
The Astrophysical Journal, 709:97–114, 2010 January 20 doi:10.1088/0004-637X/709/1/97
C© 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

A WEAK LENSING STUDY OF X-RAY GROUPS IN THE COSMOS SURVEY: FORM AND EVOLUTION OF
THE MASS–LUMINOSITY RELATION∗

Alexie Leauthaud1,2, Alexis Finoguenov3,4, Jean-Paul Kneib5, James E. Taylor6, Richard Massey7, Jason Rhodes8,9,

Olivier Ilbert5, Kevin Bundy10,23, Jeremy Tinker2, Matthew R. George10, Peter Capak11, Anton M. Koekemoer12,

David E. Johnston13, Yu-Ying Zhang14, Nico Cappelluti3, Richard S. Ellis9, Martin Elvis15, Stefania Giodini3,
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15 Harvard-Smithsonian Center for Astrophysics 60 Garden St., Cambridge, MA 02138, USA

16 Institute of Astronomy, Department of Physics, ETH Zurich, CH-8093, Switzerland
17 Institut d’Astrophysique de Paris, UMR 7095, 98 bis Boulevard Arago, 75014 Paris, France

18 Service d’Astrophysique, CEA/Saclay, 91191 Gif-sur-Yvette, France
19 IPP-Max Planck Institute for Plasma Physics, Boltzmann Strasse 2 Garching 85748, Germany

20 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei Munchen, Germany
21 Department of Physics & Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada
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ABSTRACT

Measurements of X-ray scaling laws are critical for improving cosmological constraints derived with the halo
mass function and for understanding the physical processes that govern the heating and cooling of the intracluster
medium. In this paper, we use a sample of 206 X-ray-selected galaxy groups to investigate the scaling relation
between X-ray luminosity (LX) and halo mass (M200) where M200 is derived via stacked weak gravitational lensing.
This work draws upon a broad array of multi-wavelength COSMOS observations including 1.64 degrees2 of
contiguous imaging with the Advanced Camera for Surveys to a limiting magnitude of IF814W = 26.5 and deep
XMM-Newton/Chandra imaging to a limiting flux of 1.0 × 10−15 erg cm−2 s−1 in the 0.5–2 keV band. The
combined depth of these two data sets allows us to probe the lensing signals of X-ray-detected structures at both
higher redshifts and lower masses than previously explored. Weak lensing profiles and halo masses are derived for
nine sub-samples, narrowly binned in luminosity and redshift. The COSMOS data alone are well fit by a power
law, M200 ∝ (LX)α , with a slope of α = 0.66 ± 0.14. These results significantly extend the dynamic range for
which the halo masses of X-ray-selected structures have been measured with weak gravitational lensing. As a
result, tight constraints are obtained for the slope of the M–LX relation. The combination of our group data with
previously published cluster data demonstrates that the M–LX relation is well described by a single power law,
α = 0.64 ± 0.03, over two decades in mass, M200 ∼ 1013.5–1015.5 h−1

72 M⊙. These results are inconsistent at
the 3.7σ level with the self-similar prediction of α = 0.75. We examine the redshift dependence of the M–LX
relation and find little evidence for evolution beyond the rate predicted by self-similarity from z ∼ 0.25 to z ∼ 0.8.
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1. INTRODUCTION

Groups and clusters of galaxies, formed through the gravi-
tational collapse of massive dark matter halos, are now readily
identified up to redshift one and even beyond (e.g., Stanford
et al. 2006; Eisenhardt et al. 2008). Baryonic tracers such as red-
sequence galaxies, typically abundant at the centers of groups
and clusters, or X-ray emission from the hot intracluster medium
(ICM), have proved to be especially successful in this task (e.g.,
Gladders & Yee 2005; Koester et al. 2007; Finoguenov et al.
2007). Nonetheless, these observables only trace the tip of the
iceberg given that the vast majority of the underlying mass is in
the form of dark matter.

The quantification of the total mass (both dark and baryonic)
of groups and clusters of galaxies is an important endeavor
from both a cosmological and an astronomical standpoint.
In particular, several lines of research would benefit from a
clearer understanding of the relationship between the total
halo mass of groups and clusters and their baryonic tracers.
We outline several briefly here (for a recent review on this
subject see Voit 2005). From a cosmological perspective, the
number density of groups and clusters as a function of total
mass is of fundamental interest because it is sensitive to both
the expansion and growth history of the universe and can be
used to constrain cosmological parameters such as Ωm, σ8, and
ΩΛ (e.g., White et al. 1993; Wang & Steinhardt 1998; Haiman
et al. 2001; Rozo et al. 2004; Wang et al. 2004; Bahcall et al.
2004; Rozo et al. 2009). Furthermore, modifications to the
laws of gravity, which can be invoked as a possible physical
mechanism for acceleration, could imprint telltale signatures
in the abundance and dark matter structure of groups and
clusters of galaxies (Rapetti et al. 2009; Schmidt et al. 2009).
Unfortunately, the common difficulty encountered with each
of these enquires is that theories and simulations make dark-
matter-based predictions, but our most accessible observables
(such as richness or X-ray luminosity) are baryonic in nature.

It has long been recognized that baryonic observables are sub-
ject to complex and poorly understood physical processes that
make them imperfect dark matter tracers. For example, X-ray
studies discovered early on that the theory of pure gravitational
collapse which makes simple predictions for the shape and am-
plitude of X-ray scaling relations (also known as the self-similar
model; Kaiser 1986) fail to match observations such as the slope
and normalization of the LX–T relation (Voit 2005, and refer-
ences therein) implying that other non-gravitational (and still
much debated) processes have significantly affected the ther-
modynamic state of the ICM. Additional heating and cooling
mechanisms that are invoked to solve this puzzle lead to dif-
ferent predictions for the shape and redshift evolution of X-ray
scaling relations. On the one hand, the fact that X-ray scaling re-
lations deviate from simple models is a plague for cosmologists
because there is no straightforward recipe to estimate total halo
masses. On the other hand, from an astronomical perspective,
the comparison between X-ray observables and total halo mass
contains valuable clues about the physical processes that govern
galaxy formation and the heating and cooling of the ICM.

For all of these reasons, more precise measurements of the
mean and scatter in the relationship between total halo mass and
various baryonic tracers of groups and clusters of galaxies are
highly desirable (e.g., see discussions in Voit 2005; Albrecht
et al. 2006).

At present, there are five popular methods for detecting groups
and clusters of galaxies: (1) optical detection via the red se-

quence (e.g., Gladders & Yee 2005; Koester et al. 2007); (2) de-
tection via the Sunyaev–Zeldovich (SZ) effect which measures
the distortion of the cosmic microwave background spectrum
due to the hot ICM (e.g., Sunyaev & Zeldovich 1970, 1972;
Carlstrom et al. 2002; Benson et al. 2004; Staniszewski et al.
2009); (3) detection via X-ray emission (e.g., Böhringer et al.
2000; Hasinger et al. 2001; Finoguenov et al. 2007; Vikhlinin
et al. 2009); (4) spectroscopic identification (e.g., Gerke et al.
2005; Miller et al. 2005; Knobel et al. 2009); and (5) detec-
tion via weak lensing maps (e.g., Marian & Bernstein 2006;
Miyazaki et al. 2007; Massey et al. 2007b). This last technique
is the simplest in terms of the underlying physics and is the only
method for which the total halo mass can be directly probed,
independently of both the baryons and the dynamical state of the
cluster. However, shear maps can only detect the most massive
systems (M > 1014 M⊙) and are limited to moderate redshifts
because the lensing weight function peaks mid way between
the source and the observer, with galaxy shapes increasingly
difficult to measure at z > 1. X-ray observations, on the other
hand, can more simply probe complete samples of groups and
clusters, but departures from virial equilibrium and non-thermal
pressure components in the ICM can bias X-ray-based hydro-
static mass estimates (e.g., Nagai et al. 2007). The SZ effect
has the attractive property of being redshift independent, and
the integrated SZ flux increment, Y, may be less sensitive to
the baryon physics of cluster cores (Motl et al. 2005; Nagai
2006), but mass measurements with the SZ effect face other
challenges such as the identification and removal of radio point
sources (Vale & White 2006), sky confusion owing to projection
effects (White et al. 2002), and possibly a larger scatter in the
Y–M relation than previously estimated due to feedback pro-
cesses (Shaw et al. 2008).

Given these considerations, a promising strategy is to employ
a robust and efficient cluster detection method (to which the
ultimate solution may be a combination of several techniques
such as described in Cohn & White 2009) and to perform
an absolute mass calibration of baryonic tracers via weak
gravitational lensing (Hoekstra 2007; Rykoff et al. 2008; Bergé
et al. 2008).

The focus of this paper is to advance these goals by calibrating
the slope and amplitude of the M–LX relation for galaxy groups
using cross-correlation weak lensing in the COSMOS survey
(also called “group-galaxy lensing”). Extending weak lensing
measurements into the group regime is particularly important
in order to extend the dynamic range of weak-lensing-based
mass estimates so as to more accurately determine the slopes of
scaling relations. Using the COSMOS sample, we show that
X-ray detections span a more complete and wide range of
redshift and mass than detections via shear maps. Indeed, high
redshift and small structures are challenging to detect directly
with shear because of the shape of the lensing weight function
(see Section 4). Nevertheless, once they have been identified,
groups and clusters can be studied via stacking techniques.
A notable advantage of this method is that measurements are
unaffected by uncorrelated mass along the line of sight, whereas
mass estimates for individually detected clusters are subject to
∼20% uncertainties (Metzler et al. 2001; Hoekstra 2003; de
Putter & White 2005). The associated drawback with stacking
is that the intrinsic scatter around the mean relation is difficult
to recover.

In order to employ the stacked weak lensing technique,
tight baryonic tracers of halo mass are highly desirable. The
X-ray luminosity of groups and clusters is considered to be
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a reasonable tracer of halo mass with a logarithmic scatter in
the M–LX relation of roughly 20%–30% (Stanek et al. 2006;
Maughan 2007; Pratt et al. 2009; Rozo et al. 2009; Rykoff et al.
2008; Vikhlinin et al. 2009). A large fraction of this scatter
has been shown to be associated with the presence of cool
cores and simple excision techniques can reduce the scatter
to sub-20% levels (Maughan 2007; Pratt et al. 2009). Although
more tightly correlated mass tracers have been identified such as
the YX parameter (e.g., Kravtsov et al. 2006)—such indicators
require the measurement of an X-ray spectrum which is not
possible for most survey data where count rates are low. Our
choice of LX as a mass proxy reflects the fact that it is a
simple X-ray observable, accessible with survey quality data,
and the only one that can be easily measured at high redshift.
Temperature measurements may be feasible for a small fraction
of high redshift objects but cosmological studies that require
complete samples of high redshift groups and clusters will need
simple mass proxies like LX. The details of the M–LX relation
are also important (regardless of the choice of a mass proxy)
for determining effective volumes as a function of mass in X-
ray-flux-limited surveys (Stanek et al. 2006; Vikhlinin et al.
2009).

