)<+∞,

then the function A f (t,x) is well defined and its sign is identical to that of Aβ fp(t,x).

Proof. Observe that
A f (t,x) = e−βxAβ fp(t,x).

Hence, we investigate Aβ fp(t,x). The drift and the diffusion components are clearly well defined. The jump
component can be rewritten as∫

R0

(
e−βb1(t,x)b2(z)−1+βb1(t,x)b2(z)1(0,1](|z|)

)
ν(dz) ∑

B(0,0)
ckt ,kxt

kt xkx

+b1(t,x)
∫
R0

b2(z)
(

e−βb1(t,x)b2(z)−1(0,1](|z|)
)

ν(dz) ∑
B(0,1)

kxckt ,kxt
kt xkx−1 (3.4)

+ ∑
B(0,2)

ckt ,kxt
kt

kx−2

∑
k=0

kxCkxkb1(t,x)kx−k
∫
R

e−βb1(t,x)b2(z)b2(z)kx−kν(dz).

Hence, Aβ fp(t,x) is well defined, if all the integrals with respect to ν are well defined. Note that the third
integral appears only when K ≥ 2. With this in mind, we suppose so during this proof.

7



First, as z ↓ 0, the integrands of (3.4) behave like z2, z2 and zk, k = 2, . . . ,K, respectively. Hence, by
(2.3), they integrate near the origin. (Note that the conditions (i) and (ii) are irrelevant to the integrability
near the origin.)

Next, as z ↑ +∞, the integrands of (3.4) are O(1), o(1) and o(1), respectively, if βb1(t,x) > 0. Hence,
again due to (2.3), the claim holds when (i) is satisfied. If (i) is not satisfied, then the integrands behave
respectively like e−βb1(t,x)z, ze−βb1(t,x)z and zke−βb1(t,x)z, k = 2, . . . ,K, at infinity.

The last claim holds by A f (t,x) = e−βxAβ fp(t,x) and e−βx > 0.

Let us return to the optimization problem (3.1). The minimization of f (0,X0) with respect to {ckt ,kx}B(0,0)

is obviously an operation identical to the minimization of fp(0,X0), multiplied by e−βX0 afterward, since
e−βX0 is independent of {ckt ,kx}B(0,0). Next, we deal with the constraint A f (t,x)≤ 0 over E1. The following
result provides a verifiable condition under which we can safely replace the constraint with Aβ fp(t,x)≤ 0.

Proposition 3.2. If β > 0 and if b1(t,x) is constant over E1, then Aβ fp(t,x) is polynomial in t and x.

Proof. All the components, but the jump component, of Aβ fp(t,x) are clearly polynomial in t and x. Con-
cerning the jump component, the integrals in (3.4) are independent of (t,x) when the conditions are im-
posed.

Remark 3.3. It seems almost necessary to have that b1(t,x) is constant over E1. As an illustrative example,
we take the Lévy measure ν(dz) = e−z/zdz, z ∈ R+, of the gamma process. We then have∫ +∞

0

(
e−βb1(t,x)z −1+βb1(t,x)z

)
ν(dz) =− ln(1+βb1(t,x))−βb1(t,x),

that cannot be polynomial in x no matter what polynomial b1 is chosen.

We have so far fixed most ingredients of the problem setting. Let us finalize the validity of the optimiza-
tion problem (3.1).

Proposition 3.4. Let β > 0, let b1(t,x) be constant over E1, let X ⊆R+∪{0}, and let f (t,x) = e−βx fp(t,x)
where fp ∈ Cp(E2;R). Assume that for each (t,x) ∈ E1, the function A f (t,x) is well defined. Then, the
Dynkin formula (2.8) holds.

Proof. Thanks to the polynomial form of Aβ fp(t,x), it suffices to check if E[e−βXt Xk
t ] < +∞ for a suit-

able k ∈ N. For any well-defined non-negative random variable X and for each k ∈ N, E[e−βX Xk] < +∞,
since e−βxxk ≤ e−k(k/β )k < +∞ for x ∈ R+ ∪ {0}. From this fact and X ⊆ R+ ∪ {0}, it follows that
E[| f (τ,Xτ)|] < +∞, and for each t ∈ [0,τ), E[|A f (t,Xt)|] < +∞. Hence, by Lemma 2.1 (i), the claim
holds.

