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A WEAK FORM OF SOME TYPES OF CONTINUOUS
MULTIFUNCTIONS

ERDAL EKICI AND JIN HAN PARK

Abstract. The aim of this paper is to introduce and study upper
and lower almost γ-continuous multifunctions as a generalization of
some types of continuous multifunctions including almost continuity, al-
most α-continuity, almost precontinuity, almost quasi-continuity and γ-
continuity. Furthermore, basic characterizations, preservation theorems
and several properties concerning upper and lower almost γ-continuous
multifunctions are investigated. The relationships between almost γ-
continuous multifunctions and the other types of continuity are also
discussed.
Keywords: open, regular open, continuity, γ-continuity, almost
γ-continuity, multifunction, almost continuity, almost α
-continuity, almost quasi-continuity, almost precontinuity.

1. Introduction

Many authors have researched and studied several stronger and weaker
forms of continuous functions and multifunctions. It is well known that con-
tinuity and multifunctions are basic topics in general topology and in set
valued analysis and in several branches of mathematics. Multifunctions and
of course continuous multifunctions stand among the most important and
most researched points in the whole of the Mathematical Science. Many
different forms of continuous multifunctions have been introduced over the
years. Some of them are semi-continuity [22], α-continuity [16], precontinu-
ity [26], quasi-continuity [25], γ-continuity [2] and δ-precontinuity [21].

1Received: May 3, 2006
22000 Mathematics Subject Classification: 54C08, 54C10, 54C60

13



14 ERDAL EKICI AND JIN HAN PARK

The purpose of this paper is to give a new weaker form of some types of
continuity including almost continuity [24], almost α-continuity [30], almost
precontinuity [31], almost quasi-continuity [19, 29] and γ-continuity. In this
paper, almost γ-continuity is introduced and studied. Moreover, basic prop-
erties and preservation theorems of almost γ-continuous multifunctions are
investigated and relationships between almost γ-continuous multifunctions
and the other types of continuity are investigated.

In Section 3, the notion of almost γ-continuous multifunctions is intro-
duced and characterizations and some relationships of almost γ-continuous
multifunctions and basic properties of almost γ-continuous multifunctions
are investigated and obtained. Furthermore, the relationships almost γ-
continuity and the other types of continuity are investigated. In Section 4,
various relationships are investigated. In Section 5, the relationships between
almost γ-continuity and graphs, product spaces are obtained. In Section 6,
the other several properties of almost γ-continuity are investigated.

2. Preliminaries

In this paper, spaces (X, τ) and (Y, υ) (or simply X and Y ) always
mean topological spaces on which no separation axioms are assumed unless
explicitly stated. Let A be a subset of a space X. For a subset A of (X, τ),
cl(A) and int(A) represent the closure of A with respect to τ and the interior
of A with respect to τ , respectively.

A subset A of a space X is said to be regular open (respectively regular
closed) if A = int(cl(A)) (respectively A = cl(int(A))) [35].

The δ-interior [36] of a subset A of X is the union of all regular open sets
of X contained in A is denoted by δ − int(A). A subset A is called δ-open
[36] if A = δ − int(A), i. e., a set is δ-open if it is the union of regular open
sets. The complement of δ-open set is called δ-closed. Alternatively, a set
A of (X, τ) is called δ-closed [36] if A = δ − cl(A), where δ − cl(A) = {x ∈
X : A ∩ int(cl(U)) 6= ∅, U ∈ τ and x ∈ U}.

A subset A of a space X is said to be α-open [17] (resp. semi-open [18],
preopen [14], b-open [4] or γ-open [11] or sp-open [10], δ-preopen [33], β-
open [1] or semi-preopen [3]) if A ⊂ int(cl(int(A))) (resp. A ⊂ cl(int(A)),
A ⊂ int(cl(A)), A ⊂ cl(int(A)) ∪ int(cl(A)), A ⊂ int(δ − cl(A)), A ⊂
cl(int(cl(A)))). The family of all open (resp. α-open, semi-open, preopen,
γ-open, δ-preopen, β-open) sets of X containing a point x ∈ X is denoted
by O(X, x) (resp. αO(X,x), SO(X,x), PO(X,x), γO(X, x), δPO(X, x),
βO(X, x)).

The complement of a semi-open (resp. α-open, preopen, β-open) set is
said to be semi-closed [9] (resp. α-closed [15], preclosed [12], β-closed [1]).

The complement of a γ-open set is said to be γ-closed [11]. The intersec-
tion of all γ-closed sets of X containing A is called the γ-closure [11] of A
and is denoted by γ − cl(A). The union of all γ-open sets of X contained
A is called γ-interior of A and is denoted by γ − int(A). A subset U of X
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is called a γ-neighborhood of a point x ∈ X if there exists a γ-open set V
such that x ∈ V ⊂ U .

Similarly, s − cl(A), α − cl(A) and p − cl(A) are defined in [9], [17] and
[12], respectively.

The family of all α-open (resp. γ-open, γ-closed, regular open, regular
closed, β-open) sets of X is denoted by αO(X) (resp. γO(X), γC(X),
RO(X), RC(X), βO(X)).

By a multifunction F : X → Y , we mean a point-to-set correspondence
from X into Y , and always assume that F (x) 6= ∅ for all x ∈ X. For a
multifunction F : X → Y , following [5, 7] we shall denote the upper and
lower inverse of a set B of Y by F+(B) and F−(B), respectively, that is,
F+(B) = {x ∈ X : F (x) ⊂ B} and F−(B) = {x ∈ X : F (x) ∩ B 6= ∅}. In
particular, F−(y) = {x ∈ X : y ∈ F (x)} for each point y ∈ Y . For each
A ⊂ X, F (A) =

⋃
x∈A

F (x). Then F is said to be a surjection if F (X) = Y ,

or equivalently if for each y ∈ Y there exists an x ∈ X such that y ∈ F (x).
Moreover, F : X → Y is called upper semi continuous (resp. lower semi

continuous) if F+(V ) (resp. F−(V )) is open in X for every open set V of
Y [22].

For a multifunction F : X → Y , the graph multifunction GF : X → X×Y
is defined as follows: GF (x) = {x} × F (x) for every x ∈ X and the subset
{{x}×F (x) : x ∈ X} ⊂ X ×Y is called the multigraph of F and is denoted
by G(F ) [34].

Definition 1. Let (X, τ) and (Y, σ) be topological spaces. A multifunction
F : X → Y is said to be:

1. Upper almost continuous [24] (resp. upper almost α-continuous [30],
upper almost quasi-continuous [19, 29], upper almost precontinuous [31],
upper almost β-continuous [20, 32]) at x ∈ X if for each open set V of
Y containing F (x), there exists U ∈ O(X,x) (resp. U ∈ αO(X,x), U ∈
SO(X, x), U ∈ PO(X,x), U ∈ βO(X, x)) such that F (U) ⊂ int(cl(V )).