The layout of this paper is as follows. The data are presented in
Section 2, and the theoretical lensing background is developed
in Section 3. The construction of the group catalog and the
lens selection are specified in Section 4. Details regarding the
adopted form of the M–LX relation are given in Section 5.
Our main results are presented in Section 6 followed by our
assessment of the systematic errors in Section 7. Finally, we
discuss the results and draw up our conclusions in Section 8.

We assume a WMAP5 ΛCDM cosmology with Ωm = 0.258,
ΩΛ = 0.742, Ωbh

2 = 0.02273, ns = 0.963, σ8 = 0.796,
H0 = 72 h72 km s−1 Mpc−1 (Hinshaw et al. 2009). All distances
are expressed in physical units of h−1

72 Mpc. X-ray luminosities
are expressed in the 0.1–2.4 keV band, rest frame. The letter
M denotes halo mass in general, whereas M200 is explicitly
defined as M200 ≡ M(< r200) = 200ρcrit(z) 4

3πr3
200, where r200

is the radius at which the mean interior density is equal to
200 times the critical density (ρcrit ≡ 3H 2(z)/8πG). The
function E(z) ≡ H (z)/H0 =

√

Ωm(1 + z)3 + ΩΛ represents the
Hubble parameter evolution for a flat metric. All magnitudes are
given on the AB system.

2. THE COSMOS SURVEY

The COSMOS survey brings together a broad array of
panchromatic observations with imaging data from X-ray
to radio wavelengths and a large spectroscopic follow-up
program (zCOSMOS) with the VLT (Scoville et al. 2007;
Koekemoer et al. 2007; Lilly et al. 2007). In particular, the
COSMOS program has imaged the largest contiguous area
(1.64 degrees2) to date with the Hubble Space Telescope (HST)
using the Advanced Camera for Surveys (ACS) Wide Field
Channel (WFC). In addition to the ACS/WFC (IF814W ) imag-
ing, the COSMOS field has been targeted by both the XMM-
Newton (1.5 Ms; Hasinger et al. 2007; Cappelluti et al. 2009) and
the Chandra observatories (1.8 Ms, Elvis et al. 2009). The com-
bination of ACS imaging to provide accurate shape measure-
ments, and of XMM-Newton/Chandra imaging, sets the stage
for the study of the dark matter halos of galaxy groups via weak
lensing techniques. In the following sections, we describe the
various data sets and catalogs employed in this analysis.

2.1. ACS Lensing Data

Our general scheme for the construction of the COSMOS
ACS lensing catalog is based on Leauthaud et al. (2007), and
we refer the reader to this publication for details regarding the
source extraction and catalog construction—only a brief review
will be given here. Since Leauthaud et al. (2007), however, we
have made a key improvement regarding the effects of charge
transfer inefficiency (CTI) in the ACS CCDs. This aspect in
particular is outlined below in greater detail.

In Leauthaud et al. (2007) and Rhodes et al. (2007), we
remarked that the COSMOS ACS images are strongly affected
by CTI. As charge is transferred during the CCD read-out
process, a certain fraction is retained by charge traps (created
by cosmic ray hits) in the pixels. This causes flux to be trailed
behind objects as the traps gradually release their charge,
spuriously elongating them in a coherent direction that mimics
a lensing signal. Our previous work employed a parametric
scheme to correct for this effect at a catalog level. Although a
parametric scheme provides a first-order correction of CTI, it
neglects the dependence of the CTI on object size, radial profile,
and shape for example. For this reason, in Massey et al. (2009),
we have developed a physically motivated correction scheme
that operates on the raw data and that has been shown to achieve
a 97% level of correction. Using this scheme, we have produced
a new set of raw “unrotated” ACS/WFC data (version 2.0) in
which the CTI trailing is reduced by more than an order of
magnitude (for further details, see Massey et al. 2009). The raw
data are co-added using the same MultiDrizzle set-up as in
our previous work.

We use Version 2.5.0 of the SExtractor photometry package
(Bertin & Arnouts 1996) to extract a source catalog of positions
from the v2.0 ACS data using the same “Hot-Cold” method
as in Leauthaud et al. (2007). Defects and diffraction spikes are
carefully removed from the catalog, leaving a total of ∼1.2×106

objects to a limiting magnitude of IF814W = 26.5.
The next step is to measure the shapes of galaxies and to

correct them for the distortion induced by the time varying
ACS point-spread function (PSF) as described in Rhodes et al.
(2007). As compared to Rhodes et al. (2007), the parametric CTI
correction is no longer applied because this effect has already
been removed in the raw images.

Simulated images are used to derive the shear susceptibility
factors that are necessary in order to transform shape measure-
ments into unbiased shear estimators. Finally, for every galaxy,
we derive a shape measurement error and utilize this quantity
to extract the intrinsic shape noise of the galaxy sample. Repre-
senting a number density of 66 galaxies arcminute−2, the final
COSMOS weak lensing catalog contains 3.9×105 galaxies with
accurate shape measurements.

2.2. Photometric and Spectroscopic Redshifts

Redshift information is critical for both the lens and source
populations because it allows one to correctly scale lensing
relations to remove foreground contamination and to study
weak lensing signals in terms of physical instead of angular
distances. We use an updated and improved version of the
photometric redshifts (hereafter photozs) presented in Ilbert
et al. (2009) which have been computed with over 30 bands
of multi-wavelength data. The main differences between the
Ilbert et al. (2009) catalog and the one that we use here
are the addition of deep H-band data and small improvements
in the template-fitting technique. Details regarding the data and
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the photometry can be found in Capak et al. (2007; see also
McCracken et al. 2009).

Photozs were estimated using a χ2-template-fitting method
(Le Phare) and compared with large spectroscopic samples
from the Very Large Telescope (VLT) Visible Multi-Object
Spectrograph (VIMOS; Lilly et al. 2007) and the Keck Deep
Extragalactic Imaging Multi-Object Spectrograph (DEIMOS).
The combined spectroscopic redshift sample comprises: 10,801
galaxies at z ∼ 0.48, 696 at z ∼ 0.74, and 870 at z ∼ 2.2.
The dispersion in the photozs as measured by comparing to the
spectroscopic sample is σ∆z/(1+zspec) = 0.007 at i+

AB < 22.5,
where ∆z = zspec − zphot. The deep IR and Infrared Array
Camera (IRAC) data enable the photozs to be calculated even at
fainter magnitudes with a reasonable accuracy of σ∆z/(1+zspec) =
0.06 at i+

AB ∼ 24. In particular, deep J, H, K, and u∗ band data
allow for a better estimation of the photozs at z > 1 via the
4000 Å break which is shifted into the infrared (IR).

Larger samples of spectroscopic redshifts at z > 1 will
ultimately be required to define the most trustworthy magnitude
and redshift range for the source galaxies (in a similar fashion
to Mandelbaum et al. 2008). Meanwhile, to mitigate the effects
of photoz uncertainties, we use a conservative source galaxy
selection which will be discussed in more detail in Section 7.
In short, we reject all source galaxies with a secondary peak in
the redshift probability distribution function (i.e., the parameter
zp_sec is non-zero in the Ilbert et al. 2009 catalog). This cut is
aimed to reduce the number of catastrophic errors (a preferential
shift in a certain population of galaxies from one redshift bin to
another) in the source catalog. The zp_sec >0 galaxy population
is expected to contain a large fraction of catastrophic errors
(roughly 40%–50%, Ilbert et al. 2006, 2009). The photoz quality
cuts reduce the number density of source galaxies from 66 to 34
galaxies arcminute−2. The final mean redshift and magnitude of
the source sample are 〈z〉 ∼ 1 and 〈IF814W 〉 ∼ 24. In addition
to these quality cuts, for each lens–source pair, we demand that
zsource − zlens > σ68%(zsource) and that zsource − zlens > 0.1 to
ensure a clean selection of background galaxies.

2.3. Stellar Mass Estimates

Stellar masses are used to identify the Most Massive Cen-
tral Galaxy (MMCG; see Section 4.4 for more details) and are
estimated using the Bayesian code described in Bundy (2006a,
2006b). Briefly, an observed galaxy’s spectral energy distri-
bution (SED) and photoz are referenced to a grid of models
constructed using the Bruzual & Charlot (2003) synthesis code.
The grid includes models that vary in age, star formation history,
dust content, and metallicity. At each grid point, the probability
that the observed SED fits the model is calculated, and the cor-
responding stellar mass to K-band luminosity ratio and stellar
mass are stored. By marginalizing over all parameters in the
grid, the stellar mass probability distribution is obtained. The
median of this distribution is taken as the stellar mass estimate,
and the width encodes the uncertainty due to degeneracies and
uncertainties in the model parameter space. The final uncer-
tainty on the stellar mass also includes the K-band photometry
uncertainty as well as the expected error on the luminosity dis-
tance that results from the photoz uncertainty. The typical final
uncertainty is 0.2–0.3 dex.

2.4. XMM and Chandra Data

The entire COSMOS region has been mapped through 54
overlapping XMM-Newton pointings, and additional Chandra
observations cover the central region (0.9 degrees2) to higher

resolution. A composite XMM-Newton and Chandra mosaic has
been used to detect and measure the fluxes of groups and clusters
to a 4σ detection limit24 of 1.0 × 10−15 erg cm−2 s−1 over 96% of
the ACS field. The general data reduction process can be found
in Finoguenov et al. (2007), and details regarding improvements
and modifications to the original catalog are given in Section 4.
In particular, the group and cluster catalog used in this paper
features a more conservative point-source removal procedure
than in Finoguenov et al. (2007). Redshift identification has
also improved thanks to the increased photoz accuracy and to
the availability of more spectroscopic data (see Section 4.3). In
total, the catalog used in this paper contains 206 X-ray groups
and clusters of galaxies over 1.64 degrees2, spanning the redshift
range 0 < z < 1.6 and with a rest-frame 0.1–2.4 keV luminosity
range between 1041 and 1044 erg s−1.

3. THEORETICAL LENSING FRAMEWORK

3.1. From Galaxy Shapes to ∆Σ

In the weak gravitational lensing limit, the observed shape
εobs of a source galaxy is directly related to the lensing induced
shear γ according to

εobs = εint + γ, (1)

where εint is the source galaxy’s intrinsic shape that would be
observed in the absence of gravitational lensing. In our notation,
εint, εobs, and γ are spin-2 tensors. The above relationship
indicates that galaxies would be ideal tracers of the distortions
caused by gravitational lensing if the intrinsic shape εint of
each source galaxy was known a priori. However, lensing
measurements exhibit an intrinsic limitation, encoded in the
width of the ellipticity distribution of the galaxy population,
noted here as σint, and often referred to as the “intrinsic shape
noise.” Because the intrinsic shape noise (of order σint ∼ 0.27;
Leauthaud et al. 2007) is significantly larger than γ (typically
γ ∼ 0.05 for this work), shears must be estimated by averaging
over a large number of source galaxies.