This claims that when a non-negative process is considered, our methodology is well defined as soon as
β > 0, with no additional condition on the law of the solution of stochastic differential equations. Therefore,
the exponential tempering widens the class of stochastic differential equations for which our methodology
is well defined. For example, the integrals in (3.4) with respect to the stable Lévy measure are well defined
when β > 0, while not as soon as β ≤ 0. Also, when β < 0, one would need to check the conditions
presented in Lemma 2.1, that are often not verifiable in particular when a stochastic differential equation
is involved. We will henceforth assume that the Dynkin formula (2.8) holds and the optimization problem
(3.1) is well defined.

Now, coming back to the optimization problem (3.1), we have shown in Proposition 3.1 and 3.2 that the
constraint Aβ fp(t,x)≤ 0 is equivalent to A f (t,x)≤ 0. The optimization problem (3.1) is now transformed
into an equivalent form

e−βX0 ×

min fp(0,X0)

s.t. fp(t,x)≥ eβxV (t,x) on E0,
Aβ fp(t,x)≤ 0 on E1,
fp ∈Cp(E2;R).
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Finally, the constraint fp(t,x) ≥ eβxV (t,x) over E0 remains non-polynomial. There seem to be no exact
methods to transform eβxV (t,x) into a (piecewise) polynomial form. (Recall that V (t,x) may have disconti-
nuities.) We instead try to replace this with a (piecewise) polynomial constraint, which is a little more con-
servative than the original one. It suffices to approximate the exponential eβx by polynomial on a bounded
set KV thanks to the support of the function V . It is not very difficult to find a (piecewise) polynomial u(t,x)
such that u(t,x) ≥ eβxV (t,x) over E0. For example, for a small tolerance ε > 0, one first finds a (piece-
wise) polynomial p(t,x) such that sup(t,x)∈E0

|eβxV (t,x)− p(t,x)| ≤ ε , and then set u(t,x) = p(t,x)+ ε and
l(t,x) = p(t,x)− ε .

Suppose that we have found polynomials u(t,x) and l(t,x) such that l(t,x) ≤ eβxV (t,x) ≤ u(t,x) over
E0. Then, for each β > 0, we arrive at a polynomial programming problem

HU(β ) := e−βX0 ×

min fp(0,X0)
s.t. fp(t,x)≥ u(t,x) on E0,

Aβ fp(t,x)≤ 0 on E1,
fp ∈Cp(E2;R),

(3.5)

that is a fairly close approximation of the original problem (3.1). For lower bounds, we compute

HL(β ) := e−βX0 ×

min gp(0,X0)
s.t. gp(t,x)≤ l(t,x) on E0,

Aβ gp(t,x)≥ 0 on E1,
gp ∈Cp(E2;R).

(3.6)

The parameter β above can be chosen arbitrarily. We will look at its choice later in numerical examples.

Remark 3.5. Notice that the exponential term e−βx serves as an exponential tilting when applied to the
whole real line. It is the exponential tempering only when the state space of the stochastic differential
equation is bounded on at least one side. It seems tempting to apply the exponential tempering e−βx2

of
second order (or of a higher even order) since it tempers any polynomial function on both sides and its
derivative is still as simple as a product of a polynomial and the tempering term itself. We have however
observed that the application of a higher order tempering is not of practical use for the reason that eβx2

(in
the constraint fp(t,x) ≤ eβx2

V (t,x)) grows so fast that the polynomial approximation is very difficult even
over a bounded set.

Under mild conditions such as the moment determinate property, it is straightforward to theoretically
guarantee the convergence of the gap to zero, when considering the dual problem summarized in the Ap-
pendix. (See, for example, Theorem 7 of [9].) In practice, however, it is truly impossible to take the degrees
of polynomial arbitrarily large due to the well known curse of dimensionality of the semi-definite program-
ming.