Upper γ-continuous [2] (resp. upper δ-precontinuous [21]) at x ∈ X if
for each open set V of Y containing F (x), there exists U ∈ γO(X,x) (resp.
U ∈ δPO(X,x)) such that F (U) ⊂ V .

2. Lower almost continuous [24] (resp. lower almost α-continuous [30],
lower almost quasi-continuous [19, 29], lower almost precontinuous [31],
lower almost β-continuous [20, 32]) at x ∈ X if for each open set V of Y
such that F (x)∩V 6= ∅, there exists U ∈ O(X, x) (resp. U ∈ αO(X, x), U ∈
SO(X, x), U ∈ PO(X,x), U ∈ βO(X, x)) such that F (u) ∩ int(cl(V )) 6= ∅
for every u ∈ U .

Lower γ-continuous [2] (resp. lower δ-precontinuous [21]) at x ∈ X if for
each open set V of Y such that F (x) ∩ V 6= ∅, there exists U ∈ γO(X, x)
(resp. U ∈ δPO(X,x)) such that F (u) ∩ V 6= ∅ for every u ∈ U .

3. Upper (lower) almost continuous (resp. upper (lower) almost α-
continuous, upper (lower) almost quasi-continuous, upper (lower) almost
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precontinuous, upper (lower) almost β-continuous, upper (lower) γ-conti-
nuous, upper (lower) δ-precontinuous) if it has this property at each point
of X.

3. Almost γ-continuous multifunctions

In this section, the notion of almost γ-continuous functions is intro-
duced and characterizations and some relationships of almost γ-continuous
multifunctions and basic properties of almost γ-continuous multifunctions
are investigated and obtained. Furthermore, the relationships almost γ-
continuity and the other types of continuity are investigated.

Definition 2. A multifunction F : X → Y is said to be:
1. Lower almost γ-continuous at a point x ∈ X if for each open set

V of Y such that x ∈ F−(V ), there exists U ∈ γO(X,x) such that U ⊂
F−(int(cl(V ))),

2. Upper almost γ-continuous at a point x ∈ X if for each open set
V of Y such that x ∈ F+(V ), there exists U ∈ γO(X,x) such that U ⊂
F+(int(cl(V ))).

3. Lower (upper) almost γ-continuous if F has this property at each point
of X.

The following theorem give some characterizations of upper almost γ-
continuous multifunction.

Theorem 3. Let F : X → Y be a multifunction from a topological space
(X, τ) to a topological space (Y, υ). Then the following statements are equiv-
alent:

(1). F is upper almost γ-continuous multifunction,
(2). for each x ∈ X and for each open set V such that F (x) ⊂ V , there

exists U ∈ γO(X,x) such that if y ∈ U , then F (y) ⊂ int(cl(V )),
(3). for each x ∈ X and for each regular open set G of Y such that

F (x) ⊂ G, there exists U ∈ γO(X,x) such that F (U) ⊂ G,
(4). for each x ∈ X and for each closed set K such that x ∈ F+(Y \K),

there exists a γ-closed set H such that x ∈ X\H and F−(cl(int(K))) ⊂ H,
(5). F+(int(cl(V ))) ∈ γO(X) for any open set V ⊂ Y ,
(6). F−(cl(int(K))) ∈ γC(X) for any closed set K ⊂ Y ,
(7). F+(G) ∈ γO(X) for any regular open set G of Y ,
(8). F−(K) ∈ γC(X) for any regular closed set K of Y ,
(9). for each point x of X and each neighbourhood V of F (x),

F+(int(cl(V ))) is a γ-neighbourhood of x,
(10). for each point x of X and each neighbourhood V of F (x), there

exists a γ-neighbourhood U of x such that F (U) ⊂ int(cl(V )),
(11). cl(int(F−(cl(int(H))))) ∩ int(cl(F−(cl(int(H))))) ⊂

F−(cl(int(cl(H)))) for every subset H of Y ,
(12). F+(int(cl(int(N)))) ⊂

int(cl(F+(int(cl(N))))) ∪ cl(int(F+(int(cl(N))))) for every subset N of Y ,
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(13). γ − cl(F−(cl(int(H)))) ⊂ F−(cl(int(cl(H)))) for every subset H of
Y ,

(14). F+(int(cl(int(N)))) ⊂ γ − int(F+(int(cl(N)))) for every subset N
of Y .

Proof. (1)⇔(2). Clear.
(2)⇒(3). Let x ∈ X and G be a regular open set of Y such that F (x) ⊂

G. By (2), there exists U ∈ γO(X, x) such that if y ∈ U , then F (y) ⊂
int(cl(G)) = G. We obtain F (U) ⊂ G.

(3)⇒(2). Let x ∈ X and V be an open set of Y such that F (x) ⊂ V .
Then, int(cl(V )) ∈ RO(Y ). By (3), there exists U ∈ γO(X, x) such that
F (U) ⊂ int(cl(V )).

(2)⇒(4). Let x ∈ X and K be a closed set of Y such that x ∈ F+(Y \K).
By (2), there exists U ∈ γO(X,x) such that F (U) ⊂ int(cl(Y \K)). We
have int(cl(Y \K)) = Y \cl(int(K)) and

U ⊂ F+(Y \cl(int(K))) = X\F−(cl(int(K))).

We obtain F−(cl(int(K))) ⊂ X\U . Take H = X\U . Then, x ∈ X\H and
H is a γ-closed set.

(4)⇒(2). It can be obtained similarly as (2)⇒(4).
(1)⇒(5). Let V be any open set of Y and x ∈ F+(int(cl(V ))). By (1),

there exists Ux ∈ γO(X, x) such that Ux ⊂ F+(int(cl(V ))). Therefore, we
obtain

F+(int(cl(V ))) =
⋃

x∈F+(int(cl(V )))

Ux.

Hence, F+(int(cl(V ))) ∈ γO(X).
(5)⇒(1). Let V be any open set of Y and x ∈ F+(V ). By (5),

F+(int(cl(V ))) ∈ γO(X).

Take U = F+(int(cl(V ))). Then, F (U) ⊂ int(cl(V )). Hence, F is upper
almost γ-continuous.

(5)⇒(6). Let K be any closed set of Y . Then, Y \K is an open set of Y .
By (5), F+(int(cl(Y \K))) ∈ γO(X). Since int(cl(Y \K)) = Y \cl(int(K)),
it follows that F+(int(cl(Y \K))) = F+(Y \cl(int(K))) = X\F−(cl(int(K))).
We obtain that F−(cl(int(K))) is γ-closed in X.

