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Abstract— A precise theoretical model for the thermal 

sensitivity of Love wave mode is significant in the structure 

design, temperature compensation, and the prediction of thermal 

behavior. This paper proposes a weak form nonlinear model to 

calculate the thermal sensitivity of Love waves on arbitrary 

layered structures. The third-order material constants, as well as 

the thermal stress and strain tensors between the substrate, 

electrodes, and wave-guiding layer, are taken into account in the 

model. The 9×9 effective elastic matrix and the 3×9 effective 

piezoelectric matrix are imported into the nonlinear constitutive 

equations and boundary conditions using weak form expressions. 

A temperature-compensated Love wave mode resonator on a 

layered ZnO/IDT/quartz structure is obtained. The theoretical 

model is verified through the comparison of experimental and 

analytical results. The model is beneficial for the design of Love 

wave devices and sensors. 

Index Terms— Love wave; third-order constants; frequency 

temperature characteristic; thermal sensitivity 

I. INTRODUCTION  

Ingle-port Love wave mode sensors have the promising 
potential of being wireless sensing platforms for 

measuring physical or chemical parameters, such as gas and 
liquid sensing [1], [2]. Love waves are shear waves that 
propagate in a layered structure consisting of a substrate and a 
film layer. The film acts as a wave-guiding layer deposited on 
the substrate. The condition for the Love wave mode is that 
the shear velocity of the wave-guiding layer is smaller than 
that of the substrate. The substrate can be quartz, LiNbO3, 
LiTaO3 or other piezoelectric materials. On one hand, the 
sensitive film is deposited directly on the wave-guiding layer 
as an active sensing layer, which enhances the sensing areas 
and thus improves the sensitivity to surface disturbances. On 
the other hand, the interdigital transducer (IDT) and reflector 

gratings are naturally protected by the insulating wave-
guiding layer [3]. However, the frequency fluctuation of the 
Love wave mode caused by the environmental temperature is 
a crucial factor affecting the measurement performance. In 
order to accurately predict the thermal behavior, design a new 
structure of Love wave mode devices, and optimize the 
temperature compensation, a precise theoretical model for the 
thermal sensitivity of Love wave mode attracts much attention.  

Apart from the experimental studies on the thermal 
sensitivities of Love waves on quartz substrates [4]-[6], 
several theoretical models have been investigated. Jakoby et 

al. have numerically analyzed the rotated quartz cuts and 
guiding layer thicknesses for Love wave devices using the 
propagator matrix approach, and a zero temperature 
coefficient of frequency (TCF) Love wave device at 35 ℃ is 
obtained [7], [8]. Josse has derived the effective permittivity 
function of the film-substrate interface to study the frequency-
temperature characteristics of Love wave devices without 
considering the internal stress of the substrate by the overlay. 
The frequency variation of 80 ppm is measured over a 
temperature range -30 °C to 40 °C, which is greater than the 
shift predicted by theoretical calculations [9]. The frequency-
temperature characteristics of Love wave mode on quartz 
have been investigated using the numerical Campbell and 
Jones method [10], [11]. The frequency shift in the 
temperature range from 20 ℃ to 80 ℃ is 170 ppm, and the 
zero TCF is obtained at 25 ℃ [11]. A finite element analysis/ 
boundary element method (FEA/BEM) has been investigated 
for the thermal sensitivity based on a material coefficient 
perturbation according to Campbell & Jones approach [10], 
[12]. The experimental turnover temperature occurs 20 ℃ 
below the theoretical temperature [12]. It is not a general 
model for the analysis of thermal effects on surface acoustic 
waves [13]. 

The perturbation theory is a mathematical method for 
finding approximate solution to a problem. It is widely used 
in various areas including the study for the thermal behavior 
of surface acoustic waves [14]. Sinha and Tiersten have 
presented the perturbation theory to calculate the temperature-
velocity characteristics for surface acoustic wave resonators 
[15]. Ballandras et al. have extended the perturbation theory 
to take into account the influence of metallization on the 
thermal sensitivity of Rayleigh wave for periodic grooves and 
metal strip gratings [16]. The thermal stress and strain 
distributions among the substrate, layer, and electrodes are 
dependent on temperatures. In a layered structure, the thermal 
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expansion of the substrate, the layer, and electrodes is 
different. The thermal stress and strain induced by the 
temperature are important and non-negligible in the 
calculation of the thermal sensitivity. In addition, because of 
the anisotropy of some substrates and layers, the thermal 
expansions are also anisotropic. Therefore, the boundary 
conditions for the calculation of surface acoustic waves are 
complicated and need to be considered with the thermal stress 
and strain tensors arising from the differential thermal 
expansion among the substrate, the layer, and electrodes in 
layered structures. 