Before proceeding to numerical examples, let us present a result on a transform of the value function V ,
of practical interest.

Proposition 3.6. Let v be in C1([0,T ];R). For f in C1,2(E2;R) such that

f (t,x)≥V (t,x)− v(t) on E0,

A f (t,x)≤− d
dt

v(t) on E1,

it holds that
E [V (τ,Xτ)]≤ f (0,X0)+ v(0).
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Proof. The result holds by

E [V (τ ,Xτ)− v(τ)]≤ E [ f (τ ,Xτ)] = f (0,X0)+E
[∫ τ

0
A f (t,Xt)dt

]
≤ f (0,X0)−E

[∫ τ

0

d
dt

v(t)dt
]
,

where we have used the assumptions imposed on f .

This result is primarily meant for the case V does not have bounded support, while V (t,x)− v(t) does.
In order for this to be actually valid in our framework, we need to look closely at the above assumptions on
f . Since f is of the form e−βx fp(t,x) and A f (t,x) = e−βxAβ fp(t,x), we get

fp(t,x)≥ eβx (V (t,x)− v(t)) on E0,

Aβ fp(t,x)≤−eβx d
dt

v(t) on E1.

This implies that the result is valid if the following two conditions are satisfied;

(i) V (τ,x)− v(τ) has compact support in terms of x almost surely, or the set E0 is bounded,
(ii) the set {(t,x) ∈ E1 : (d/dt)v(t) ̸= 0} is bounded.

Examples in the following section are related to Proposition 3.6.

4 Numerical Illustrations

In this section, we test numerically our method on a probability estimation of a stable subordinator and on
a survival probability of an Ornstein-Uhlenbeck process driven by a stable process, both without diffusion
component, that is, a1(t,x)≡ 0. Throughout this section, we set ckt ,kx ≡ 0 for kt +kx > K where K is an even
natural number, and approximate eβx by the standard Taylor expansion ∑K

k=0(βx)k/k! around the origin of
order K. The resulting approximation gap ε := max(t,x)∈E0 |eβxV (t,x)−u(t,x)| is satisfactorily small in each
example, where u(t,x) =V (t,x)∑K

k=0(βx)k/k! is then (piecewise) polynomial.

4.1 Tail Probability of Stable Subordinator

For illustrative purpose, we first test our method on a toy example; the tail probability estimation for a stable
subordinator at time T . Set X0 = 0, a1(t,x) = 0, b1(t,x) = 1, b2(z) = z, and

ν(dz) =
1

z1+α dz, z ∈ R+, (4.1)

for some α ∈ (0,1), and a0(t,x) =
∫

z∈(0,1] zν(dz). Then, the stochastic differential equation reduces to a
stable subordinator

Xt =
∫ t

0

∫
R+

zµ(dz,ds). (4.2)

In this setting, we have

Aβ fp(t,x) =∂1 fp(t,x)+ fp(t,x)
∫
R+

(
e−β z −1

)
ν(dz)

+ ∑
B(0,1)

ckt ,kxt
kt

kx−1

∑
k=0

kxCkxk
∫
R+

e−β zzkx−kν(dz), (4.3)
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where the integrals are explicit as∫ +∞

0

(
e−β z −1

)
ν(dz) =−β α

α
Γ(1−α),

and ∫ +∞

0
e−β zzkx−kν(dz) =

Γ(kx − k−α)

β kx−k−α ,

that are well defined if and only if β > 0. Hence, fix β > 0. By X0 = 0, it holds that X = R+. Moreover,
E0 = {T}×X and E1 = [0,T )×X . By Proposition 3.4, the Dynkin formula holds and our methodology
is well defined.

Now, consider the asymptotic tail probability, as λ ↑+∞,

P(X1 > λ )∼ 1
αλ α .

To this end, the value function should be set in the form of V (t,x) = 1(x > λ ), while this value function does
not have compact support. To apply Proposition 3.6, we set v(t)≡ 1 so that 1(x > λ ) = v(t)−V (t,x). (To
comply with the formulation of Proposition 3.6, the transform should instead be −1(x > λ ) =V (t,x)−v(t),
while the sign is certainly not fundamental.) Obviously, this transform is valid in our exponential tempering
approach since V (t,x)− v(t) has compact support in terms of x and (d/dt)v(t)≡ 0.