(6)⇒(5). It can be obtained similarly as (5)⇒(6).
(5)⇒(7). Let G be any regular open set of Y . By (5), F+(int(cl(G))) =

F+(G) ∈ γO(X).
(7)⇒(5). Let V be any open set of Y . Then, int(cl(V )) ∈ RO(Y ). By

(7), F+(int(cl(V ))) ∈ γO(X).
(6)⇒(8). It can be obtained similarly as (5)⇒(7).
(8)⇒(6). It can be obtained similarly as (7)⇒(5).
(5)⇒(9). Let x ∈ X and V be a neighbourhood of F (x). Then there

exists an open set G of Y such that F (x) ⊂ G ⊂ V . therefore, we obtain
x ∈ F+(G) ⊂ F+(V ). Since F+(int(cl(G))) ∈ γO(X), F+(int(cl(V ))) is a
γ-neighbourhood of x.
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(9)⇒(10). Let x ∈ X and V be a neighbourhood of F (x). By (9),
F+(int(cl(V ))) is a γ-neighbourhood of x. Take U = F+(int(cl(V ))). Then
F (U) ⊂ int(cl(V )).

(10)⇒(1). Let x ∈ X and V be any open set of Y such that F (x) ⊂ V .
Then V is a neighbourhood of F (x). By (10), there exists a γ-neighbourhood
U of x such that F (U) ⊂ int(cl(V )). Therefore, there exists G ∈ γO(X)
such that x ∈ G ⊂ U and hence F (G) ⊂ F (U) ⊂ int(cl(V )). We obtain
that F is upper almost γ-continuous.

(6)⇒(11). For any subset H of Y , cl(H) is closed in Y . By (6),

F−(cl(int(cl(H)))) ∈ γC(X).

This means
int(cl(F−(cl(int(H))))) ∩ cl(int(F−(cl(int(H)))))
⊂ int(cl(F−(cl(int(cl(H)))))) ∩ cl(int(F−(cl(int(cl(H))))))
⊂ F−(cl(int(cl(H)))).

(11)⇒(12). By replacing Y \H instead of H in (11), we have

int(cl(F−(cl(int(Y \H))))) ∩ cl(int(F−(cl(int(Y \H)))))
= int(cl(F−(Y \int(cl(H))))) ∩ cl(int(F−(Y \int(cl(H)))))
⊂ F−(cl(int(cl(Y \H)))).

and therefore,

F+(int(cl(int(H)))) ⊂ int(cl(F+(int(cl(H))))) ∪ cl(int(F+(int(cl(H))))).

(12)⇒(5). Let V be any open set of Y . Then by using (12) we have

F+(int(cl(V ))) ⊂ int(cl(F+(int(cl(V ))))) ∪ cl(int(F+(int(cl(V ))))).

Hence, we obtain F+(int(cl(V ))) ∈ γO(X).
(6)⇒(13). For any subset H of Y , cl(H) is closed in Y . By (6),

F−(cl(int(cl(H))))

is γ-closed in X. Therefore, we obtain

γ − cl(F−(cl(int(H)))) ⊂ F−(cl(int(cl(H)))).

(13)⇒(6). Let K be any closed set of Y . Then we have

γ − cl(F−(cl(int(K)))) ⊂ F−(cl(int(cl(K)))) = F−(cl(int(K))).

Thus, F−(cl(int(K))) is γ-closed in X.
(5)⇒(14). For any subset N of Y , int(N) is open in Y . By (5),

F+(int(cl(int(N))))

is γ-open in X. Therefore, we obtain

F+(int(cl(int(N)))) ⊂ γ − int(F+(int(cl(N)))).

(14)⇒(5). Let V be any open set of Y . Then we have F+(int(cl(V ))) ⊂
γ − int(F+(int(cl(V )))). Hence, F+(int(cl(V ))) is γ-open in X. ¤
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Remark 4. For a multifunction F : X → Y from a topological space (X, τ)
to a topological space (Y, υ), the following implications hold:

upper almost continuity
⇓

upper almost α-continuity ⇒ upper almost precontinuity
⇓ ⇓

upper almost quasi-continuity ⇒ upper almost γ-continuity
⇓

upper almost β-continuity

Note that none of these implications is reversible. We give examples for
the last three implications as follows. The other examples can be obtained
in [19, 24, 29, 30, 31].

Example 5. Let X = Y = {a, b, c, d}. Let τ and σ be respectively topolo-
gies on X and on Y given by τ = {∅, X, {a}, {b, c}, {a, b, c}} and σ =
{∅, Y, {a}, {b, d}, {a, b, d}}. Define the multifunction F : X → Y by F (x) =
{x} for each x ∈ X. Then F is upper almost β-continuous but not upper
almost γ-continuous, since {b, d} ∈ RO(Y ) and F+({b, d}) = {b, d} is not
γ-open in (X, τ).

Example 6. Let X = {a, b, c} and Y = {1, 2, 3, 4, 5}. Let τ and σ be
respectively topologies on X and on Y given by τ = {∅, X, {a}, {b}, {a, b}}
and σ = {∅, Y, {1, 2}, {3, 4}, {3, 4, 5}, {1, 2, 3, 4}}. Define the multifunction
F : X → Y by F (a) = {1}, F (b) = {3, 4, 5} and F (c) = {2}. Then F is
upper almost γ-continuous but not upper almost precontinuous.

Example 7. Let X = {1, 2, 3, 4, 5}. Let τ be a topology on X given by τ =
{∅, X, {1, 2}, {3, 4}, {3, 4, 5}, {1, 2, 3, 4}}. Define the multifunction F : X →
X by F (1) = {1}, F (2) = {3}, F (3) = {2}, F (4) = {4} and F (5) = {5}.
Then F is upper almost γ-continuous but not upper almost quasi-continuous.

The following theorem give some characterizations of lower almost γ-
continuous multifunction.

Theorem 8. Let F : X → Y be a multifunction from a topological space
(X, τ) to a topological space (Y, υ). Then the following statements are equiv-
alent:

(1). F is lower almost γ-continuous multifunction,
(2). for each x ∈ X and for each open set V such that F (x) ∩ V 6= ∅,

there exists a U ∈ γO(X,x) such that if y ∈ U , then F (y) ∩ int(cl(V )) 6= ∅,
(3). for each x ∈ X and for each regular open set G of Y such that F (x)∩

G 6= ∅, there exists a U ∈ γO(X, x) such that if y ∈ U , then F (y) ∩G 6= ∅,
(4). for each x ∈ X and for each closed set K such that x ∈ F−(Y \K),

there exists a γ-closed set H such that x ∈ X\H and F+(cl(int(K))) ⊂ H,
(5). F−(int(cl(V ))) ∈ γO(X) for any open set V ⊂ Y ,
(6). F+(cl(int(K))) ∈ γC(X) for any closed set K ⊂ Y ,
(7). F−(G) ∈ γO(X) for any regular open set G of Y ,
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(8). F+(K) ∈ γC(X) for any regular closed set K of Y ,
(9). cl(int(F+(cl(int(H))))) ∩ int(cl(F+(cl(int(H))))) ⊂

F+(cl(int(cl(H)))) for every subset H of Y ,
(10). F−(int(cl(int(N)))) ⊂ int(cl(F−(int(cl(N)))))∪

cl(int(F−(int(cl(N))))) for every subset N of Y ,
(11). γ − cl(F+(cl(int(H)))) ⊂ F+(cl(int(cl(H)))) for every subset H of

Y ,
(12). F−(int(cl(int(N)))) ⊂ γ − int(F−(int(cl(N)))) for every subset N

of Y .