Throughout this paper, the gravitational shear is noted as γ ,
whereas γ̃ represents our estimator of γ . The uncertainty in the
shear estimator is a combination of unavoidable intrinsic shape
noise, σint =

√

〈ε2
int〉, and of shape measurement error, σmeas:

σ 2
γ̃ = σ 2

int + σ 2
meas. (2)

We will refer to σγ̃ as “shape noise,” whereas σint will be
called the “intrinsic shape noise.” The former includes the shape
measurement error and will vary according to each specific
data set and shape measurement method. Averaged over the
whole COSMOS field, the weak lensing distortions represent a
negligible perturbation to Equation (2). The intrinsic shape noise
and measurement error for COSMOS have been characterized
in Leauthaud et al. (2007) by using a sample of 27,000 source
galaxies that lie within the overlapping regions of adjacent
pointings. The shape measurement error is determined for every
source galaxy as a function of size and magnitude. For this
paper, an intrinsic shape noise of σint = 0.27 is assumed.

The derivation of our shear estimator is presented in
Leauthaud et al. (2007). We employ the RRG method (see
Rhodes et al. 2000, for further details) for galaxy shape mea-
surements. Briefly, we form γ̃ from the PSF-corrected ellipticity

24 Quoted detection limits correspond to the wavelet scalewise reconstruction.
See Finoguenov et al. (2007) for more details.
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Table 1

Various Properties for Each of the Nine Bins

Bin ID NLENS 〈LX .E(z)−1〉 f CC
a 〈M200〉 〈z〉 E(〈z〉) LZ fbias fboost fbias × fboost

(1042 h−2
72 erg s−1) (1013 h−1

72 M⊙) (10−4 h−2
72 pc2 M−2

⊙ )

A0 1 31.14 ± 0.49 1.0 14.9+7.1
−4.8 0.22 1.10 3.16 1.01 1.00 1.01

A1 3 13.75 ± 0.50 1.0 8.2+3.3
−2.3 0.36 1.18 3.78 1.02 1.00 1.03

A2 3 6.04 ± 0.28 1.17 9.9+3.3
−2.5 0.35 1.17 3.77 1.01 1.00 1.02

A3 11 2.21 ± 0.15 1.08 3.2+1.3
−0.9 0.36 1.18 3.77 1.02 1.00 1.02

A4 7 0.90 ± 0.06 1.03 2.1+1.5
−0.8 0.23 1.11 3.20 1.01 1.00 1.01

A5 13 1.24 ± 0.09 1.05 1.1+0.8
−0.4 0.35 1.18 3.77 1.01 1.00 1.02

A6 11 3.65 ± 0.21 1.17 3.3+1.7
−1.1 0.50 1.27 3.96 1.03 1.01 1.04

A7 23 4.72 ± 0.24 1.13 2.6+1.1
−0.7 0.69 1.41 3.84 1.04 1.02 1.06

A8 21 10.51 ± 0.50 1.14 7.6+2.3
−1.8 0.90 1.58 3.65 1.03 1.05 1.08

Note. a The cool-core correction factor that is applied to Column 3 (see description in Section 2.1).

according to

γ̃ = C ×
εobs

G
, (3)

where the shear susceptibility factor25, G, is measured from
moments of the global distribution of εobs and other, higher
order shape parameters (see Equation (28) in Rhodes et al.
2000). Using a set of simulated images similar to those of Shear
TEsting Program (STEP; Heymans et al. 2006; Massey et al.
2007a) but tailored exclusively to this data set, we find that,
in order to correctly measure the input shear on COSMOS-like
images, the RRG method requires an overall calibration factor of
C = (0.86+0.07

−0.05)−1 (see Leauthaud et al. 2007, for more details).
The shear signal induced by a given foreground mass dis-

tribution on a background source galaxy will depend on the
transverse proper distance between the lens and the source and
on the redshift configuration of the lens–source system. A lens
with a projected surface mass density, Σ(r), will create a shear
that is proportional to the surface mass density contrast, ∆Σ(r):

∆Σ(r) ≡ Σ(< r) − Σ(r) = Σcrit × γt (r). (4)

Here, Σ(< r) is the mean surface density within the proper radius
r, Σ(r) is the azimuthally averaged surface density at radius
r (e.g., Miralda-Escude 1991; Wilson et al. 2001), and γt is the
tangentially projected shear. The geometry of the lens–source
system intervenes through the critical surface mass density,
Σcrit, which depends on the angular diameter distances to the
lens (DOL), to the source (DOS), and between the lens and source
(DLS):

Σcrit =
c2

4πGN

DOS

DOL DLS
, (5)

where GN represents Newton’s constant. Hence, if redshift
information is available for every lens–source pair, each estimate
of γt can be directly converted to an estimate of ∆Σ which is
a more desirable quantity because it depends only on the mass
distribution of the lens.

To measure ∆Σ(r) with high signal to noise, the lensing signal
must be stacked over many foreground lenses and background
sources. For every ith lens and jth source separated by a proper
distance rij, an estimator of the mean excess projected surface
mass density at rij is computed according to

∆Σ̃ij (rij ) = γ̃t,ij × Σcrit,ij , (6)

25 Not to be confused with Newton’s constant which we have noted as GN.

where γ̃t,ij is the tangential shear of the source relative to
the lens. The COSMOS photometric redshifts described in
Section 2.2 are used to estimate Σcrit,ij for every lens–source
pair. In order to optimize the signal to noise, an inverse variance
weighting scheme is employed when ∆Σij is summed over many
lens–source pairs. Each lens–source pair is attributed a weight
that is equal to the estimated variance of the measurement:

wij =
1

(Σcrit,ij × σγ̃ ,ij )2
. (7)

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

In general, for the types of lenses studied in this paper (groups
and low mass clusters of galaxies), the signal to noise per lens is
not high enough to measure ∆Σ on an object by object basis so
instead we stack the signal over many lenses. For a given sample
of lenses, the total excess projected surface mass density is the
weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (8)

3.2. Non-weak Shear

Equation (1) and subsequent derivations only hold in the weak
gravitational lensing limit, that is to say when γ ≪ 1 and κ ≪ 1
(κ = Σ/Σcrit is the convergence). In reality, galaxy shapes trace
the reduced shear, g = γ /(1−κ). The masses of the groups that
we are probing are such that the weak lensing assumption can
begin to break down in the most inner bins (r < 100 h−1

72 kpc)
and for high redshift source galaxies. In this regime, g ∼ γ is no
longer a valid assumption. Following the methodology outlined
in Johnston et al. (2007) and Mandelbaum et al. (2006a), it
can be shown that our weighted estimator for ∆Σ will have a
second-order contribution:

∆Σ̃ = ∆Σ + ∆ΣΣLZ, (9)

LZ =
〈

Σ
−3
crit

〉

〈

Σ
−1
crit

〉 . (10)

For further details, see Equation (19) in Johnston et al. (2007)
and Appendix A in Mandelbaum et al. (2006a). In a similar
fashion to Johnston et al. (2007), we ignore the variations of
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LZ within various radial bins. However, because our lens sample
spans a large redshift range, we do not use a constant value of
LZ for all redshift bins. Instead, LZ is calculated from the data
for each redshift bin. Our values for LZ are given in Table 1.

3.3. A Model for Predicting ∆Σ

A halo model approach is used to model the surface mass
density contrast ∆Σ as a function of transverse separation
(e.g., Mandelbaum et al. 2005, 2006a, 2006b; Yoo et al. 2006;
Johnston et al. 2007). The total signal is modeled as the sum
of two distinct components that dominate the signal at different
scales. The first term is due to the baryonic mass contained
within the central galaxy (CG) and only contributes at scales
below ∼50 kpc. The second term dominates the signal on
intermediate to large scales (∼50 kpc to a few Mpc) and
represents the group-scale dark matter halo (also known as the
“one-halo term”). On the largest scales (above several Mpc), the
clustering of halos among themselves produces a contribution to
∆Σ via the so-called “two-halo term.” However, we have found
that the two-halo term is mostly sub-dominant at the scales that
we probe. We have tested that the exclusion of the two-halo
term has no impact on the results of this study and we therefore
neglect this term hereafter.

The baryonic mass of the CGs can have a non-negligible
contribution to ∆Σ at small transverse separations from the
center of the stacked ensemble. Although the baryons typically
follow a Sersic profile, at the scales of interest for this study, well
above a few effective radii (>40 kpc), the lensing contribution
of the baryons can be modeled by a simple point source scaled to
〈MCG〉 the average stellar mass of the CGs (also see Sections 2.3
and 4.4):

∆Σstellar(r) =
〈MCG〉
πr2

. (11)

To be more precise, the baryons that have not yet transformed
into stars should also be considered. However, the majority of
non-stellar group baryons are in the form of diffuse hot gas
spread throughout the halo, in rough equilibrium with the dark
matter potential. To first order, the gas mass contribution should
follow the dark matter distribution.

We assume that the density profiles of dark matter ha-
los follow Navarro–Frenk–White (NFW) profiles (Navarro
et al. 1997). In this work, halo mass is defined as M200 ≡
M(< r200) = 200ρcrit(z) 4

3πr3
200, and C200 denotes the halo con-

centration. Numerous studies have demonstrated that the mass,
concentration, and characteristic formation epoch of dark mat-
ter halos are closely linked and on average, smaller halos tend
to have higher concentrations (Bullock et al. 2001; Wechsler
et al. 2002; Macciò et al. 2007; Zhao et al. 2009). For this study,
we adopt the Zhao et al. (2009)26 mass–concentration relation
for a WMAP5 cosmology. By adopting this relation, ∆Σnfw is
fully described by two parameters, namely M200 and redshift.
Analytical formulas for the ∆Σ corresponding to a NFW profile
can be found in Wright & Brainerd (2000) and in Bartelmann
(1996).

The additional gravitational potential due to the baryons is
expected to modify the density profiles of dark matter halos
via adiabatic contraction (Gnedin 2004; Sellwood & McGaugh
2005). Nevertheless, Mandelbaum et al. (2006a) have shown
that this has a negligible effect on the lensing signal on the
scales that we consider (above 40 kpc), and we neglect this
effect for this work.

26 See http://www.shao.ac.cn/dhzhao/mandc.html.

The final model that we use for the weighted estimate ∆Σ̃ is

∆Σ̃ = ∆Σstellar + ∆Σnfw + ∆ΣnfwΣnfwLZ. (12)

We have included the second-order contribution to ∆Σ̃ from
non-weak shear. Note that only the dark matter halo contributes
to this term because Σstellar is zero at the scales that we probe.