Using the selfsimilarity of stable processes {h−1/αXht : t ≥ 0} L
= {Xt : t ≥ 0}, we set V (t,x) = 1(x >

t1/αλ ) with {Xt : t ∈ [0,T ]} for some small T > 0, rather than V (t,x) = 1(x > λ ) with {Xt : t ∈ [0,1]}. We
then compute the probability through the equation

P(X1 ≤ λ ) = 1−P(X1 > λ ) = E [v(T )−V (T,XT )] ,

with λ = T−1/α . We will rather report numerical results for the probability P(X1 ≤ λ ) since this is what
our optimization procedure actually deals with.

Numerical results with fixed polynomial degrees are presented in Table 1 and 2. For example, concerning
the case α = 0.3 and T = 0.001 in Table 2, we can choose the smallest upper bound and the largest lower
bound, that is,

0.996189 ≤ P
(

X1 ≤ T−1/α
)
≤ 0.997045,

both of which happen to be from β = 3.0. Since T−1/α is sufficiently large, we have

P
(

X1 ≤ T−1/α
)
≈ 1− T

α
= 0.996667 ∈ [0.996189, 0.997045].

This also implies that the estimation of this tail probability requires one to deal with a highly rare event
simulation. To compare this result with the Monte Carlo framework, observe that

Var
(
1

(
X1 ≤ T−1/α

))
= E

[
1

(
X1 ≤ T−1/α

)2
]
−E

[
1

(
X1 ≤ T−1/α

)]2

≈ 1− T
α
−
(

1− T
α

)2

= 0.057632.

Denoting by F̂n a Monte Carlo estimator for the random variable 1(X1 ≤ T−1/α) based on n iid replications,
its 99.9999%-confidence interval is approximately given by[

F̂n −4.89
0.05763√

n
, F̂n +4.89

0.05763√
n

]
.
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To narrow the length of this approximate confidence interval to that of [0.996189, 0.997045], we need at
least n = 433539 of iid samples. This number does not support the use of Monte Carlo methods in full.

Let us discuss further on a superiority of our method over Monte Carlo methods. On one hand, although
the strong law of large number guarantees the almost sure convergence of a well-defined Monte Carlo
estimator to the true value in theory, it is rather usual that a limiting value is very far from the true value
and is extremely sensitive to the seed selected for a random number generator on computer. On the other
hand, our approach is based on a purely deterministic optimization method, free of random elements. Unlike
confidence intervals in the Monte Carlo framework, it is guaranteed that the true value sits somewhere within
the obtained optimality gap. Therefore, the optimality gap [0.996189, 0.997045] above can be considered
as a 100%-confidence interval, which certainly predominates the Monte Carlo simulation with any large
sample size. In fact, the 100%-confidence interval is simply impossible in the Monte Carlo framework
unless the estimator is simply degenerate.

α = 0.3 α = 0.6
K

6 8 10 6 8 10

T

0.97247 0.97154 0.97132 0.98829 0.98765 0.98761
0.01 (0.96667) (0.96667) (0.96667) (0.98333) (0.98333) (0.98333)

0.95981 0.96147 0.96172 0.97568 0.97693 0.97699
0.997220 0.997124 0.997104 0.998831 0.998772 0.998771

0.001 (0.996667) (0.996667) (0.996667) (0.998333) (0.998333) (0.998333)
0.995924 0.996097 0.996119 0.997594 0.997706 0.997707

Table 1: Numerical Results for the estimation of P(X1 ≤ T−1/α) with β = 2 for different polynomial degrees
K. Each consists of an upper bound, the theoretical asymptotic value (in the parentheses), and a lower bound.