Proof. It can be obtained similarly as the previous theorem. ¤
Theorem 9. The following properties are equivalent for a multifunction
F : X → Y :

(1) F is upper almost γ-continuous,
(2) γ − cl(F−(V )) ⊂ F−(cl(V )) for every V ∈ βO(Y ),
(3) γ − cl(F−(V )) ⊂ F−(cl(V )) for every V ∈ SO(Y ),
(4) F+(V ) ⊂ γ − int(F+(int(cl(V )))) for every V ∈ PO(Y ).

Proof. It is analogous with them of Theorem 1 of [19], Theorem 5 of [31]
and Theorem 5 of [20]. ¤
Theorem 10. The following properties are equivalent for a multifunction
F : X → Y :

(1) F is lower almost γ-continuous,
(2) γ − cl(F+(V )) ⊂ F+(cl(V )) for every V ∈ βO(Y ),
(3) γ − cl(F+(V )) ⊂ F+(cl(V )) for every V ∈ SO(Y ),
(4) F−(V ) ⊂ γ − int(F−(int(cl(V )))) for every V ∈ PO(Y ).

Proof. It is analogous with them of Theorem 2 of [19], Theorem 6 of [31]
and Theorem 6 of [20]. ¤

We know that a net (xα) in a topological space (X, τ) is called eventually
in the set U ⊂ X if there exists an index α0 ∈ J such that xα ∈ U for all
α ≥ α0.

Definition 11. Let (X, τ) be a topological space and let (xα) be a net in
X. It is said that the net (xα) γ-converges to x if for each γ-open set G
containing x in X, there exists an index α0 ∈ I such that xα ∈ G for each
α ≥ α0.

Theorem 12. Let F : X → Y be a multifunction. If F is lower (upper)
almost γ-continuous multifunction, then for each x ∈ X and for each net
(xα) which γ-converges to x in X and for each open set V ⊆ Y such that
x ∈ F−(V ) (resp. x ∈ F+(V )), the net (xα) is eventually in F−(int(cl(V )))
(resp. F+(int(cl(V )))).

Proof. Let (xα) be a net which γ-converges to x in X and let V be any
open set in Y such that x ∈ F−(V ). Since F is lower almost γ-continuous
multifuction, it follows that there exists a γ-open set U in X containing
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x such that U ⊂ F−(int(cl(V ))). Since (xα) γ-converges to x, it follows
that there exists an index α0 ∈ J such that xα ∈ U for all α ≥ α0. So we
obtain that xα ∈ U ⊂ F−(int(cl(V ))) for all α ≥ α0. Thus, the net (xα) is
eventually in F−(int(cl(V ))).

The proof of the upper almost γ-continuity of F is similar to the above.
¤

Lemma 13. Let A and X0 be subsets of a space (X, τ). If A ∈ γO(X) and
X0 ∈ αO(X), then A ∩X0 ∈ γO(X0) [4, 11].

Lemma 14. Let A ⊂ X0 ⊂ X. If X0 ∈ γO(X) and A ∈ γO(X0), A ∈
γO(X) [11].

Theorem 15. Let F : X → Y be a multifunction and let U be a α-open
set in X. If F is a lower (upper) almost γ-continuous, then the restriction
multifunction F |U : U → Y is a lower (resp. upper) almost γ-continuous.

Proof. Suppose that V is an open set in Y . Let x ∈ U and let x ∈ (F |U
)−(V ). Since F is lower almost γ-continuous multifunction, it follows that
there exists a γ-open set G such that x ∈ G ⊂ F−(int(cl(V ))). By Lemma
13, we obtain that x ∈ G ∩ U ∈ γO(U) and G ∩ U ⊂ (F |U )−(int(cl(V ))).
Thus, we show that the restriction multifunction F |U is a lower almost
γ-continuous.

The proof of the upper almost γ-continuity of F |U is similar to the
above. ¤
Theorem 16. Let {Uλ : λ ∈ Λ} be a α-open cover of a space X. Then a
multifunction F : X → Y is upper almost γ-continuous (resp. lower almost
γ-continuous) if and only if the restriction F |Uλ

: Uλ → Y is upper almost
γ-continuous (resp. lower almost γ-continuous) for each λ ∈ Λ.

Proof. We prove only the case for F upper almost γ-continuous, the proof
for F lower almost γ-continuous being analogous.

(⇒) Let λ ∈ Λ and V be any open set of Y . Since F is upper al-
most γ-continuous, F+(int(cl(V ))) is γ-open in X. By Lemma 13, (F |Uλ

)+(int(cl(V ))) = F+(int(cl(V ))) ∩ Uλ is γ-open in Uλ and hence F |Uλ
is

upper almost γ-continuous.
(⇐) Let V be any open set of Y . Since F |Uλ

is upper almost γ-continuous
for each λ ∈ Λ, (F |Uλ

)+(int(cl(V ))) = F+(int(cl(V ))) ∩ Uλ is γ-open in
Uλ. By Lemma 14, (F |Uλ

)+(int(cl(V ))) is γ-open in X for each λ ∈ Λ.
We obtain that F+(int(cl(V ))) = ∪

λ∈Λ
(F |Uλ

)+(int(cl(V ))) is γ-open in X.

Hence F is upper almost γ-continuous. ¤

4. γ-continuity and almost γ-continuity

In this section, various relationships are investigated.

Definition 17. Let (X, τ) be a topological space. The collection of all regular
open sets forms a base for a topology τ∗. It is called the semiregularization.

In case when τ = τ∗, the space (X, τ) is called semi-regular [35].
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Theorem 18. Let F : X → Y be a multifunction from a topological space
(X, τ) to a semi-regular topological space (Y, υ). F is lower almost γ-
continuous multifunction if and only if F is lower γ-continuous.

Proof. Let x ∈ X and let V be an open set such that x ∈ F−(V ). Since
(Y, υ) is a semi-regular space, there exist regular open sets Ui for i ∈ I such
that V =

⋃
i∈I

Ui. We have F−(V ) = F−(
⋃
i∈I

Ui) =
⋃
i∈I

F−(Ui). By Theorem

8, F−(Ui) ∈ γO(X) for i ∈ I. We obtain F−(V ) ∈ γO(X). Hence, by
Theorem 3.2 in [2], F is lower γ-continuous.

Conversely, obvious. ¤

Corollary 19. Let F : X → Y be a multifunction from a topological space
(X, τ) to a topological space (Y, υ). Then F : (X, τ) → (Y, υ) is lower almost
γ-continuous multifunction if and only if F : (X, τ) → (Y, υ∗) is lower γ-
continuous.