4. X-RAY GROUP SELECTION

4.1. X-ray Selection versus Shear Maps

Among group and cluster probes, X-rays are perhaps
the cleanest and the most complete selection method. First,
X-ray emission depends on the square of the gas density and
so X-rays pick up the cores of dense structures more accurately
than SZ and are less prone to projection effects. Second, un-
like optical techniques which rely on galaxy properties, X-rays
yield a complete sample of groups and clusters, irrespective
of their galaxy content. Finally, X-rays probe a wider range
in mass and redshift than shear maps which are fundamentally
limited by the shape of the lensing weight function. To illus-
trate the magnitude of this effect, in the upper panel of Figure 1
we show the expected lensing detection significance of X-ray
structures in COSMOS as a function of mass and redshift. The
lower panel in Figure 1 shows the comoving volume probed
by the survey per unit redshift. The theoretical lensing detec-
tion significance is derived according to the method outlined in
Hamana et al. (2004) assuming a smoothed COSMOS redshift
distribution and isolated NFW profiles truncated at the virial ra-
dius. A source density of 66 galaxies arcmin−2 and an average
shape noise of σγ̃ = 0.31 are assumed. Lensing S/N curves
are based on fixed-scale Gaussian smoothing with a one ar-
cminute smoothing kernel (an optimal filter would pick up
slightly more signal). Figure 1 demonstrates that lensing alone
cannot detect low mass or high redshift objects. Instead one
must resort to other detection techniques such as X-rays. Note
that although the low redshift lensing sensitivity is relatively
good, the volume probed is also quite limited. It is also impor-
tant to note that the depth of the COSMOS data will probably
exceed any near-future space-based mission27. In this respect,
Figure 1 can be considered as a realistic upper limit for lensing-
based structure detection in the near future (for both ground and
space-based observatories).

4.2. Construction of the Group Catalog

The group catalog used for this work is an improved version of
the catalog presented in Finoguenov et al. (2007, hereafter F07)
obtained by using additional XMM-Newton and Chandra data
and by applying a new procedure for the removal of point sources
(A. Finoguenov et al. 2010, in preparation). The group catalog
contains a total of 206 systems in the COSMOS ACS field, 170
of which are at z < 1.

The group catalog is constructed from both the XMM-Newton
and the Chandra mosaics. All features with spatial extents
below 16′′ are removed before co-adding the two mosaics.
The combined mosaic is used to search for sources with
spatial extents on both 32′′ and 64′′ scales using the wavelet
decomposition technique described in Vikhlinin et al. (1998).
Both Chandra and XMM-Newton have a spatial resolution that
is better than 30′′. The full width half-maximum (FWHM) of

27 The fiducial depth of EUCLID and JDEM is I ∼ 25.5.

http://www.shao.ac.cn/dhzhao/mandc.html
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Figure 1. Upper panel: theoretically computed lensing detection significance (dashed curves) of X-ray structures (data points) in the COSMOS field as a function of
mass and redshift. Lensing detection significance values have been derived with the method outlined in Hamana et al. (2004) assuming a smoothed COSMOS redshift
distribution and a source density of 66 galaxies arcminute−2. The predictions in this figure represent a realistic upper limit for all near-future weak-lensing surveys,
including space-based missions such as JDEM and EUCLID. Indeed, the survey depth of these missions is unlikely to exceed the current depth of COSMOS. Direct
structure detection via shear maps is limited by the lensing weight function at high redshifts and at low masses. To identify such structures, one must resort to other
detection techniques. Lower panel: comoving volume probed by the (1.64 degrees2) survey per unit redshift. Although the low redshift lensing sensitivity is relatively
good, the volume probed is also quite limited.

(A color version of this figure is available in the online journal.)

the PSF is approximately equal to 16′′ for XMM-Newton, and
varies between 3′′ and 8′′ for Chandra.

Total X-ray fluxes are obtained from the measured fluxes by
assuming a beta profile and by removing the flux that is due to
embedded active galactic nuclei (AGNs) point sources. Previous
surveys have often assumed that all of the X-ray fluxes within an
extended source area are due to cluster emission (e.g., Böhringer
et al. 2004). However, this assumption breaks down for deep
surveys such as COSMOS. In particular, we have calculated
that on average, AGNs contribute up to 30% of the extended
X-ray emission in the 0.5–2 keV band, while for ROSAT All
Sky Survey (RASS) clusters, the estimated value is less than 2%.
Point-source removal is thus necessary for COSMOS. However,
the procedure that removes the flux from point sources also
removes flux from cool cores and as a consequence, the total
flux is underestimated. For comparison with other work, it is
important to correct for this accidental removal of the flux from
cool cores. There have been claims that the cool-core fraction
is evolving with redshift (Jeltema et al. 2005; Vikhlinin et al.
2007; Maughan 2007). We have therefore developed a method
to correct for this effect directly from the data by using the high-
resolution Chandra observations of the COSMOS field which
cover a contiguous area of 0.5 degrees2 with the best PSF (3′′,
Elvis et al. 2009), sufficient to distinguish between cool cores
and AGNs. Taking advantage of these data, we compute a cool-
core correction factor (noted fCC) using the following procedure.
To begin with, groups inside the high-resolution Chandra area

are binned into the same nine bins as used for the lensing analysis
(see Section 6.1). Next, wavelet scales below 4′′ are used to
remove point sources. Finally, the Chandra flux is stacked in
each of the nine bins, and a 16′′ aperture is used to estimate
the average cool-core flux. The results are listed in Table 1 and
range from a 3% to a 17% flux correction.

Rest-frame luminosities are calculated from the total flux fol-
lowing L0.1–2.4 keV = 4πd2

LK(z, T )Cβ(z, T )Fd, where K(z, T)
is the K-correction, and Cβ(z, T ) is an iterative correction fac-
tor (see F07). The uncertainty in K(z, T) affects groups with
luminosities below 1042 h−2

72 erg s−1 and so only concerns a
few of the systems considered here. For the LX–T relation, we
have used kT /keV = 0.2 + 6 × 10(log(LXE(z)−1)−44.45)/2.1), which
introduces a break at group scales (as discussed in Voit 2005)
but reproduces the Markevitch (1998) result at cluster scales.
Recent work by Pratt et al. (2009) has derived a similar slope
for the LX–T relation for clusters as Markevitch (1998). The
behavior of the LX–T relation is not very well established at low
temperatures; however, exploring the effects of a different LX–T
relations is beyond the scope of this paper and is left for future
work.

Quality flags (named hereafter “xflag”) are derived for the
entire group catalog based on visual inspection.28 xflag =
1 is assigned to groups with a single optical counterpart and
with a clear X-ray peak. These are mostly highly significant

28 Visual inspection is performed on the XMM-Newton, ACS, and Subaru data
simultaneously.
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X-ray detections (over 6σ ) in zones free of projection effects.
The flag xflag = 2 is assigned to systems for which the
extended X-ray emission is subject to projection effects but
for which the various projections can be disentangled. Sys-
tems with questionable optical/IR counterparts are assigned
xflag = 3. These are primarily high-z (z > 1) candidates that
are not considered in this work. xflag = 4 indicates that there
are several equally possible optical counterparts and that the
X-ray flux cannot be disentangled for projection effects.
xflag = 5 is assigned to systems for which the optical counter-
part is uncertain and xflag = 6 to identified extended emission
not associated with galaxy groups (these are mainly interacting
galaxies and X-ray jets, V. Smolcic et al. 2010, in preparation).
xflag is assigned to unidentified emission, and xflag = 8 as-
signed to systems located in the masked-out regions (edges of
the survey and regions near bright stars). In this work, we only
consider systems with xflag = 1 or xflag = 2.

To ensure a high-quality and robust lens catalog, in addition to
the X-ray quality flags, all systems have been visually inspected
and flagged for proximity to the edge of the ACS field, and
contamination by the presence of a bright foreground star which
will affect both the lensing measurements and the determination
of the central group galaxy. All systems with such flags were
removed from the lens catalog. In total, after all quality cuts,
the lens catalog contains 127 systems at z � 1. None of these
quality cuts are expected to bias the remaining sample but will
improve the estimations of both LX and M200.

4.3. Redshift Determination

The optical counterparts of X-ray sources are identified
using a sophisticated red-sequence method. The details of this
technique are presented in Finoguenov et al. (2009)—only a
brief outline is given here. Along the line of sight of each X-ray
source, the redshift range 0 < z < 2.5 is probed for potential
red-sequence overdensities. For a given redshift z = zRS, with
0 < zRS < 2.5, galaxies are selected within an aperture of
0.5 Mpc (physical) from the center of the X-ray emission such
that |zphot − zRS| < 0.2. The apparent size of the aperture is
defined in terms of a physical scale and will vary with zRS.
Weights are derived for all galaxies according to their proximity
to the center of the X-ray emission and to the comparison of
both their color and magnitude to a model red sequence at
zRS. The red-sequence detection significance is determined by
applying the same procedure to random COSMOS fields. If
there are multiple red-sequence overdensities along the line
of sight, the one with the highest significance is selected.
Red-sequence redshifts are then refined using spectroscopic
information whenever possible.

Of the 127 systems at z � 1 (after the quality cuts), 81%
have two or more spectroscopically confirmed members, 7%
have one spectroscopically confirmed member, and 12% have a
redshift that is determined solely by the red-sequence method.
The average redshift error for the group ensemble at z � 1 is
estimated at 0.006, somewhat larger than the typical velocity
dispersion of our groups which is about 300 km s−1.

4.4. Center Determination

Stacked weak lensing measurements require the identification
of the dark matter density peak. Centroid errors will lead to
a smoothing of the lensing signal on small scales and to an
underestimate of halo mass (e.g., see discussion in Johnston
et al. 2007). With the exception of on-going, nearly equal mass
ratio mergers, the centroid of the X-ray emission should indicate

where the potential well is deepest. Halo centers are also often
assumed to contain CGs which can be used as good tracers on
condition that they can be correctly identified.

The wavelet-reconstructed X-ray image is analyzed with
SExtractor (Bertin & Arnouts 1996) to determine the centers
and two-dimensional shapes of the extended X-ray emission.
The accuracy of the determination of the X-ray center is higher
for xflag = 1 systems than for xflag = 2 systems which
are somewhat affected by projection effects. The maximum
uncertainty of the peak for xflag = 2 systems is determined
by the size of the wavelet scale, which is 32′′. Although the
X-ray centroid is not precise enough to be used directly in
most cases (of 127 system that remain after the quality cuts
described in previous sections, 55 have xflag = 1 and 72 have
xflag = 2), it is precise enough to be used as a strong prior
on the location of the CG. Indeed, the maximum uncertainty in
the X-ray centroid is 32′′ (193 h−1

72 kpc at z = 0.5); however,
most systems have a smaller positional uncertainty than this.
For comparison purposes, the average projected radial offset
for misidentified CGs in MaxBCG is larger than 600 h−1

72 kpc
(Figure 5, Johnston et al. 2007), note that their distances must
be converted to our assumed value of H0.