α = 0.3 α = 0.6
β

1.0 2.0 3.0 1.0 2.0 3.0

T

0.97110 0.97132 0.97076 0.98846 0.98761 0.98696
0.01 (0.96667) (0.96667) (0.96667) (0.98333) (0.98333) (0.98333)

0.96045 0.96172 0.96265 0.97501 0.97699 0.97823
0.997221 0.997104 0.997045 0.998874 0.998771 0.998701

0.001 (0.996667) (0.996667) (0.996667) (0.998333) (0.998333) (0.998333)
0.995922 0.996119 0.996189 0.997463 0.997707 0.997840

Table 2: Numerical Results for the estimation of P(X1 ≤ T−1/α) with K = 10 for different exponential tem-
pering parameters β . Each consists of an upper bound, the theoretical asymptotic value (in the parentheses),
and a lower bound.

Remark 4.1. We have observed through the numerical results in Table 2 that the choice of β may not largely
affect the quality of the estimation. Note, however, that different β ’s lead to different polynomial optimiza-
tion problems. In view of intrinsic nature of the numerical optimization, the semi-definite relaxation of
polynomial optimization and so on, it is difficult to raise theoretical reasons why this family of optimiza-
tion problems gave similar bounds for different β ’s. Our method may however tighten the optimality gap
through the choice of β , without increasing the size of mathematical programming with larger polynomial
degree K. It seems that numerical results tend to be more sensitive to the choice of β as the marginal XT has
lighter tails. This would be an interesting topic as a future work.
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4.2 Survival Probability of Ornstein-Uhlenbeck Processes

Here, we test our method on the survival probability estimation of an Ornstein-Uhlenbeck process driven by
a stable subordinator. (See Suzuki, Miyoshi and Kojima [18] for a similar problem in the diffusion setting.)
Compared with the example of Section 4.1, this example entails a stopping time τ , rather than the frozen
terminal time T .

Set ν(dz) = z−1−αdz, z ∈R+ as given by (4.1), and set a0(t,x) =−λx+
∫

z∈(0,1] zν(dz) for some λ > 0,
a1(t,x) = 0, b1(t,x) = 1, b2(z) = z, and X0 > 0. Then, the stochastic differential equation reduces to

dXt =−λXtdt +
∫
R+

zµ(dz,dt), (4.4)

which is called an Ornstein-Uhlenbeck process. Its solution is given by

Xt = e−λ tX0 +

∫ t

0

∫
R+

e−λ (t−s)zµ(dz,ds).

Its sample paths can be simulated in the exact sense over a finite horizon [0,T ], T > 0, by using the series
representation of stable subordinators as

{Xt : t ∈ [0,T ]} L
=

{
e−λ tX0 +

+∞

∑
k=1

e−λ (t−Tk)

(
αΓk

T

)−1/α
1(Tk ∈ [0, t]) : t ∈ [0,T ]

}
, (4.5)

where {Γk}k∈N is a sequence of arrival times of a standard Poisson process and {Tk}k∈N is a sequence of
iid uniform random variables on [0,T ]. However, this simulation method is extremely expensive and not of
practical use due to the infinite sum for each sample path. In addition, the Euler-Maruyama discretization
of the stochastic differential equation is an expensive yet only approximative method, which in general
produces an estimation error due to the discrete monitoring.

In this setting, we have

Aβ fp(t,x) =∂1 fp(t,x)−λx(−β fp(t,x)+∂2 fp(t,x))+ fp(t,x)
∫
R+

(
e−β z −1

)
ν(dz)

+ ∑
B(0,1)

ckt ,kxt
kt

kx−1

∑
k=0

kxCkxk
∫
R+

e−β zzkx−kν(dz),

where the integrals are well defined if β > 0 and are explicit as presented in Section 4.1. Henceforth, we fix
β > 0. By X0 > 0, it holds that X = R+. By Proposition 3.4, the Dynkin formula (2.8) holds and thus our
optimization approach is well defined. Note that the Dynkin formula fails to hold as soon as β ≤ 0, since
for each t > 0,

E[Xt ]≥ e−λ tX0 + e−λ tE
[∫ t

0

∫
R+

zµ(dz,ds)
]
=+∞.