Definition 20. A space X is said to be:
(1) submaximal [8] if each dense subset of X is open in X,
(2) extremely disconnected [8] if the closure of each open set of X is open

in X.

Theorem 21. If (X, τ) a submaximal extremely disconnected space and
(Y, σ) is a semi-regular space, then the following are equivalent for a multi-
function F : (X, τ) → (Y, σ):

(1) F is lower almost γ-continuous;
(2) F is lower semi-continuous.

Proof. (1)⇒(2): Let x ∈ X and let V be an open set such that x ∈ F−(V ).
Since (Y, σ) is a semi-regular space, there exist regular open sets Ui for
i ∈ I such that V = ∪

i∈I
Ui. We have F−(V ) = F−( ∪

i∈I
Ui) = ∪

i∈I
F−(Ui). By

Theorem 8, F−(Ui) ∈ γO(X) for i ∈ I. We obtain F−(V ) ∈ γO(X). Since
(X, τ) is a submaximal extremely disconnected space, then τ = γO(X). We
have F−(V ) ∈ τ . Hence, F is lower semi-continuous.

(2)⇒(1): Obvious. ¤

Corollary 22. Let Y be a semi-regular space and X be a submaximal ex-
tremely disconnected space. The following statements are equivalent for a
multifunction F : (X, τ) → (Y, σ):

(1) F is lower almost γ-continuous;
(2) F is lower semi-continuous;
(3) F is lower α-continuous;
(4) F is lower precontinuous;
(5) F is lower quasi-continuous;
(6) F is lower γ-continuous.

Suppose that (X, τ), (Y, υ) and (Z, ω) are topological spaces. It is known
that if F1 : X → Y and F2 : Y → Z are multifunctions, then the composite
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multifunction F2 ◦ F1 : X → Z is defined by (F2 ◦ F1)(x) = F2(F1(x)) for
each x ∈ X.

Theorem 23. Let F : X → Y and G : Y → Z be multifunctions. The
following statements hold:

(1) If F is upper (lower) γ-continuous and G is upper (lower) semi-conti-
nuous, then G ◦ F : X → Z is a upper (lower) almost γ-continuous multi-
function.

(2) If F is upper (lower) precontinuous and G is upper (lower) semi-
continuous, then G ◦ F : X → Z is a upper (lower) almost γ-continuous
multifunction.

(3) If F is upper (lower) quasi-continuous and G is upper (lower) semi-
continuous, then G ◦ F : X → Z is a upper (lower) almost γ-continuous
multifunction.

(4) If F is upper (lower) α-continuous and G is upper (lower) semi-
continuous, then G ◦ F : X → Z is a upper (lower) almost γ-continuous
multifunction.

(5) If F is upper (lower) semi-continuous and G is upper (lower) semi-
continuous, then G ◦ F : X → Z is a upper (lower) almost γ-continuous
multifunction.

Proof. (1) Let V ⊂ Z be any regular open set. From the definition of G◦F ,
we have (G ◦ F )+(V ) = F+(G+(V )) (resp. (G ◦ F )−(V ) = F−(G−(V ))).
Since G is upper (lower) semi continuous multifunction, it follows that
G+(V ) (resp. G−(V )) is an open set. Since F is upper (lower) γ-continuous
multifunction, it follows that F+(G+(V )) (resp. F−(G−(V ))) is a γ-open
set. It shows that G ◦ F is a upper (resp. lower) almost γ-continuous mul-
tifunction.

The other proofs can be obtained similarly. ¤

Definition 24. A multifunction F : X → Y is said to be:
1. Lower weakly γ-continuous at a point x ∈ X if for each open set V of Y

such that x ∈ F−(V ), there exists U ∈ γO(X, x) such that U ⊂ F−(cl(V )),
2. Upper weakly γ-continuous at a point x ∈ X if for each open set V of Y

such that x ∈ F+(V ), there exists U ∈ γO(X, x) such that U ⊂ F+(cl(V )).
3. Lower (upper) weakly γ-continuous if F has this property at each point

of X.

Definition 25. A subset A of a topological space X is said to be α-para-
compact [37] if every cover of A by open sets of X is refined by a cover of
A which consists of open sets of X and is locally finite in X.

Furthermore, a multifunction F : (X, τ) → (Y, σ) is called punctually
α-paracompact [28] if F (x) is α-paracompact for each point x ∈ X.

Definition 26. A subset A of a topological space X is said to be α-regular
[13] if for each a ∈ A and each open set U of X containing a, there exists
an open set G of X such that a ∈ G ⊂ cl(G) ⊂ U .
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Lemma 27. If A is an α-regular α-paracompact set of a topological space
X and U is an open neighbourhood of A, then there exists an open set G of
X such that A ⊂ G ⊂ cl(G) ⊂ U [13].

Theorem 28. For a multifunction F : X → Y such that F (x) is an α-
regular α-paracompact set for each x ∈ X, the following are equivalent:

(1) F is upper weakly γ-continuous,
(2) F is upper almost γ-continuous,
(3) F is upper γ-continuous.

Proof. It is analogous with them of Theorem 15 of [20]. ¤
Lemma 29. If A is an α-regular set of X, then for every open set G which
intersects A, there exists an open set D such that A∩D 6= ∅ and cl(D) ⊂ G
[27].

Theorem 30. For a multifunction F : X → Y such that F (x) is an α-
regular set of Y for each x ∈ X, the following are equivalent:

(1) F is lower weakly γ-continuous,
(2) F is lower almost γ-continuous,
(3) F is lower γ-continuous.

Proof. It is analogous with them of Theorem 16 of [20]. ¤
Theorem 31. Let F : X → Y be a multifunction such that F (x) is closed
in Y for each x ∈ X and Y is normal. Then the following are equivalent:

(1) F is upper weakly γ-continuous,
(2) F is upper almost γ-continuous,
(3) F is upper γ-continuous.

Proof. It is analogous with them of Theorem 18 of [20]. ¤

5. Graphs and product spaces

In this section, the relationships between almost γ-continuity and
graphs, product spaces are obtained.

Lemma 32. The intersection of an open set and a γ-open set is a γ-open
set [4].

Lemma 33. For a multifunction F : X → Y , the following hold:
(1) G+

F (A×B) = A ∩ F+(B),
(2) G−

F (A×B) = A ∩ F−(B)
for any subsets A ⊂ X and B ⊂ Y [18].

Theorem 34. Let F : X → Y be a multifunction such that F (x) is compact
for each x ∈ X. Then the graph multifunction of F is upper almost γ-
continuous if and only if F is upper almost γ-continuous.

Proof. (⇒). Suppose that GF : X → X × Y is upper almost γ-continuous.
Let x ∈ X and V be any open set of Y containing F (x). Since X × V is
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open in X × Y and GF (x) ⊂ X × V , there exists U ∈ γO(X,x) such that
GF (U) ⊂ int(cl(X × V )) = X × int(cl(V )). By the previous lemma, we
have U ⊂ G+

F (X × int(cl(V ))) = F+(int(cl(V ))) and F (U) ⊂ int(cl(V )).
This shows that F is upper almost γ-continuous.