In many previous studies, Brightest Cluster Galaxies (BCGs)
have been associated with the CGs of group and cluster halos.
Given the ambiguity in the choice of the filter in which BCG
galaxies should be taken as “brightest” as well as the sensitivity
of optical luminosity to recent star formation, we prefer the
utilization of the Most Massive Central Galaxy (MMCG)
located near the peak X-ray emission (where massive refers
to stellar mass). We assume that the MMCG can be used to
trace the center of the dark matter halos of groups and clusters.
An automatic algorithm was developed to identify MMCGs.
Briefly, for each X-ray group, a broad group member selection
is made by selecting galaxies within 800 kpc of the peak X-ray
emission such that |zphot − zgroup| < 0.03 × (1 + zgroup). Next,
galaxies are rank-ordered by their stellar mass and weighted by
the proximity to the peak X-ray emission—the MMCG is the
galaxy with the highest rank. The results were visually inspected
and divided into three categories as follows.

1. cg-type = 1: the CG is visually obvious (for the most part,
a dominant early-type galaxy with an extended envelope),
and the algorithm has selected the correct galaxy.

2. cg-type = 2: there is a visual ambiguity in the CG selection,
but we estimate that the algorithm has selected a galaxy that
has a 50% chance of being the CG.

3. cg-type = 3: the visual identification is highly ambiguous
or there is some other problem that prevents the identifica-
tion of the CG.

In this study, we only consider cg-type = 1 and cg-type =
2 systems. In combination with the quality cuts described
previously, these cuts leave a total of 118 groups and clusters at
z � 1 (95 of which are cg-type = 1 and 23 are cg-type = 2).
The details of the MMCG selection as well as tests regarding
centering uncertainties will be presented in a forthcoming paper
(M. George et al. 2010, in preparation).

In terms of stacked weak lensing, there are two mis-centering
effects to be taken into consideration. The first is that the location
of CGs could be poor tracers of the actual centers of their dark
matter halos. The second is that the CGs could be misidentified.
In a similar fashion to the maxBCG studies (Sheldon et al.
2009; Johnston et al. 2007), we neglect the former. However,
our analysis differs from the maxBCG studies with respect to
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the latter. Johnston et al. (2007) assume a CG misidentification
fraction of ∼30% and apply a mis-centering kernel in their
analysis to account for this effect. In this study, we assume that
our X-ray prior combined with thorough visual checks allows
us to correctly identify the CG for a majority of our systems
and that when a CG is misidentified, the projected radial offset
from the dark matter center is not large. Testing this assumption
in further detail will be the focus of a subsequent paper (M.
George et al. 2010, in preparation). Nonetheless, in Section 7,
we have also demonstrated that restricting our analysis to
cg-type = 1 systems does not affect our results, indicating
that errors due to mis-centering are probably not a dominant
effect for this work.

We also note that our CG selection is based on stellar mass and
is insensitive to color; hence we avoid the problem of blue-core
BCGs which could represent about 25% of the BCG population
according to Bildfell et al. (2008). The excess blue light in these
systems can lead to a typical offset from the red sequence of
0.5–1.0 mag in (g′ − r ′) which could lead to their rejection by
red-sequence-type methods.

5. FUNCTIONAL FORM OF M–LX

In this section, we present previously published results and
overview the various assumptions that are made regarding the
functional form of M–LX. We also explain how the scatter
between mass and luminosity can cause subtle differences
between the study of M as a function of LX (the “M–LX relation”)
and the study of LX as a function of M (the “LX–M relation”).

Previous measurements of the LX–M relation based on X-ray
data (Reiprich & Böhringer 2002; Allen et al. 2003; Popesso
et al. 2005; Chen et al. 2007; Pratt et al. 2009; Zhang et al.
2008; Vikhlinin et al. 2009) as well as the M–LX relation derived
with lensing (Hoekstra 2007; Bardeau et al. 2007; Rykoff et al.
2008) are by and large consistent with a power law, but with a
slope and amplitude that differ from the self-similar prediction
of M ∝ L

3/4
X . In contrast, the evolution of the LX–M relation

is still under much debate with certain authors finding that the
LX–M relation evolves in a self-similar fashion (Lumb et al.
2004; Arnaud et al. 2005; Kotov & Vikhlinin 2005; Maughan
2007), while others do not (Ettori et al. 2004).

In addition to the shape and evolution of the mean LX–M
relation, astrophysical processes are expected to induce scatter
in LX at fixed mass which is important to take into consid-
eration. In the absence of strong observational or theoretical
guidance for the form and magnitude of this scatter (although
see Reiprich & Böhringer 2002; Maughan 2007), it is common
to adopt a stochastic model where P (LX|M) is a log-normal
probability distribution function (hereafter PDF) with a mean
log-luminosity that follows 〈ln LX〉 ∝ β ln M and with a con-
stant log-normal scatter noted σln LX (Stanek et al. 2006; Rozo
et al. 2009; Rykoff et al. 2008; Vikhlinin et al. 2009). In this par-
ticular case, and under the further condition that the halo mass
function is a power law, it can be demonstrated that P (M|LX)
is also a log-normal probability function with a dispersion in
mass equal to σln M = σln LX/β and a mean log-mass that follows
〈ln M〉 ∝ α ln LX, with α = 1/β (see the Appendix for further
details). As a consequence, the slopes of the LX–M and the
M–LX relation can be compared quite simply, but the compari-
son of the normalization will depend on the halo mass function.

The difference in the normalization of P (LX|M) and
P (M|LX) can be seen as a form of extended Malmquist bias.
This is not Malmquist bias is the classical sense because it will

occur in any survey, independently of the flux limit. The equa-
tions for this bias are derived in the appendix. In general, X-ray
astronomers commonly employ P (LX|M) (Stanek et al. 2006;
Vikhlinin et al. 2009), whereas lensing more naturally derives
P (M|LX) (Rozo et al. 2009; Rykoff et al. 2008) so care must
be taken when comparing the two.

In reality, the slope of the mass function varies with both
mass and redshift and as a consequence, α = 1/β no longer
holds when slopes are derived over a large range in masses.
Corrections for this effect are derived in the appendix.

Stacked weak lensing yields a measurement of the arithmetic
mean of the surface mass density contrast, 〈∆Σ(r)〉. When the
data are binned according to a well chosen proxy and over a
narrow redshift range (to avoid smearing the profiles due to
evolution in the mass–concentration relation for example), the
mass derived by fitting 〈∆Σ(r)〉 will be close to the arithmetic
mean of the stacked ensemble 〈M200〉. For this reason, we
select narrow redshift bins that further enable us to assume that
〈M200.E(z)〉 ∼ 〈M200〉E(〈z〉). Note that if the PDF of the mass
at fixed luminosity is log-normal, then 〈M200〉 will be different
from the peak of the PDF. Indeed, in this case, the peak is
traced by the median, not the arithmetic mean. If the scatter of
P (M|L) is known, then the correspondence between the two is
given by 〈M200〉 = exp(〈ln(M200)〉+σ 2

ln M/2). Figure 2 illustrates
the various issues outlined above and for which more detailed
calculations are presented in the appendix.

Estimates for the scatter29 in the M–LX relation vary from
σln M ∼ 0.2 to σln M ∼ 0.3 and can depend exactly on how LX is
measured. The lowest scatter is obtained with cool-core excision
techniques (Stanek et al. 2006; Maughan 2007; Pratt et al. 2009).
For distant clusters, the cluster core region can become smaller
than the observed PSF and so cool-core excision becomes
infeasible. However, there have been suggestions that the cool-
core fraction is low at z > 0.5 (Vikhlinin et al. 2007), perhaps
making excision unnecessary at higher redshifts. In addition,
Maughan (2007) have suggested that σln M is reasonably small
even for survey quality data. In any case, although the scatter in
mass at fixed luminosity is still poorly constrained (especially
at high redshift), by most estimates it is smaller than the scatter
in mass at fixed richness, even for the best richness estimators
(e.g., Rozo et al. 2009, find σln M|λ = 0.45).

Given the various considerations discussed above, we adopt
a power-law form for the mean relation between mass and
luminosity with a redshift evolution that follows self-similarity:

〈M200E(z)〉
M0

= A

(

〈LXE(z)−1〉
LX,0

)α

, (13)

where M0 = 1013.7 h−1
72 M⊙ and LX,0 = 1042.7 h−2

72 erg s−1.
Deviations from self-similar evolution are tested for in
Section 6.4.

To begin with, we derive the relationship between the mean
mass 〈M200〉E(〈z〉) and the mean luminosity 〈LXE(z)−1〉 using
only the COSMOS data. This relation is referred to as R1M−LX

.
Next, we combine the COSMOS results with previously pub-
lished cluster data to improve measurements of the slope α. This
combined relation is referred to as R2M−LX

.

6. RESULTS

In this section, we present our lensing measurements as well
as the M–LX relations R1M−LX

and R2M−LX
. We also test for

29 Scatter is quoted as the standard deviation of the natural logarithm of the
mass at fixed LX.
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Figure 2. Illustration of the effects of biases in the LX–M and the M–LX relations at z = 0.2. The conditional probability distribution of the luminosity given the
mass, P (LX|M, z), is assumed to be log-normal with a mean log-luminosity that follows a power-law scaling relation (blue solid line) with a slope of 1.63 = 1/0.61
and with a scatter of σln l = 0.4. A simulated ensemble of groups and clusters of galaxies is created for which the number densities per mass follow the Tinker et al.
(2008) halo mass function and for which X-ray luminosities are attributed according to P (LX|M, z). The gray shading in the upper panel is proportional to the log of
the number density of groups and clusters in the luminosity-mass plane (arbitrary normalization). The mean log mass follows the cyan dashed line and the log of the
mean mass (log10〈M200〉, measured by lensing) is shown by the dash-dot magenta line. There is a mass-dependent bias between the cyan and the dark blue line equal
to bm = σ 2

m(γ − 1), where γ is the slope of the mass function (see the Appendix). As a results of this bias, there is a slight curvature in both the cyan and the magenta
lines at high halo masses.

(A color version of this figure is available in the online journal.)

additional redshift evolution in the M–LX relation beyond that
predicted by self-similarity.

6.1. Stacked Estimates of ∆Σ and M200

The data are divided into nine bins labeled A0 through A8 (see
Figure 3 and Table 1). The bins are selected to encompass a
narrow range in redshift and LXE(z)−1 so as to avoid smearing
out the signal due to evolution in the mass–concentration
relation. For each bin, the stacked weak lensing signal is
calculated according to the method outlined in Section 3.

We calculate the weak lensing signal from 40 kpc to 4 Mpc in
logarithmically spaced radial bins of 0.26 dex. A weak lensing
signal is detected all the way to 4 Mpc, allowing us to probe
the full extent of the one-halo term. The results are fit with the
parametric model given by Equation (12).