We consider the survival probability of {Xt : t ∈ [0,T ]} with finite time horizon out of the bounded set

E1 = [0,T )× [0,U ],

where U > X0. Then, τ is the (Ft)t∈[0,T ]-stopping time defined by

τ := inf{t ≥ 0 : Xt /∈ E1}∧T,

that is, the first exit time out of E1. The random vector (τ ,Xτ) indicates the exit location, where E0 can split
into two disjoint sets

Eu := [0,T ]× (U,+∞),

Er := {T}× [0,U ].
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It is enough to have Eu ∪Er for the exit location, since {Xt : t ∈ [0,T ]} is almost surely non-negative. The
unboundedness of the set Eu corresponds to the unbounded jump size of the stable subordinator.

To estimate the survival probability P((τ,Xτ) ∈ Er), we set V (t,x) := 1((t,x) ∈ Er). Since V (t,x) has
compact support, we do not have to apply Proposition 3.6. Tempered polynomial optimization problems are
formulated as

min e−βX0 fp(0,X0)
s.t. fp(T,x)≥ u(x) on [0,U ],

fp(t,x)≥ 0 on Eu,
Aβ fp(t,x)≤ 0 on E1,
fp ∈Cp(E2;R),

and

max e−βX0gp(0,X0)
s.t. gp(T,x)≤ l(x) on [0,U ],

gp(t,x)≤ 0 on Eu,
Aβ gp(t,x)≥ 0 on E1,
gp ∈Cp(E2;R),

(4.6)

where u(x) and l(x) are polynomial functions bounding eβx respectively from above and below uniformly
over Er.

x

x
t

g∗(T,x)≤ 1(x ∈ [0,U ])≤ f ∗(T,x) f ∗(t,x)≥ 0, (t,x) ∈ Eu

Figure 1: Optimal Tempered Polynomial Functions of the Optimization Problems (4.6) with λ = 1, T = 0.1,
U = 1, and β = 3.

In Figure 1, we draw optimal bounding functions f ∗ and g∗ to illustrate the advantage of our exponential
tempering approach. First, the left figure indicates that at terminal time T , the bounding functions bound
the step function 1(x ∈ [0,U ]) from above and below. In contrast to the polynomial case with explosion at
infinity, it also indicates that they satisfy the ideal property that for each t ∈ [0,T ],

lim
x↑+∞

f ∗(t,x) = lim
x↑+∞

g∗(t,x) = 0.

This avoids bounding functions to be far from one another and helps to achieve a tight optimality gap.
Next, the right figure draws f ∗ on the set Eu. Here, we are required to deal with two somewhat conflicting
requirements on the positive function f ∗; it is desired to be as close to zero as possible uniformly over Eu,
while the inequality f ∗(T,U)≥ 1 must hold at the boundary point (T,U). As can be observed, however, our
approach works effectively under such a complex circumstance in such a way that the tempered bounding
function f ∗ tends rapidly to vanish at infinity. Let us emphasize again that this never comes true with
bounding functions of polynomial form, that explode at infinity.

Remark 4.2. In this problem setting, other quantities can also be estimated by our approach. One exam-
ple is the moment of the exit time, investigated in [4]. First, consider the value function V (t,x) = tk for
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E[V (τ ,Xτ)] = E[τk]. The tempered optimization problem for this setting,

min e−βX0 fp(0,X0)

s.t. fp(t,x)≥ tkeβx on E0,
Aβ fp(t,x)≤ 0 on E1,

and
max e−βX0gp(0,X0)

s.t. gp(t,x)≤ tkeβx on E0,
Aβ gp(t,x)≥ 0 on E1,

is not solvable due to the exponential tempering because the set E0 is unbounded and the value function
V (t,x) does not have bounded support. Instead, by applying Proposition 3.6 with v(t) = tk, we arrive at the
tempered optimization problems are now formulated as

min e−βX0 fp(0,X0)
s.t. fp(t,x)≥ 0 on E0,

Aβ fp(t,x)≤−eβxktk−1 on E1,

and
max e−βX0gp(0,X0)
s.t. gp(t,x)≤ 0 on E0,

Aβ gp(t,x)≥−eβxktk−1 on E1.

Those are valid formulations since then V (t,x)− v(t)≡ 0 and the set E1 is bounded.