(⇐): Suppose that F : X → Y is upper almost γ-continuous. Let x ∈ X
and W be any open set of X×Y containing GF (x). For each y ∈ F (x), there
exist open sets U(y) ⊂ X and V (y) ⊂ Y such that (x, y) ∈ U(y)×V (y) ⊂ W .
The family of {V (y) : y ∈ F (x)} is an open cover of F (x). Since F (x) is
compact, it follows that there exists a finite number of points, says y1, y2,
y3,..., yn in F (x) such that F (x) ⊂ ⋃{V (yi) : i = 1, 2, ..., n}. Take U =⋂{U(yi) : i = 1, 2, ..., n} and V =

⋃{V (yi) : i = 1, 2, ..., n}. Then U and V
are open in X and Y , respectively, and {x} × F (x) ⊂ U × V ⊂ W . Since F
is upper almost γ-continuous, there exists U0 ∈ γO(X,x) such that F (U0) ⊂
int(cl(V )). By the previous lemma, we have U ∩U0 ⊂ U ∩F+(int(cl(V ))) =
G+

F (U × int(cl(V ))) ⊂ G+
F (int(cl(U × V ))) ⊂ G+

F (int(cl(W ))). Therefore,
we obtain U ∩ U0 ∈ γO(X, x) and GF (U ∩ U0) ⊂ int(cl(W )). This shows
that GF is upper almost γ-continuous. ¤
Theorem 35. A multifunction F : X → Y is lower almost γ-continuous if
and only if GF : X → X × Y is lower almost γ-continuous.

Proof. (⇒) Suppose that F is lower almost γ-continuous. Let x ∈ X and W
be any open set of X×Y such that x ∈ G−

F (W ). Since W ∩({x}×F (x)) 6= ∅,
there exists y ∈ F (x) such that (x, y) ∈ W and hence (x, y) ∈ U×V ⊂ W for
some open sets U and V of X and Y , respectively. Since F (x)∩V 6= ∅, there
exists G ∈ γO(X,x) such that G ⊂ F−(int(cl(V ))). By Lemma 33, U ∩G ⊂
U ∩F−(int(cl(V ))) = G−

F (U × int(cl(V ))) ⊂ G−
F (int(cl(W ))). Furthermore,

x ∈ U ∩G ∈ γO(X) and hence GF is lower almost γ-continuous.
(⇐) Suppose that GF is lower almost γ-continuous. Let x ∈ X and V be

any open set of Y such that x ∈ F−(V ). Then X ×V is open in X ×Y and
GF (x)∩(X×V ) = ({x}×F (x))∩(X×V ) = {x}×(F (x)∩V ) 6= ∅. Since GF is
lower almost γ-continuous, there exists a γ-open set U containing x such that
U ⊂ G−

F (int(cl(X×V ))). Since G−
F (int(cl(X×V ))) = G−

F (X× int(cl(V ))),
by Lemma 33, we have U ⊂ F−(int(cl(V ))). This shows that F is lower
almost γ-continuous. ¤
Definition 36. Let F : X → Y be a multifunction. The multigraph G(F ) is
said to be γ-graph in X×Y if for each (x, y) /∈ G(F ), there exist γ-open set U
and open set V containing x and y, respectively, such that (U×V )∩G(F ) =
∅.
Theorem 37. Let F : (X, τ) → (Y, σ) be an upper almost γ-continuous
and punctually α-paracompact multifunction into a Hausdorff space (Y, σ).
Then the multigraph G(F ) of F is a γ-graph in X × Y .

Proof. Suppose that (x0, y0) /∈ G(F ). Then y0 /∈ F (x0). Since (Y, σ) is a
Hausdorff space, then for each y ∈ F (x0) there exist open sets V (y) and
W (y) containing y and y0 respectively such that V (y) ∩ W (y) = ∅. The
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family {V (y) : y ∈ F (x0)} is an open cover of F (x0) which is α-paracompact.
Thus, it has a locally finite open refinement Φ = {Uβ : β ∈ I} which covers
F (x0). Let W0 be an open neighborhood of y0 such that W0 intersects only
finitely many members Uβ1 , Uβ2 ,..., Uβn of Φ. Choose y1, y2,..., yn in F (x0)

such that Uβi
⊂ V (yi) for each i = 1, 2, ..., n and set W = W0 ∩ (

n∩
i=1

W (yi)).

Then W is an open neighborhood of y0 with W ∩( ∪
β∈I

Uβ) = ∅, which implies

that W ∩ int(cl( ∪
β∈I

Uβ)) = ∅. By the upper almost γ-continuity of F , there

exists a U ∈ γO(X,x0) such that F (U) ⊂ int(cl( ∪
β∈I

Uβ)). It follows that

(U ×W )∩G(F ) = ∅. Therefore, the graph G(F ) is a γ-graph in X×Y . ¤

Theorem 38. Suppose that (X, τ) and (Xα, τα) are topological spaces where
α ∈ J . Let F : X → ∏

α∈J

Xα be a multifunction from X to the product space
∏

α∈J

Xα and let Pα :
∏

α∈J

Xα → Xα be the projection for each α ∈ J . If F is

upper (lower) almost γ-continuous multifunction, then Pα◦F is upper (resp.
lower) almost γ-continuous multifunction for each α ∈ J .

Proof. Take any α0 ∈ J . Let Vα0 be a open set in (Xα0 , τα0). Then (Pα0 ◦
F )+(int(cl(Vα0)) = F+(P+

α0
(int(cl(Vα0))) = F+(int(cl(Vα0))×

∏
α 6=α0

Xα) (re-

spectively,

(Pα0◦F )−(int(cl(Vα0)) = F−(P−
α0

(int(cl(Vα0))) = F−(int(cl(Vα0))×
∏

α 6=α0

Xα)).

Since F is upper (resp. lower) almost γ-continuous multifunction and since
int(cl(Vα0)×

∏
α 6=α0

Xα is a regular open set, it follows that F+(int(cl(Vα0))×
∏

α6=α0

Xα) (respectively, F−(int(cl(Vα0)) ×
∏

α 6=α0

Xα)) is γ-open in (X, τ). It

shows that Pα0 ◦ F is upper (lower) almost γ-continuous multifunction.
Hence, we obtain that Pα ◦ F is upper (lower) almost γ-continuous mul-

tifunction for each α ∈ J . ¤

Theorem 39. Suppose that for each α ∈ J , (Xα, τα), (Yα, υα) are topo-
logical spaces. Let Fα : Xα → Yα be a multifunction for each α ∈ J and
let F :

∏
α∈J

Xα →
∏

α∈J

Yα be defined by F ((xα)) =
∏

α∈J

Fα(xα) from the prod-

uct space
∏

α∈J

Xα to the product space
∏

α∈J

Yα. If F is upper (lower) almost

γ-continuous multifunction, then each Fα is upper (resp. lower) almost γ-
continuous multifunction for each α ∈ J .