We use a Markov chain Monte Carlo (MCMC) method to
fit the ∆Σ profiles. The MCMC routine uses the Metropolis–
Hastings algorithm with a Gaussian transfer function. The total
number of steps is 30,000, and a burn-in period of 500 is
discarded. Bins with less than 15 background sources in total
are excluded from the fit.

The results from the stacked analysis and the fits to the profiles
are shown in Figure 4. At the smallest radii that we probe, the
stellar mass of the CG plays a minor role in the lensing signal but
we have added it for consistency. The scales that we probe are

dominated by the signal due to the dark matter halo associated
with the groups. Our estimates for 〈M200〉 are given in Table 1.

6.2. Measurement of R1M−LX

Fitting only the low redshift COSMOS data (from A0 to
A6, 0.2 < z < 0.5), we obtain the best-fit parameters
log10(A) = 0.068 ± 0.063 and α = 0.66 ± 0.14 (see Figure 5).
The cited errors are statistical only. The effects of systematic
errors are explored in Section 7 and are estimated to be lower
than the statistical uncertainty. The cool-core correction factor
that we apply does not strongly affect these results. Without the
cool-core correction, we obtain log10(A) = 0.09 ± 0.062 and
α = 0.64 ± 0.14.

Figure 6 compares the COSMOS R1M−LX
relation to four

other lensing-based measurements: the Sloan Digital Sky Sur-
vey (SDSS) results from Rykoff et al. (2008, hereafter R08),
four groups from Bergé et al. (2008, hereafter BE08), cluster
data from Hoekstra (2007, hereafter H07) with masses updated
in Madhavi et al. (2008), and cluster data from Bardeau et al.
(2007, hereafter BA07). All data points have been normalized to
H0 = 72 h72 km s−1 Mpc−1 and scaled by E(z). The cluster data
points from BA07 and the H07 have been selected on the basis
that their lensing analysis extends to the virial radius, allowing
them to derive mass estimates that are comparable to ours. Each
of these four independent studies probes a distinct redshift and
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Figure 3. COSMOS groups within the ACS field as a function of redshift and
LXE(z)−1, binned into nine sub-samples labeled A0 through A8. Each bin is
designed to encompass a narrow range in both redshift and LXE(z)−1. The 4σ

sensitivity limits are shown by the green lines: 96% of the ACS field is covered
to a sensitivity limit of 1.0 × 10−15 erg cm−2 s−1 where the sensitivity limits
have been derived using a wavelet sensitivity map on group scales (green dotted
line), and 52% of the ACS field is covered to a deeper limit of 6.7 × 10−16

erg cm−2 s−1 (green dashed line). Small black circles represent systems that
were rejected from the lens catalog. Blue-filled circles indicate systems for
which the central galaxy (CG) identification is certain, whereas black triangles
show systems for which the identification is more ambiguous.

(A color version of this figure is available in the online journal.)

mass scale. Nevertheless, the ensemble of data points displays
a remarkable trend that spans over three orders of magnitude
in LXE(z)−1 and two orders of magnitude in M200E(z). The
varying degrees of scatter seen between the different data sets
are due to the fact that some results are direct detections of in-
dividual clusters (e.g., H07, BA07, and BE08), while other data
points have been stacked (e.g., R08). The COSMOS data points
are scattered about the mean relation because each bin contains
a relatively small number of groups (tens of groups as opposed
to hundreds in R08). We will now briefly describe each of these
data sets. Further discussion of the agreement between various
results is presented in Section 8.

The R08 data points (light blue, plus signs) are taken from
Table 1 of their paper. LX and M200 have been normalized to our
adopted value of H0 and scaled with the E(z) factor at the quoted
redshift of z = 0.25. Mandelbaum et al. (2008) have shown
that the masses published by Johnston et al. (2007) which have
been used in the R08 analysis must be boosted by a factor of
1.181.4 = 1.25 when the SDSS source distribution is calibrated
against zCOSMOS spectroscopic redshifts. We boost the R08
data points by a factor of 1.24 (a revised version of the published
correction; R. Mandelbaum 2009, private communication), and
the results are shown by the small black triangles in Figure 6.
The upper error bars of the R08 data points are increased in
order to reflect this correction. Note that because both M200
and LX have been derived via stacking methods, the results of
R08 will depend on the covariance between LX and richness
(noted N200, see R08) at fixed mass: the slope of their relation
will change depending on the correlation between these two
parameters. This is not an issue for COSMOS where the stacking
is performed directly on LX instead of using an intermediate
variable such as N200.

The masses for the BE08 data points (dark green, asterisk
signs) are taken from their paper, and LX has been provided by
F. Pacaud (2009, private communication.).

The masses for the BA07 data points (sienna, cross signs)
are taken from their paper. X-ray luminosities are derived from
the XMM LOCUSS survey using the same X-ray data as in Zhang
et al. (2008) but by integrating the flux out to the truncation
radius of 2.5r

YX,wl
500 . Note that r

YX,wl
500 is given in Section 6.2.3 of

Zhang et al. (2008). The imaging data for the BA07 analysis
are based on ground-based wide-field imaging obtained with
the CFH12k camera on the Canada–France–Hawaii Telescope.
One cluster in the BA07 paper did not have an XMM LOCUSS
luminosity and has been discarded (namely A2219).

The H07 data points (dark blue diamonds) have been taken
from Column 8 of Table 1 in Madhavi et al. (2008). Luminosities
are derived from the LOCUSS survey using the methodology
described in the previous paragraph. The overlap between the
surveys is the following set of clusters: A68, A209, A267, A383,
A963, A1689, A1763, A2218, and A2390. Note that BA07 and
H07 have studied a common set of clusters using the same
imaging data (CFH12k camera). Differences is cluster mass
estimates between BA07 and H07 are probably due to dissimilar
data analysis techniques (such as assumptions regarding the
mass–concentration relation for example).

6.3. Measurement of R2M−LX

In this section, we perform a joint fit between the COSMOS
data and cluster data from H07 and BA07. The high redshift
COSMOS data points (bins A7 and A8) are excluded from this
fit so that all data points are at a comparable redshift (z ∼ 0.3).
The joint fit COSMOS/H07 yields log10(A) = 0.03 ± 0.06
and α = 0.64 ± 0.03. The joint fit COSMOS/B07 also yields
log10(A) = 0.03±0.06 and α = 0.64±0.03. These results raise
several points of interest. First, the fit to the COSMOS data alone
gives a very similar relation to the fit when the cluster data are
added. This suggests that the M–LX relation is invariant from
group to cluster scales with no detected break at group scales.
Second, the combination of group and cluster data creates a
large dynamic mass range which allows for a 5% (statistical
error) determination of the slope of the M–LX relation. Finally,
despite the systematic differences in the mass estimates of H07
and BA07, the combined relations with COSMOS are identical.
The addition of group data has significantly reduced the impact
of cluster mass uncertainties on the measured M–LX relation.

6.4. Redshift Evolution in the M–LX Relation

In this section, we test for redshift evolution in the M–LX
relation by adding an additional redshift-dependent term to our
previously assumed M–LX relation as follows:

〈M200E(z)〉
M0

= A

(

〈LXE(z)−1〉
LX,0

)α

E(z)γ (14)

〈M200E(z)〉
M0

= A

(

〈LXE(z)−1〉
LX,0

)α

(1 + z)δ. (15)

Fitting the COSMOS data alone with Equation (14) yields
log10(A) = 0.05 ± 0.1, α = 0.70 ± 0.13, and γ = −0.07 ± 0.9.
Equation (15) yields log10(A) = 0.07 ± 0.14, α = 0.70 ± 0.13,
and δ = −0.14 ± 0.8. In both cases, the COSMOS data are
consistent with self-similar redshift evolution to the level that
can be probed with these data. Additional cluster and group data
with weak-lensing masses at 0.6 < z < 1.0 would be required
in order to constrain the redshift evolution in the M–LX relation
to higher precision.
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Figure 4. Stacked weak lensing profiles of COSMOS groups for nine bins that each span a narrow range in redshift and LXE(z)−1. From left to right and top to
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shear correction term (orange dash-dot-dot, see Section 3.2). Gray points are negative data points and bins with less than 15 source galaxies.

(A color version of this figure is available in the online journal.)

7. ASSESSMENT OF SYSTEMATICS ERRORS

There are three potential causes of systematic errors in this
work: errors in the photometric redshifts, mis-centering, and
uncertainty in the mass–concentration relation. As demonstrated
below, we have found that the systematic errors associated with
each of these effects are below the statistical error, at least to the
extent that this can be tested for with the current data.

7.1. The Impact of Photometric Redshift Errors

The effects of redshift errors on group-galaxy lensing signals
can be broadly categorized as follows: (1) uncertainties in the
redshifts of the lenses will smear out the signal and affect
the derivation of Σcrit; (2) errors in the mean source redshift
distribution will introduce a bias in the normalization of the
overall signal; (3) improper lens–source separation will lead to
a dilution of the signal and will subject the signal to the effects of
intrinsic alignments; and (4) catastrophic errors can also dilute
the signal. In this work, we neglect (1) on the basis that the
redshifts of the groups are well determined (81% have two or
more spectroscopically confirmed members).

To reduce the effects of (3) and (4), we use the full redshift
PDF which is derived by the photoz code LePhare for each
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Figure 5. Left panel: marginal posterior distribution for the parameters of
R1M−LX

(COSMOS data only). The blue-shaded region denotes the 68% (1σ )
confidence region and the red-shaded region denotes the 95% (2σ ) confidence
region. The dash-dot line indicates the self-similar prediction for the slope of the
M–LX relation. Right panel: marginal posterior distribution for the combination
of the COSMOS group data and cluster data from Hoekstra (2007). The large
dynamic mass range created by the combination of group and cluster data
enables a more accurate determination of the slope of the M–LX relation.

(A color version of this figure is available in the online journal.)

source galaxy (Ilbert et al. 2009). The main peak in the PDF,
zp_max, represents the most probable redshift. When present,
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(A color version of this figure is available in the online journal.)

a secondary peak in the PDF is noted zp_sec. The galaxy
population with double peaked PDFs is expected to contain
a large fraction of catastrophic errors (roughly 40%–50%, Ilbert
et al. 2006, 2009). In this work, we eliminate sources with a
double peaked PDF in order to minimize the effects of signal
dilution caused by catastrophic errors. Making this photoz cut
leads to a decreased background number density of 34 galaxies
arcmin−2.

The redshift PDF information is also used to improve the
lens–source separation by using the lower 68% confidence
bound on the source redshift. Sources are selected such that
zS − zL > σ68%(zS). It is also important to note that group-
galaxy lensing signals are most sensitive to redshift errors when
zS is only slightly larger then zL (see Figure 8). For this reason, in
addition to the previous cut, we also implement a fixed cut such
that zS − zL > δz, where δz is defined below in the following
two schemes.

1. S1: only sources with a single-peaked PDF are used,
zS − zL > σ68%(zS), and zS − zL > 0.1 (the default scheme
used throughout this paper).