The purpose of this paper is to develop a weak form 
nonlinear model for computing the thermal sensitivity of the 
Love wave mode on the quartz substrates accurately. This 
model presented in the paper combines the perturbation 
theory and the finite element method (FEM) for the thermal 
sensitivity of the Love wave mode. The FEM solver is 
utilized to accurately model the thermal stress and strain 
tensors of the film, substrate, and electrodes, as well as the 
interfaces between them. The nonlinear constitutive equations 
and boundary conditions are modified using weak form 
expressions with the combination of the contribution of 
thermal stress and strain tensors, as well as the influence of 
the third-order material constants of the substrate, electrodes, 
and layers. The thermal properties of Love wave mode on the 
quartz substrate are studied to verify the model. The 
calculations of frequency-temperature characteristics match 
well with the experiment results. By optimizing the thickness 
of the wave-guiding layer, a temperature-compensated Love 
wave resonator with an enhanced electromechanical coupling 
factor is obtained, with the relative frequency shift less than 
50 ppm in the temperature range of 25 ℃ to 60 ℃. This 
model improves the prediction accuracy of the frequency-
temperature characteristics and is beneficial for the design of 
temperature-compensated Love wave devices.  

The remaining of the paper is organized as follows: In 
section Ⅱ, the weak form nonlinear model is analyzed for the 
temperature behavior of Love wave mode. In section Ⅲ, the 
accuracy of the model is verified by experiments. Conclusions 
are discussed in section Ⅳ. 

II. MODEL ANALYSIS  

The three-dimensional model of a layered wave-guiding 
layer/IDT/quartz structure is established, as shown in Fig. 1. 
The symbol x is the propagation direction, and y is the 
aperture direction. The perfectly matched layer is applied to 
the bottom of a quartz substrate to reduce the wave reflection 
at the bottom and the model size. The thermal field, solid 
mechanical field, and static electric field are added into the 
model. The mesh is dynamically adaptive to the material 
deformation. 

 
Fig. 1. The three-dimensional layered Love wave structure on quartz. 

The thermal sensitivity analysis is based on the weak form 
expressions in a Lagrange description, as shown in Fig. 2. 
Firstly, the model is set in a natural state with no deformation 
at the reference temperature Θ0. Then, a thermal biasing field 
at the given temperature Θ is applied in an intermediate state, 
resulting in the thermal expansion [17]. The thermal stresses 
and strains mainly concentrate on the interfaces between the 
electrode, wave-guiding layer, and substrate according to the 
results of the stationary analysis. Finally, the thermal stress 
and strain tensors of the structure are superimposed in the 
final state. The displacement distribution and resonance 
frequency of the Love wave mode are obtained based on the 
modal analysis.  
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Fig. 2. The schematic diagram of the thermal deformation in Lagrange 
description. 

In the model, the fundamental elastic, piezoelectric, and 
dielectric constants are replaced by the effective material 
constants dependent on the thermal biasing field. The third-
order material constants are imported into effective material 
constants. At a given temperature Θ, because of the different 
thermal expansion coefficients of the wave-guiding layer, 
electrode, and substrate, the thermal strain tensors of mesh 
nodes are diverse from each other. The boundary conditions 
of interface surfaces are complicated, which increases the 



difficulty in calculating the thermal sensitivity by solving the 
nonlinear piezoelectric constitutive equations.  
 In order to accurately solve the thermal sensitivity of 
surface acoustic waves on the layered structure in a thermal 
field, the weak form partial differential equation (PDE) in 
finite element analysis modifies the nonlinear constitutive 
equations flexibly using numerical integration of the original 
form PDE. The mesh nodes are integrated by weak form 
equations in the solution domain, which reduces the 
maximum order of the spatial derivatives with the advantage 
of the fewer continuity boundary condition requirements 
compared to the original form piezoelectric PDE. The weak 
form nonlinear piezoelectric constitutive equations are 
defined as follows： 
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where Gij , Rik , Nij  are the effective elastic constant, effective 
piezoelectric constant, and effective dielectric constant in 
Lagrange coordinate, respectively. Ω denotes the solution 
domain of the substrate and wave-guiding layer. δ represents 
the mesh node in the solution domain. ui

δ, φk
δ , Tδ , T


and Dδ 

are the displacement, electric potential, the second Piola-
Kirchhoff stress tensor, initial stress tensor, and electric 
displacement of the node, respectively. v is the test function 
utilizing the Lagrange multiplier.  
 The effective piezoelectric constants of metal electrodes 
are set to zero due to non-piezoelectric property. Therefore, the 
weak form expressions are defined as follows: 
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Fig. 3 presents the thermal strain and stress distributions in the 
meshes. The thermal strains mostly distribute in the electrode. 
Simultaneously, the thermal stresses primarily distribute in the 
wave-guiding layer and electrode. The stress and strain 
distributions of all mesh nodes are integrated using Lagrange 
interpolation in the solution domain. 