Proof. Let Vα ⊆ Yα be a open set. Then int(cl(Vα)) × ∏
α 6=β

Yβ is a regu-

lar open set. Since F is upper (lower) almost γ-continuous multifunction,
it follows that F+(int(cl(Vα)) × ∏

α 6=β

Yβ) = F+
α (int(cl(Vα))) × ∏

α 6=β

Xβ (resp.
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F−(int(cl(Vα))× ∏
α 6=β

Yβ) = F−
α (int(cl(Vα)))× ∏

α6=β

Xβ) is a γ-open set. Conse-

quently, we obtain that F+
α (int(cl(Vα))) (resp. F−

α (int(cl(Vα)))) is a γ-open
set. Thus, we show that Fα is upper (resp. lower) almost γ-continuous
multifunction. ¤

Theorem 40. Suppose that (X, τ), (Y, υ), (Z, ω) are topological spaces and
F1 : X → Y , F2 : X → Z are multifunctions. Let F1 × F2 : X → Y × Z be
a multifunction which is defined by (F1 × F2)(x) = F1(x) × F2(x) for each
x ∈ X. If F1×F2 is upper (lower) almost γ-continuous multifunction, then
F1 and F2 are upper (resp. lower) almost γ-continuous multifunctions.

Proof. Let x ∈ X and let K ⊂ Y , H ⊂ Z be open sets such that x ∈ F+
1 (K)

and x ∈ F+
2 (H). Then we obtain that F1(x) ⊂ K and F2(x) ⊂ H and so

F1(x)× F2(x) = (F1 × F2)(x) ⊂ K ×H. We have x ∈ (F1 × F2)+(K ×H).
Since F1 × F2 is upper almost γ-continuous multifunction, it follows that
there exists a γ-open set U containing x such that U ⊂ (F1×F2)+(int(cl(K×
H))). We obtain that U ⊂ F+

1 (int(cl(K))) and U ⊂ F+
2 (int(cl(H))). Thus,

we obtain that F1 and F2 are upper almost γ-continuous multifunctions.
The proof of the lower almost γ-continuity of F1 and F2 is similar to the

above. ¤

6. Several properties

In this section, the other several properties of almost γ-continuity
are investigated.

Recall that a multifunction F : X → Y is said to be punctually connected
if, for each x ∈ X, F (x) is connected.

Definition 41. A space X is called γ-connected [11] provided that X is not
the union of two disjoint nonempty γ-open sets.

Theorem 42. Let F be a multifunction from a γ-connected topological space
X onto a topological space Y such that F is punctually connected. If F is
upper almost γ-continuous multifunction, then Y is a connected space.

Proof. Let F : X → Y be a upper almost γ-continuous multifunction from
a γ-connected topological space X onto a topological space Y . Suppose
that Y is not connected and let Y = H ∪ K be a partition of Y . Then
both H and K are open and closed subsets of Y . Since F is upper almost
γ-continuous multifunction, F+(H) and F+(K) are γ-open subsets of X.
In view of the fact that F+(H), F+(K) are disjoint and F is punctually
connected, X = F+(H)∪F+(K) is a partition of X. This is contrary to the
γ-connectedness of X. Hence, it is obtained that Y is a connected space. ¤

Recall that a multifunction F : X → Y is said to be punctually closed if,
for each x ∈ X, F (x) is closed.
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Theorem 43. Let F be an upper almost γ-continuous punctually closed
multifunction and G be an upper almost continuous punctually closed mul-
tifunction from a space X to a normal space Y . Then the set K = {x :
F (x) ∩G(x) 6= ∅} is γ-closed in X.

Proof. Let x ∈ X\K. Then F (x)∩G(x) = ∅. Since F and G are punctually
closed multifunctions and Y is a normal space, it follows that there exists
disjoint open sets U and V containing F (x) and G(x) respectively. Since
F and G are upper almost γ-continuous and upper almost continuous, re-
spectively the sets F+(int(cl(U))) and G+(int(cl(V ))) are γ-open and open,
respectively such that contain x. Let H = F+(int(cl(U)))∩G+(int(cl(V ))).
Then H is a γ-open set containing x and H ∩K = ∅. Hence, K is γ-closed
in X. ¤
Definition 44. A space X is said to be γ-T2 (γ-Hausdorff) if for each pair
of distinct points x and y in X, there exist disjoint γ-open sets U and V in
X such that x ∈ U and y ∈ V .

Theorem 45. Let F : X → Y be an upper almost γ-continuous multifunc-
tion and punctually closed from a topological space X to a normal topological
space Y and let F (x)∩F (y) = ∅ for each distinct pair x, y ∈ X. Then X is
a γ-Hausdorff space.

Proof. Let x and y be any two distinct points in X. Then we have F (x) ∩
F (y) = ∅. Since Y is a normal space, it follows that there exists dis-
joints open sets U and V containing F (x) and F (y) respectively. Thus
F+(int(cl(U))) and F+(int(cl(V ))) are disjoint γ-open sets containing x
and y respectively. Thus, it is obtained that X is γ-Hausdorff. ¤

For a multifunction F : X → Y , by clF : X → Y [5] we denote a
multifunction defined as follows: (clF )(x) = cl(F (x)) for each point x ∈ X.
Similarly, we can define γ−clF : X → Y , s−clF : X → Y , p−clF : X → Y
and α− clF : X → Y .

Lemma 46. If F : X → Y is a multifunction such that F (x) is α-paracompact
α-regular for each x ∈ X, then for each regular open set V of Y , G+(V ) =
F+(V ), where G denotes γ − clF , s− clF , p− clF , α− clF or clF .

Proof. Let V be any regular open set of Y and x ∈ G+(V ). Thus G(x) ⊂ V
and F (x) ⊂ G(x) ⊂ V . We have x ∈ F+(V ) and hence G+(V ) ⊂ F+(V ).

Conversely, let x ∈ F+(V ), then F (x) ⊂ V . By Lemma 27, there exists
an open set W of Y such that F (x) ⊂ W ⊂ cl(W ) ⊂ V ; hence G(x) ⊂
cl(W ) ⊂ V . Therefore, we have x ∈ G+(V ) and F+(V ) ⊂ G+(V ). ¤
Theorem 47. Let F : X → Y be a multifunction such that F (x) is a
α-paracompact α-regular for each x ∈ X. Then the following are equivalent:

(1) F is upper almost γ-continuous;
(2) γ − clF is upper almost γ-continuous;
(3) s− clF is upper almost γ-continuous;
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(4) p− clF is upper almost γ-continuous;
(5) α− clF is upper almost γ-continuous;
(6) clF is upper almost γ-continuous.