2. S2: only sources with a single-peaked PDF are used,
zS − zL > σ68%(zS), and zS − zL > 0.2.

We test each of these two schemes, and the results are shown
in Figure 7. Choosing a value of δz = 0.1 or δz = 0.2 has a
negligible impact on M200.

In order to quantify the errors associated with (2) and (4),
we make use of the ensemble of spectroscopic redshifts that are
currently available from the zCOSMOS program. As illustrated
in Figure 8, source galaxies with zphot > zlens and zspec < zlens
dilute the signal, whereas galaxies with zphot > zlens and
zspec > zlens but zphot �= zspec will introduce a bias in ∆Σ because
Σcrit will be mis-estimated when transforming γ into ∆Σ. The
correction factor for biases in the photometric redshifts is noted
fbias, while fboost represents a number greater than 1 that boosts
the measured signal to compensate for signal dilution. The true
signal is related to the measured one according to

∆Σtrue = ∆Σmeas × fbias × fboost. (16)

Using the ensemble of zCOSMOS spectra that are currently
available, we have estimated fbias and fboost for each of our nine
bins. The maximum bias that we find is a 7% upward correction
on ∆Σ for the last redshift bin which corresponds to a revised
mass of 8.5×1013 h−1

72 M⊙. This is a small correction compared
to our measured value of 7.6+2.3

−1.8 × 1013 h−1
72 M⊙. In conclusion,
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(A color version of this figure is available in the online journal.)

to the extent that we can estimate fbias and fboost using the
current zCOSMOS data, we find that the errors due to imperfect
photometric redshifts are below the statistical uncertainties. It is
important to note, however, that the zCOSMOS spectroscopic
sample may not be fully representative of the background source
population because of incompleteness. Thus, it is possible that
our estimates of fbias and fboost are erroneous. For this reason, we
do not apply these correction factors to the data and have simply
listed the values of fbias and fboost in Table 1 as an indication of
the probable systematic uncertainty due to photometric redshift
errors.

7.2. The Effects of Mis-centering

To test for mis-centering effects, we recalculate the lensing
signals using only systems with cg-type = 1 instead of using
both cg-type = 1 and cg-type = 2. The results are shown in
Figure 7, and we find that restricting our analysis to the sub-
sample of groups that have visually obvious CGs has no impact
on our estimates of M200.

7.3. The Mass–Concentration Relation

Testing for the effects of theoretical uncertainties in the M200–
C200 relation is beyond the scope of this paper; however, one test
we can perform is whether or not different M200–C200 relations
affect our mass estimates. For this purpose, we compare two
recently derived M200–C200 relations, one from Macciò et al.
(2007) and the second from Zhao et al. (2008). We compute
our lensing signals with each of these relations and show that
the results are largely unaffected by this test. Note that the
agreement in the M200–C200 relation from various authors is
fairly good in the mass and redshift regime of our group sample
(the typical fractional difference is 10%–20%). However, at
higher masses the disagreement is larger and hence the assumed
concentrations in H07 and BA07 could represent a systematic
error in the joint fit between COSMOS and the cluster data.

7.4. Conclusions Regarding Systematic Uncertainties

As demonstrated in Figure 7, all the effects that we have
tested for are largely negligible compared to the statistical error.

However, one aspect that we have not explored in this work is the
fact that each of our stacks contains a relatively small number
of groups. Indeed, the assumption of spherical symmetry will
begin to break down for stacks that only contain a small number
of objects and the weak lensing signal may be contaminated
from projection effects that have not averaged away. We have
tried to limit this effect by discarding all systems with visible
projections along the line of sight. In total, the various quality
cuts described in Section 4 are such that about 30% of the initial
sample is rejected from the lens catalog. Most of these cuts were
linked to the quality of the X-ray data and to projection effects.
Additional XMM-Newton and Chandra data would increase the
size of our lens sample and would help reduce the statistical
error on the mass measurement.

8. SUMMARY AND DISCUSSION

In this work, we have used a sample of 206 X-ray-detected
galaxy groups to investigate the scaling relation between total
mass and X-ray luminosity where M200 is derived via weak
gravitational lensing. In the following paragraphs, we present a
summary and discussion of our main results.

The combination of group and cluster data. The COSMOS
group catalog spans an approximate mass and redshift range
M200 ∼ 1013 h−1

72 M⊙–M200 ∼ 1014 h−1
72 M⊙ with 0.2 < z <

0.9, a new parameter space in terms of weak lensing-based
mass measurements of X-ray-detected groups and clusters of
galaxies. When appropriately scaled for self-similar redshift
evolution, the COSMOS data, alongside previously published
results display a remarkable power-law relation that spans over
three orders of magnitude in LXE(z)−1 and two orders of
magnitude in M200E(z). The COSMOS data alone are well fit
by a power law, M200 ∝ (LX)α , with a slope of α = 0.66±0.14.
By combining with previously published cluster data, we derive
a tighter constraint on the slope, α = 0.64 ± 0.03. This is
inconsistent at the 3.7σ level with the self-similar prediction of
α = 0.75. Note that the combination of group and cluster data
greatly helps constrain the slope of the M–LX relation but the
determination of the normalization is at present limited by the
accuracy of weak lensing measurements. Improvements in weak
lensing methods and larger group and cluster samples will be
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at the variation of Σcrit as a function of source redshift as shown in panel (c). Indeed, Σcrit varies strongly near zlens but flattens considerably at zsource > 2zlens. The
arrows in panels (a) and (b) show where the mean COSMOS source redshift lies for lenses at zlens = 0.2 and zlens = 0.9. The bias in ∆Σ for group-galaxy lensing in
COSMOS is estimated to be less than 7% for lenses below z = 1.

(A color version of this figure is available in the online journal.)

necessary in order to improve constraints on the normalization
of the M–LX relation.

Comparison with previous lensing results. Our analysis com-
pares best with the local SDSS results from R08 who find
LX ∝ (M200)β with β = 1.65 ± 0.13. The inverse of their
slope, 1/β = 0.61 ± 0.048, is in excellent agreement with both
R1M−LX

and R2M−LX
. As described in their paper, because the

R08 results are binned by richness, the slope of their relation
is sensitive to the correlation coefficient between richness and
LX at fixed mass, rN,L|M (see Section 4 in R08). A value of
rN,L|M = ±0.7 would change their slope to 0.68 ± 0.061 and
0.54 ± 0.038, respectively. These slopes would still be in rel-
atively good agreement with the COSMOS results but much
larger values than rN,L|M = ±0.7 can be ruled out. Small values
for rN,L|M are also favored by the analysis of Rozo et al. (2009),
who find a value of rN,L|M ∼ 0.05 (E. Rozo 2010, private com-
munication).

BA07 have also published a M–LX relation but find a slope
of 1.20 ± 0.16 that is inconsistent with the COSMOS value at

the 3.4σ level. We suspect that this disagreement stems from an
underestimate of the BA07 masses, in particular at the low-mass
end of the cluster sample. Indeed, H07 have analyzed almost
exactly the same set of clusters but find a slope and normalization
that is in better agreement with both this work and R08 (see
Figure 6 and also Figure 9). Nevertheless, despite systematic
differences between the mass estimates of H07 and BA07, the
combined relations using either data set with COSMOS are
almost identical. Manifestly, the addition of group data has
significantly reduced the impact of cluster mass uncertainties
on the M–LX relation.

Comparison with previous X-ray results. The comparison of
the normalization of the M–LX relation derived with lensing
on the one hand and with X-rays on the other hand is of
great interest because it has the potential to reveal systematic
biases in X-ray-based cluster mass estimates (e.g., due to
non-thermal processes such as turbulence and cosmic rays).
However, the comparison of the normalization between the
M–LX relation and the LX–M relation is complex because



112 LEAUTHAUD ET AL. Vol. 709

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

1.2

1.4

S
lo

p
e 

o
f 

th
e 

M
2

0
0
-L

X
 r

el
at

io
n

α= 0.75

C
O

S
M

O
S

C
O

S
M

O
S

+
H

0
8

R
y

k
o

ff

B
ar

d
ea

u

Lensing

R
ei

p
ri

ch
 1

R
ei

p
ri

ch
 2

A
ll

en

P
o
p
o
ss

o

C
h
en

P
ra

tt
 1

P
ra

tt
 2

V
ik

h
li

n
in

X-rays

Self-similar slope

αCOSMOS+H08/0.96

Figure 9. Comparison of the slope of the M–LX relation obtained by various authors. From left to right we show R1M−LX
and R2M−LX

(this work) followed by the
lensing based results of Rykoff et al. (2008) and Bardeau et al. (2007) and then by X-ray-based results (Reiprich & Böhringer 2002; Allen et al. 2003; Popesso et al.
2005; Chen et al. 2007; Pratt et al. 2008; Vikhlinin et al. 2009). The solid blue shows the self-similar prediction for the slope which is α = 0.75. The gray-shaded
region indicates the one sigma errors for R2M−LX

. With the exception of the BA07 results, the lensing and the X-ray results are in good agreement with an average
slope of α ∼ 0.64. Note that because of scatter in the LX–M relation and a halo mass function with a varying slope, the lensing and the X-ray results are not directly
comparable. The dashed black line indicates the value of the COSMOS+H08 data point corrected for the difference between 1/β and αlensing assuming a scatter of
σln M = 0.25 (see derivations in the appendix).

(A color version of this figure is available in the online journal.)

it depends on σln M and the slope of the halo mass function
(see the Appendix) and we leave this aspect for future work.
Therefore, we mainly focus on a comparison of the slopes.
For this purpose, we have compiled a list of the slopes of
the LX–M relation as determined by various X-ray studies.
When authors have stated their results in terms of the LX–M
relation, we have inverted the slope in order to compare with
our results.30 In the Appendix we show that although the slope
of P (LX|M) is not exactly equal to the inverse of the slope of
P (M|LX), the difference is small (also see Figure 2).

A representative (but not exhaustive) list of X-ray-based
results is as follows.

1. Reiprich & Böhringer (2002): LX ∝ M1.496±0.089
200 or LX ∝

M1.652±0.085
200 depending on the fitting method (extended

sample, Table 7 of their paper). The inverse slopes are
0.67 ± 0.04 and 0.60 ± 0.03, respectively.

2. Allen et al. (2003): M200 ∝ L
0.76+0.16

−0.13
X .

3. Popesso et al. (2005): LX ∝ M1.58±0.23
200 . The inverse slope

is 0.63 ± 0.09.
4. Chen et al. (2007) : LX ∝ M1.82±0.13

200 . The inverse slope is
0.55 ± 0.04.

5. Pratt et al. (2009): L1 ∝ M1.81±0.10
Y or L1 ∝ M1.96±0.11

Y

depending on the fitting method (Table 2 in their paper).
The inverse slopes are 0.55 ± 0.03 and 0.51 ± 0.029.