 
(a)                              (b) 

 
(c)                                     (d) 

 
(e)                                     (f) 

Fig. 3. The thermal stress and strain distributions in the x direction (a and b). 
The thermal stress and strain distributions in the y direction (c and d). The 
thermal stress and strain distributions in the z direction (e and f). 

The effective material constants under a thermal biasing field 
are defined by： 
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where ΔΘ=Θ-Θ0 , 0
L Mc   , 0

ije , 0
ij
 , 0

L M AB
c   , 0

ijk
e , and 0

ijk
 are the 

fundamental elastic constants, piezoelectric constants, 
dielectric constants, the third-order elastic, the third-order 
piezoelectric, and dielectric constants, respectively. 1

L Mc   , 1
ije , 

and 1
ij are the first-order temperature derivatives of the 

fundamental elastic constants, piezoelectric constants, and 
dielectric constants, respectively. 

kS
 , w

 , and
kE
  are the 

thermal strain, displacement gradient, and initial electrical field 
of each mesh node in the calculation domain, which are 
multiplied by the third-order constants and fundamental 
constants as nonlinear dynamic increments caused by the 
thermal field. Therefore, each node has its own effective 
material constants. It is noteworthy that the thermal stress and 
strain tensors of each mesh node in the substrate, wave-guiding 
layer and electrodes are calculated using the stationary analysis 
at a given temperature Θ.  
 The effective elastic and piezoelectric constants have lower 
symmetry than fundamental constants due to the third-order 
nonlinear components. Therefore, the effective elastic constant 
is a 9×9 matrix G9×9 , and the effective piezoelectric constant 
is a 3×9 matrix R3×9 [18]. However, the general dimensions of 
the elastic matrix and piezoelectric matrix in the FEM 
piezoelectric coupling module are 6×6 and 3×6, which do not 
meet the requirements for the effective elastic matrix and 
effective piezoelectric matrix. In this model, the dimensions of 
the effective elastic and piezoelectric matrixes with nonlinear 
terms are defined flexibly using weak form expressions. The 
effective elastic matrix, the effective piezoelectric matrix, and 



the rules employed to compress indexes for the effective 
elastic matrix are elucidated in the appendix.  
 The thermal expansion effect with geometric nonlinearity 
is added into the model based on the coupling of the thermal 
field and solid mechanical field. The interfaces among the 
substrate, layer, and electrodes are defined as follows:  

 qAl q Al
 =    (4) 

 ql q layer
 =    (5) 

 lAl layer lAl
 =    (6) 

The stress-free boundary condition is applied at the top surface 
of the wave-guiding layer. Continuous boundary conditions 
are applied to the displacements and stresses at the interfaces 
of the substrate, electrode, and wave-guiding layer as follows: 
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The wave propagation is solved based on the simultaneous 
solution of the nonlinear piezoelectric constitutive equations 
and the motion equation. The weak form equation is integrated 
by parts to convert a body integration to a surface integration 
over a solution domain Ω. The interface boundary conditions 
are imported into the weak form equations as follows: 

2

2

2

d d d ( ) d

d d d ( ) d

d d d ( ) d

q qAl ql q

layer lAl ql layer

Al qAl lAl Al

ij j ik k

ij j ik k

ij j

uv T v T v T G u R v

uv T v T v T G u R v

uv T v T v T G u v

    

    

  

 

 



 
   

 
   

 
   

 = +  −  +  +  

 =  +  −  +  +  

 =  +  −  +  

   

   

  