Proof. Take G = γ − clF , s − clF , p − clF , α − clF or clF . Suppose that
F is upper almost γ-continuous. Let x ∈ X and V be any regular open
set of Y containing G(x). By Lemma 46, we have x ∈ G+(V ) = F+(V )
and hence there exists U ∈ γO(X,x) such that F (U) ⊂ V . Since F (u) is
α-paracompact and α-regular for each u ∈ U , by Lemma 27, there exists an
open set W such that F (u) ⊂ W ⊂ cl(W ) ⊂ V ; hence G(u) ⊂ cl(W ) ⊂ V
for each u ∈ U . Therefore, we obtain G(U) ⊂ V . This shows that G is
upper almost γ-continuous.

Conversely, suppose that G is upper almost γ-continuous. Let x ∈ X and
V be any regular open set of Y containing F (x). By Lemma 46, we have
x ∈ F+(V ) = G+(V ) and hence G(x) ⊂ V . There exists U ∈ γO(X, x) such
that G(U) ⊂ V . Therefore, we obtain U ⊂ G+(V ) = F+(V ) and hence
F (U) ⊂ V . This shows that F is upper almost γ-continuous. ¤
Lemma 48. If F : X → Y is a multifunction, then for each regular open
set V of Y , G−(V ) = F−(V ), where G denotes γ − clF , s − clF , p − clF ,
α− clF or clF .

Proof. Let V be any regular open set of Y and x ∈ G−(V ). Then G(x)∩V 6=
∅ and hence F (x)∩V 6= ∅ since V is open. Thus, we obtain x ∈ F−(V ) and
hence G−(V ) ⊂ F−(V ).

Conversely, let x ∈ F−(V ). Then we have F (x) ∩ V 6= ∅ and F (x) ∩ V ⊂
G(x) ∩ V and hence x ∈ G−(V ). Thus, we have F−(V ) ⊂ G−(V ).

Consequently, we obtain G−(V ) = F−(V ). ¤
Theorem 49. Let F : X → Y be a multifunction. Then the following are
equivalent:

(1) F is lower almost γ-continuous;
(2) γ − clF is lower almost γ-continuous;
(3) s− clF is lower almost γ-continuous;
(4) p− clF is lower almost γ-continuous;
(5) α− clF is lower almost γ-continuous;
(6) clF is lower almost γ-continuous.

Proof. By using Lemma 48, this is shown similarly to that of Theorem 47.
¤

Definition 50. The γ-frontier of a subset A of a space X, denoted by γ −
Fr(A), is defined by γ −Fr(A) = γ − cl(A)∩ γ − cl(X\A) = γ − cl(A)\γ −
int(A) [2].

Theorem 51. The set all points of X at which a multifunction F : X → Y
is not upper almost γ-continuous (lower almost γ-continuous) is identical
with the union of the γ-frontier of the upper (lower) inverse images of regular
open sets containing (meeting) F (x).
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Proof. Let x ∈ X at which F is not upper almost γ-continuous. Then there
exists a regular open set V of Y containing F (x) such that U∩(X\F+(V )) 6=
∅ for every U ∈ γO(X, x). Therefore, we have x ∈ γ − cl(X\F+(V )) =
X\γ − int(F+(V )) and x∈ F+(V ). Thus, we obtain x ∈ γ − Fr(F+(V )).

Conversely, suppose that V is a regular open set of Y containing F (x)
such that x ∈ γ−Fr(F+(V )). If F is upper almost γ-continuous at x, then
there exists U ∈ γO(X, x) such that U ⊂ F+(V ); hence x ∈ γ−int(F+(V )).
This is a contradiction and hence F is not upper almost γ-continuous at x.

The case for lower almost γ-continuous is similarly shown. ¤

In the following (D, >) is a directed set, (Fλ) is a net of multifunction
Fλ : X → Y for every λ ∈ D and F is a multifunction from X into Y .

Definition 52. Let (Fλ)λ∈D be a net of multifunctions from X to Y . A
multifunction F ∗ : X → Y is defined as follows: for each x ∈ X, F ∗(x) =
{y ∈ Y : for each open neighborhood V of y and each µ ∈ D, there exists
λ ∈ D such that λ > µ and V ∩ Fλ(x) 6= ∅} is called the upper topological
limit of the net (Fλ)λ∈D [6].

Definition 53. A net (Fλ)λ∈D is said to be equally upper almost γ-continuous
at x0 ∈ X if for every open set Vλ containing Fλ(x0), there exists a γ-open
set U containing x0 such that Fλ(U) ⊂ int(cl(Vλ)) for all λ ∈ D.

Theorem 54. Let (Fλ)λ∈D be a net of multifunctions from a space X into
a compact space Y . If the following are satisfied:

(1)
⋃{Fµ(x) : µ > λ} is closed in Y for each λ ∈ D and each x ∈ X,

(2) (Fλ)λ∈D is equally upper almost γ-continuous on X,
then F ∗ is upper almost γ-continuous on X.

Proof. We have F ∗(x) =
⋂{(⋃{Fµ(x) : µ > λ}) : λ ∈ D}. Since the

net (
⋃{Fµ(x) : µ > λ})λ∈D is a family of closed sets having the finite

intersection property and Y is compact, F ∗(x) 6= ∅ for each x ∈ X. Now,
let x0 ∈ X and let V be a proper open subset of Y such that F ∗(x0) ⊂ V .
Since F ∗(x0) ∩ (Y \V ) = ∅, F ∗(x0) 6= ∅ and Y \V 6= ∅, ⋂{(⋃{Fµ(x0) : µ >
λ}) : λ ∈ D} ∩ (Y \V ) = ∅ and hence

⋂{(⋃{Fµ(x0) ∩ (Y \V ) : µ > λ}) :
λ ∈ D} = ∅. Since Y is compact and the family {(⋃{Fµ(x0) ∩ (Y \V ) : µ >
λ}) : λ ∈ D} is a family of closed sets with the empty intersection, there
exists λ ∈ D such that Fµ(x0) ∩ (Y \V ) = ∅ for each µ ∈ D with µ > λ.
Since the net (Fλ)λ∈D is equally upper almost γ-continuous on X, there
exists a γ-open set U containing x0 such that Fµ(U) ⊂ int(cl(V )) for each
µ > λ, i. e., Fµ(x) ∩ (Y \int(cl(V ))) = ∅ for each x ∈ U . Then we have⋃{Fµ(x) ∩ (Y \int(cl(V ))) : µ > λ} = ∅ and hence

⋂{(⋃{Fµ(x) : µ > λ}) :
λ ∈ D} ∩ (Y \int(cl(V ))) = ∅. This implies that F ∗(U) ⊂ int(cl(V )). If
V = Y , then it is clear that for each γ-open set U containing x0 we have
F ∗(U) ⊂ int(cl(V )). Hence F ∗ is upper almost γ-continuous at x0. Since
x0 is arbitrary, the proof completes. ¤
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