6. Vikhlinin et al. (2009): LX ∝ M1.61±0.14
200 . The inverse slope

is 0.62 ± 0.05.

Figure 9 shows a comparison between X-ray-based estimates
of the slope of the M–LX relation and lensing-based results.
As can be seen in this figure, most of the lensing and the
X-ray results are in excellent agreement with an average slope
of α ∼ 0.64.

Evolution of scaling relations. Large surveys that will probe
clusters up to z = 1 will need a precise understanding of the
redshift evolution in mass–observable relations. In this paper,
we have shown that weak gravitational lensing is capable of
meeting this challenge, and we have tested several evolution

30 Errors on y = 1
x

have been computed as ∆y =
( 1

x

)2 × ∆x.

scenarios from z ∼ 0.2 to z ∼ 0.9. Our results are consistent
with the evolution rate predicted by self-similarity, but our errors
are still relatively large due to our small sample size at high
redshift. Additional X-ray data would help improve the precision
of this measurement. More precise measurements of the redshift
evolution of X-ray scaling laws would also help constrain the
physical processes that govern the heating and cooling of the
ICM.

Self-calibration methods. Sufficiently large cluster surveys
may be able to deal with the evolution and scatter in mass–
observable relations by internally calibrating for these uncer-
tainties (the so-called “self-calibration method,” Levine et al.
2002; Hu 2003; Majumdar & Mohr 2004; Wang et al. 2004;
Lima & Hu 2005). This method treats all uncertainties as free
parameters to be fitted along with the desired cosmological pa-
rameters. However, there are several drawbacks to this method.
The first is that treating systematic errors in this manner weakens
the final statistical constraints. The second is that self-calibration
requires a parametric form for the scatter and evolution of scal-
ing relations. Bias is introduced if this parameterization is in-
correct.

This paper has showed that weak gravitational lensing can
help constrain the actual form of the mass–observable relations
as well as their evolution, even out to high redshifts (z < 1).
Having a (direct observational) external constraint will help
boost the accuracy achievable with self-calibration methods
by reducing the number of parameters and by pinning down
the correct parametric form. One important ingredient in the
M–LX relation, and for self-calibration exercises, is the scatter
σln M . Stacked weak lensing measurements are not suitable
for measuring the scatter and so individual lensing detections
will be necessary for this task. Consequently, estimates of the
scatter with lensing will be limited to high masses and moderate
redshifts (see Figure 1). Space-based data will be optimal for
scatter studies because high source densities will increase the
mass and redshift range for which clusters can be directly
probed. The challenge for lensing-based estimates of the scatter
will be to ensure that the lensing errors are smaller than the
intrinsic scatter, a condition that is probably not achieved at
present.
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Nevertheless, one interesting point to note is that scatter will
introduce a small amount of curvature in stacked lensing-based
measurements of the M–LX relation (see Figure 2). Therefore,
it is possible that the scatter could be measured with future data
by constraining the amount of curvature in M–LX at high halo
masses.

In conclusion, the field of weak gravitational has started to
become a truly competitive tool for calibrating the relation
between the total mass of groups and clusters of galaxies and
their baryonic tracers, over a wide range of masses (M200 ∼
1013.5–1015.5 h−1

72 M⊙) and up to z = 1. At present, the slope
of the M–LX relation is constrained by lensing with a statistical
significance that is comparable to X-ray studies (at the ∼5%
level). Although further work will be necessary in order to
compare both the slope and the normalization, it is encouraging
to note that both lensing and X-rays studies are already in
good agreement with respect to the slope of the M–LX relation
(α ∼ 0.64). The observational foundation for the calibration of
the mass–observable relations that are essential for cosmological
studies with clusters of galaxies is clearly growing firmer.
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APPENDIX

In this appendix, we derive the relation between P (M|LX, z)
and P (LX|M, z) and show that a correction needs to be applied
when comparing the slopes of the mean log luminosity and the
mean log mass over a wide range in halo mass. The slope of
the mean relation associated with P (M|LX, z) is noted αlensing,
and the slope of P (LX|M, z) is noted β. Partial aspects of this
derivation can also be found in the appendix of Mandelbaum &
Seljak (2007).

Let m ≡ ln M and l ≡ ln LX, where M represents the halo
mass. Following Stanek et al. (2006), we assume that the condi-
tional probability distribution of the luminosity given the mass
is log-normal. In this case, P (l|m, z) is Gaussian and we can
write that

P (l|m, z) =
1

σl

√
2π

× exp

(

−[l − l0(m, z)]2

2σ 2
l

)

, (A1)

where l0(m, z) is the mean log luminosity, and σl is the scatter
(also noted σln LX

). We assume that the scatter varies neither
with mass, nor redshift (σl is constant) and that the mean log
luminosity follows a power-law scaling relation with mass and
with self-similar redshift evolution:

〈ln LX〉 ≡ l0(m, z) = βm + (1 + β) ln E(z) + B. (A2)

Let n(M) represent the number of dark matter halos per unit
volume with mass less than M. Locally, the differential mass
function is a power law of the form dn/dM ∝ M−γ = e−γm.
The probability of observing a halo of log-mass m is P (m) =
dn/d ln M ∝ e−(γ−1)m.

The weak lensing signal of halos stacked according to LX de-
pends on P (M|LX, z), the conditional probability distribution of
the mass given the luminosity. Using Bayes theorem and ignor-
ing those terms that only contribute to the overall normalization
of P (m|l, z), we can write that

P (m|l, z) ∝ P (l|m, z)P (m, z)

∝ exp

(

−[l − l0(m, z)]2

2σ 2
l

− (γ − 1)m

)

. (A3)

By using Equation (A2) to develop the expression within the
exponential and by completing the square, we obtain that

P (m|l, z) ∝ exp

(

−[m − m0(l, z)]2

2(σlβ−1)2

)

, (A4)

where 〈ln M〉 ≡ m0(l, z) = (1/β)l − (1 + 1/β) ln E(z) −
B/β − σ 2

m(γ − 1). In other terms, P (m|l, z) is Gaussian, and
P (M|LX, z) is log-normal with a dispersion in mass equal to
σm = σl/β and with a mean log mass that follows a power law
of with a slope of αlensing = 1/β. The mean log-mass, m0(l, z),
can be obtained by solving for the mass in Equation (A2) with
the addition of an extra term. In this sense, there is a bias
between m0(l, z) and the true mean mass which is equal to
bm = σ 2

m(γ − 1), and this bias scales linearly with γ − 1, where
γ is the slope of the mass function. Because, (γ − 1) is always
positive, this bias causes m0(l, z) to be biased low relative to the
true mean mass.

Both mass and luminosity are often expressed in units of
logarithm to the base 10 rather than in units of natural logarithm.
In this case, the scatter in mass at fixed luminosity is equal
to σlog10 M ≡ σm10 = σm/ ln(10), and the bias is equal to
bm10 = σ 2

m10(γ − 1) ln(10) = σ 2
m(γ − 1)/ ln(10). Note that

there is an extra factor of ln(10) in the expression of the bias
due to the fact that P (log10 M) = dn/d log10 M ∝ M−(γ−1) =
e−(γ−1) ln(10) log10(M).

We have demonstrated that αlensing = 1/β when the halo mass
function is locally a power law. In reality, the slope of the mass
function varies with both mass and redshift. At z = 0.2, the slope
of the mass function varies from γ ∼ 2 at M200 ∼ 1013 h−1

72 M⊙
to γ ∼ 5 at M200 ∼ 1015 h−1

72 M⊙. The fact that the bias
depends on γ will result in a change in slope and αlensing = 1/β
will no longer be valid. Instead, there will be a correction factor
between the slope derive by stacked weak lensing, αlensing, and
1/β, and we will now show how this correction factor can be
roughly estimated.

Let m1 and m2 represent two distinct halo masses in units of
logarithm to the base 10. The local slope of the mass function
at each of these masses is noted as γ1 and γ2 and the biases
are noted as bm1 = σ 2

mγ1/ ln(10) and bm2 = σ 2
m10γ2/ ln(10).

http://cosmos.astro.caltech.edu/
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The slope that is derived via stacked weak lensing over the
mass range [m1,m2] is equal to αlensing = F/β, where F =
1 − (bm1 − bm2)/(m1 − m2). For z = 0.2, σm = 0.25
(σm10 ∼ 0.109), M1 ∼ 1013 h−1

72 M⊙ and M2 ∼ 1015 h−1
72 M⊙,

we have bm1 ∼ 0.03 and bm2 ∼ 0.11 (when m is expressed in
log10 units). The difference between 1/β and αlensing over this
mass range is therefore roughly αlensing ∼ 0.96/β.
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Macciò, A. V., Dutton, A. A., van den Bosch, F. C., Moore, B., Potter, D., &

Stadel, J. 2007, MNRAS, 378, 55

Madhavi, A., Hoekstra, H., Babul, A., & Henry, J. P. 2008, MNRAS, 384, 1567
Majumdar, S., & Mohr, J. J. 2004, ApJ, 613, 41
Mandelbaum, R., & Seljak, U. 2007, JCAP, 6, 24
Mandelbaum, R., Seljak, U., Cool, R. J., Blanton, M., Hirata, C. M., &

Brinkmann, J. 2006a, MNRAS, 372, 758
Mandelbaum, R., Seljak, U., Kauffmann, G., Hirata, C. M., & Brinkmann, J.

2006b, MNRAS, 368, 715
Mandelbaum, R., Tasitsiomi, A., Seljak, U., Kravtsov, A. V., & Wechsler, R. H.

2005, MNRAS, 362, 1451
Mandelbaum, R., et al. 2008, MNRAS, 386, 781
Marian, L., & Bernstein, G. M. 2006, Phys. Rev. D, 73, 123525
Markevitch, M. 1998, ApJ, 504, 27
Massey, R., Stoughton, C., Leauthaud, A., Rhodes, J., Koekemoer, A., Ellis, R.,

& Shaghoulian, E. 2009, arXiv:0909.507
Massey, R., et al. 2007a, MNRAS, 376, 13
Massey, R., et al. 2007b, Nature, 445, 286
Maughan, B. J. 2007, ApJ, 668, 772
McCracken, H. J., et al. 2009, arXiv:0910.2705
Metzler, C. A., White, M., & Loken, C. 2001, ApJ, 547, 560
Miller, C. J., et al. 2005, AJ, 130, 968
Miralda-Escude, J. 1991, ApJ, 370, 1
Miyazaki, S., Hamana, T., Ellis, R. S., Kashikawa, N., Massey, R. J., Taylor, J.,

& Refregier, A. 2007, ApJ, 669, 714
Motl, P. M., Hallman, E. J., Burns, J. O., & Norman, M. L. 2005, ApJ, 623,

L63
Nagai, D. 2006, ApJ, 650, 538
Nagai, D., Kravtsov, A. V., & Vikhlinin, A. 2007, ApJ, 668, 1
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493
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