(11) 

where ρ and ω are the density and angular frequency. TГ is the 
surface stress, which is continuous across the interface of 
different materials. Г is the surface area of the domain Ω. 
Therefore, boundary conditions of the substrate, electrode, and 
layer are specified in the weak form equations. In the same 
way, the weak form electrical boundary conditions are 
imported as follows: 
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where σГ is the surface electric charge at the interfaces. 
Descriptions of the key modeling steps are given as follows: 
1. Defining the material properties, including the effective 
elastic constants (9×9 matrix), effective piezoelectric constants 
(3×9 matrix) and effective dielectric constants, which are 

functions of the temperature. The environmental temperature 
and thermal expansion coefficients are also set. 
2. Defining the weak form PDEs for piezoelectric and elastic 
materials, including the stress and strain tensors (1×9 vector) 
in Lagrange coordinate.  
3. Updating the thermal stress and strain tensors resulting from 
the stationary analysis at the given temperature.  
4. Using the modal analysis, the relative frequency shift caused 
by temperature is calculated. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

In the following part, 25℃ is set as the reference 
temperature. The fundamental material constants, the third-
order material constants and temperature coefficients of 
quartz, ZnO, SiO2 and aluminum are taken from the 
references [19]-[25].  

A. SiO2/35.2°YX+90°-cut quartz 

The frequency-temperature characteristic of the Love wave 
mode at the resonance frequency on SiO2/35.2°YX+90°-cut 
quartz structure is shown in Fig. 4. SiO2 works as a wave-
guiding layer. The wavelength is 48.4 μm. The thickness of 
the aluminum electrode is 150 nm, and the metallization ratio 
is 0.5. SiO2 thickness is 1 μm. The experimental data are taken 
from [9]. In this section, the FEM Campbell model, referred 
to the FEM model using the temperature coefficients of quartz 
according to the Campbell method [10], [26], is also 
calculated for comparison. This model considers the variation 
of material constants with temperature and the impact of the 
thermal expansion on the propagation of surface acoustic 
waves. It is seen that the simulation results of the weak form 
nonlinear model are more consistent with the experimental 
data than that of the FEM Campbell model. The first-order 
TCF of Love wave mode is 0.47 ppm/℃, and the turnover 
temperature is 0 ℃. Although the relative frequency shift is 
less than 100 ppm in a temperature range from -40 ℃ to 
40 ℃, the frequency shift increases rapidly over the room 
temperature. When the temperature increases from 50 ℃ to 
100 ℃, the relative frequency shift decreases from -100 ppm 
to -600 ppm. When the SiO2 thickness is 3.158 μm, the 
frequency-temperature dependence of the resonance frequency 
is shown in Fig. 5. The turnover temperature rises to 60 ℃. 
The computed turnover temperature of FEM Campbell model 
is 20 ℃ below the experimental turnover temperature. The 
theoretical data of the weak form model match well with the 
experimental results. However, the electromechanical 
coupling coefficient K2 is only 0.07% due to the non-
piezoelectricity of the SiO2 layer. 



 
Fig. 4. Comparison of theoretical and experimental frequency-temperature 
characteristics of Love wave on SiO2/35.2ºYX+90º-cut quartz. The SiO2 
thickness is 1 μm. 

 
Fig. 5. Comparison of theoretical and experimental frequency-temperature 
characteristics of Love wave on SiO2/35.2ºYX+90º-cut quartz. SiO2 thickness 
is 3.158 μm. 

B. ZnO/ST+90°-cut quartz 

Compared to the SiO2 wave-guiding layer, a ZnO thin film 
has the advantages of piezoelectric property and lower 
acoustic velocity. The velocity of shear wave in the ZnO thin 
film is 2578 m/s, slower than the quartz substrate’s. Thus, a 
ZnO film is employed as a wave-guiding layer to confine the 
Love wave energy near the surface. 

The shear-horizontal (SH) wave mode at the resonance 
frequency on ST+90°-cut quartz has a positive first-order TCF 
around +30 ppm/℃, as shown in Fig. 6. The results of weak 
form model are consistent with the experimental data. Fig. 7 
depicts the measured S11 of the Al/ST+90°-cut quartz 
resonator. It can be seen that the resonance frequency is 
483.48 MHz at the room temperature. There is an obvious 
resonance frequency shift when the temperature increases 
from 25 ℃ to 60 ℃. The resonance frequency increases to 
483.99 MHz at 60 ℃, confirming the positive TCF value of 
ST+90°-cut quartz. Thus, to achieve a zero TCF structure, the 
negative TCF of the ZnO layer is compensated by the positive 
TCF value of the ST+90°-cut quartz. Fig. 8 illustrates the 
electromechanical coupling coefficient K2 and the first-order 

TCF for the Love wave mode as a function of the normalized 
ZnO film thickness on the ZnO/ST+90°-cut quartz structure. 
The wavelength (λ) is 10 μm. It is found that K2 increases to 
the maximum value of 0.29% at hZnO=0.03λ and then 
decreases. The first-order TCF decreases with the growth of 
ZnO thickness due to the negative temperature coefficients of 
ZnO elastic constants. The zero TCF is obtained when ZnO 
thickness is 0.05λ, and K2 is 0.25%. The phase velocity 
decreases from 4870 m/s to 3660 m/s with the increase of 
ZnO thickness from 0.02λ to 0.1λ. 