Remark 4.3. We have so far considered exponential tempering with β > 0, while a negative β may also
be chosen as soon as all required conditions are satisfied. For instance, consider the Ornstein-Uhlenbeck
process (4.4) with µ being a Poisson random measure whose compensator is given by the truncated stable
Lévy measure ν(dz) = z−1−αdz supported on (0,η ], for some η > 0. Due to its bounded size of jumps, the
overshoot out of the set E1 in is certainly bounded, that is, the set Eu is bounded; Eu = [0,T ]× (U,U +η).
Contrary to our initial motivation, the optimization problems (4.6) can then be formulated with every β ∈
R. In connection with Remark 4.1, however, this provides us with some possibility of obtaining a tighter
optimality gap.

5 Concluding Remarks

In this paper, we have proposed an improvement of the optimization methodology of [5] through exponential
tempering of bounding functions when value functions have compact support. Our approach yields lower
and upper bounds of the expectation for stochastic differential equations with jumps without Monte Carlo
sample paths simulation, which often requires extremely expensive computing effort. We have shown that
the tempered polynomial optimization can be transformed into a polynomial optimization problem after the
polynomial approximation of the exponential function on a compact set. Moreover, exponential tempering
widens the class of stochastic differential equations to which our methodology is actually applicable.

As discussed in Remark 4.1 and 4.3, the estimation quality may be improved by choosing the parameter
β wisely, without increasing the size of mathematical programming. We did not present an exhaustive
study of its range of applicability relative to different value functions or underlying stochastic differential
equations, which is significantly large. In fact, encouraged by the quality of numerical results and by the
wide applicability, our methodology is expected to be a standard tool for the weak approximation of a general
class of stochastic differential equations with jumps. We should also remark that this framework may not be
as robust as Monte Carlo methods when underlying stochastic differential equations are multivariate. These
issues will be addressed in subsequent papers.
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Appendix: Generalized Problem of Moments

In principle, this approach is aimed at maximizing and minimizing the expectation, rather than its bounds
as in our approach, where the underlying probability measure implicitly serves as the decision variable,
under the so-called moment conditions that reflect necessary conditions for a set of scalars to be identified
with moments of the probability measure. Due to the nature of methods, they are often called a method-of-
moments approach altogether in the literature.

To be more mathematically precise, we illustrate this approach under the setting of Section 4.2. Define
the distribution of the exit location by

ν0(B) := P((τ,Xτ) ∈ B), B ∈ B(E0),

and the expected occupation measure on the set E1 until the exit by

ν1(B) := E
[∫ τ

0
1((t,Xt) ∈ B)dt

]
, B ∈ B(E1).

With the measures ν0 and ν1, the Dynkin formula (2.8) reads∫
Er

f (t,x)ν0(dt,dx) = f (0,X0)−
∫

Eu

f (t,x)ν0(dt,dx)+
∫

E1

A f (t,x)ν1(dt,dx),

which is the so-called basic adjoint equation, named by Helmes, Röhl and Stockbridge [4]. We have shown
that for each non-negative integer k and l,

b(top)
k,l :=

∫
Eu

e−βxtkxlν0(dt,dx),

b(rig)l :=
∫

Er

e−βxxlν0(dt,dx),

mk,l :=
∫

E0

e−βxtkxlν1(dt,dx).

are well defined. In the method-of-moments, the quantities above serve as decision variables in the resulting
semi-definite programming. First, by plugging a tempered monomial of the form

f (t,x) = e−βxtkxl,

into the basic adjoint equation, we obtain a family of equality constraints that moment sequence should
meet. Second, we constrain that the adequately defined moment and localizing moment matrices are positive
semi-definite. It is a necessary condition for decision variables to be moment sequence with respect to some
measure on Eu, Er, and E0. Under these two constraints, the maximal and minimal values of ∑k ckb(rig)k are
respectively upper and lower bounds for the desired survival probability, where the sequence {ck}k of real
numbers must satisfy, respectively, ∑k ckxk ≥ eβx and ∑k ckxk ≤ eβx uniformly over [0,U ].

References
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