 
Fig. 6. Theoretical and experimental frequency-temperature characteristics 
of SH wave on ST+90º-cut quartz. The Al electrode thickness is 100 nm. 

 
Fig. 7. The measured S11 of the Al electrodes/ST+90°-cut quartz resonator. 

 



Fig. 8. The electromechanical coupling coefficient and phase velocity of 
Love wave mode on ZnO/ST90°-cut quartz as a function of the normalized 
ZnO thickness, hAl=0.01λ, r=0.5.  

When the ZnO thickness is 0.05λ, the thermal strains of the 
interfaces in ZnO/ST+90°-cut quartz structure are illustrated in 
Fig. 9. The symbol x is the propagation direction, and y is the 
aperture direction. The thermal strain at the interface of layers 
is determined by the thermal expansions of surrounding 
materials. At the reference temperature of 25 ℃, the thermal 
strains of all nodes are zero. Due to the anisotropy of quartz, 
the thermal strains in the x, y, z directions are different. The 
thermal strains of the interfaces increase with the temperature 
increasing or decreasing far away from 25 ℃, which affects 
the nonlinear components in the effective constants. In 
addition, the thermal strains of the interface ГqAl are all larger 
than those of interface ГlAl and interface Гql, because the 
thermal expansion coefficients of the quartz (α11=13.71×10-

6/℃, α33=7.48×10-6/℃) and the Al electrode (α11=18×10-6/℃) 
are larger than that of ZnO thin film (α11=4×10-6/℃, 
α33=2.1×10-6/℃) [19], [20]. The thermal expansion 
coefficients of quartz, Al, and ZnO are on the same order of 
magnitude, and none of them are negligible. The thermal strain 
of the interface ГqAl in y direction is the maximum at a fixed 
temperature. 

 
Fig. 9. Thermal strains of interfaces versus the temperature on ZnO/ST+90°-
cut quartz. hZnO=0.05λ, hAl=0.01λ, r=0.5. 

 The average thermal stresses of the interfaces are 
illustrated in Fig. 10. At the reference temperature 25 ℃, the 
thermal stresses are zero. They increase with the temperature 
changes far away from 25 ℃. It is found that the thermal 
stresses mainly concentrate on the surface of the metal 
electrode, especially on the interface between the electrode and 
quartz in the aperture direction. The thermal stress in the 
aperture direction of an interface is larger than those in other 
directions. Moreover, the thermal stress on the interface ГqAl 
between the quartz and electrode in y direction is twice that on 
the interface ГlAl between the ZnO layer and electrode in the 
aperture direction.  

 
Fig. 10. Thermal stress of interfaces on ZnO/ST+90°-cut quartz. hZnO=0.05λ, 
hAl=0.01λ, r=0.5. 

Based on the simulation results of the model, one-port 
Love wave mode resonators on the ZnO/ST+90°-cut quartz 
structure have been fabricated. Realizations are done using 
conventional ultraviolet (UV) lithography and lift-off 
technique. The wavelength of the fabricated device is 10 μm. 
The thickness of the aluminum electrode is 100 nm, and the 
metallization ratio is 0.5. The number of IDT pairs is 100, and 
the number of reflective gratings is 200 on both sides of the 
IDTs. The aperture length of the resonator is 566 μm. 
Subsequently, a ZnO layer of 500 nm was deposited, and 
patterned by a maskless lithography process and lift-off. The 
ZnO film was obtained by radio-frequency (RF) sputtering of 
a 4 inch oxygen rich target at 150 W with 3×10-3 mbar and 8 
cm3/min flow rate of both argon (Ar) and oxygen (O2). 

As shown in Fig. 11, the calculated thermal sensitivity of 
the Love wave model at the resonance frequency is consistent 
with the experimental result. The solid line represents the 
simulation data, and the dotted lines indicates the increasing 
and decreasing temperatures for the two experimental curves. 
The arrows indicate the temperature up and down. A stable 
frequency-temperature characteristic is obtained with the first-
order TCF -1.26 ppm/℃. The relative frequency shift is less 
than 50 ppm in a temperature range from 25 ℃ to 60 ℃. The 
measured S11 parameters of the Love wave device at the room 
temperature and at 60 ℃ are shown in Fig. 12. The resonance 
frequency is 409.68 MHz at the room temperature. It can be 
seen that there is little shift of the resonance frequency when 
the temperature increases from 25 ℃ to 60 ℃, confirming the 
near zero TCF of the achieved structure. 



 
Fig. 11. The simulation and experimental frequency temperature curves of 
Love wave mode on ZnO/ST+90°-cut quartz with ZnO thickness 500 nm.  

 
Fig. 12. The measured S11 of the ZnO/ST+90°-cut quartz resonator. 

A multi-layered structure of ZnO/(IDT+SiO2)/-
52°YX+90°-cut quartz with embedded electrodes is considered 
for temperature compensation to design a Love wave device 
with a wider range of thermal stability. Considering that the 
SH wave resonator on -52°YX+90°-cut quartz reduces the 
frequency temperature fluctuation to a half of the ST-cut 
quartz [27], this cut provides the possibility of achieving a 
better temperature stability for Love wave devices. Amorphous 
SiO2 is filled between the electrodes, and the upper surface of 
SiO2 is polished to keep flat. The ZnO is deposited on the 
polished flat SiO2 layer.  Temperature compensation is 
obtained with an optimized combination of ZnO and SiO2 
layers. The wavelength (λ) is 10 μm. ZnO thicknesses is 
0.024λ. SiO2 and aluminum electrode thicknesses are both 
0.03λ. The metallization ratio is 0.5. The calculated frequency 
temperature curve of the resonance frequency is shown in Fig. 
13. The relative frequency shift is less than 20 ppm over a 
wide temperature range of -40 ℃-60 ℃. Its temperature 
stability is superior to that of the ZnO/ST+90°-cut quartz. The 
enhanced of thermal stability could be explained by the 
positive temperature coefficients of added SiO2 layer. 
However, the reflective coefficient of this structure is 0.00051. 
It is smaller than that of ZnO/ST+90°-cut quartz (0.055). 

 
Fig. 13. The frequency temperature curve on ZnO/(IDT+SiO2)/-52°YX+90°-
cut quartz.  

IV. CONCLUSION 

The weak form nonlinear model is developed to accurately 
compute the thermal sensitivity of the Love wave mode on the 
quartz substrates. The third-order material constants, thermal 
strains, and stresses are taken into account with the coupling of 
thermal and mechanical fields. The temperature behavior of 
the Love wave device is calculated. The effect of ZnO 
thickness on the frequency-temperature characteristics of Love 
wave mode is studied for temperature compensation. The 
analytical results of weak form model are in good agreement 
with the experimental data. The results contribute to designing 
the Love wave resonators as wireless sensors with a wide and 
stable operating temperature range. 

APPENDIX 

Table I lists the rule used to compress indexes for the 
effective elastic matrix. 

TABLE I.  INDEX ABBREVIATION RULE [18] 

11→1 22→2 33→3 
23→4 31→5 12→6 
32→7 13→8 21→9 

 
 The rotated YX+90°-cut quartz is adopted as the substrate 
in this model. The effective elastic matrix of rotated YX+90°-
cut quartz is defined as follows: 

11 12 13 15 18

12 11 13 25 28

13 13 33 35 38

44 46 47 49

15 25 35 55 58

46 66 67 69

47 67 77 79

18 28 38 58 88

49 69 79 99

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0 0

G G G G G

G G G G G

G G G G G

G G G G

G G G G G G

G G G G

G G G G

G G G G G

G G G G

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

 



The effective piezoelectric matrix of rotated YX+90°-cut 
quartz is defined as follows: 

16 17 1914

21 22 23 25 28

34 36 37 39

0 0 0 0 0

0 0 0 0

0 0 0 0 0

R R RR

R R R R R R

R R R R

 
 =  
    

The effective elastic matrix of ZnO wave-guiding layer is 
defined as follows: 

11 12 13

12 11 13

13 13 33

44 47

44 58

66 69

47 44

58 44

69 66

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

G G G

G G G

G G G

G G

G G

G G

G G

G G

G G

 
 
 
 
 
 
 
 
 
 
 
 
 
   

The effective elastic matrix of aluminum electrode is defined 
as follows: 

11 12 12

12 11 12

12 12 11

66 66

66 66

66 66

66 66

66 66

66 66

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

G G G

G G G

G G G

G G

G G

G G

G G

G G

G G
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