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A WEAK NULLSTELLENSATZ FOR VALUATIONS

GEORGE M. BERGMAN1

Abstract. Given a real-valued pseudovaluation p on a com-

mutative ring R, we show how to obtain a valuation v greater than

or equal to p, and also satisfying certain upper bounds: in par-

ticular, if p(st) =p(s)+p(t) for all s, /ES, S a multiplicative semi-

group in R, then v can be chosen so that v(s) =p(s) for all s&S.

1. An important lemma of commutative ring theory—a form of the

"weak Nullstellensatz"—says that given an ideal 7 of a ring 22, and a

multiplicative semigroup 5 in 22 disjoint from 7, there exists a prime

ideal p containing I, and still disjoint from S.

Now a pseudovaluation on a ring can be considered analogous to an

ideal—an ideal tells us which elements to "consider 0", a pseudo-

valuation tells us which elements to "consider small". In particular,

the valuations are like the prime ideals. We shall prove here some

analogs to the lemma quoted above, showing how to obtain valuations

from pseudovaluations.

The desire to give the strongest possible result has made the state-

ment of our first theorem (and the two lemmas used to prove it)

rather complicated. But the special cases that follow it are more

modest, and more handleable.

The analogy with ideal theory can be made precise by noting that

there is a 1-1 correspondence between ideals in 22, and pseudovalua-

tions of R into the two-element additive semigroup {0, + » }. Each

of the results proved below, if stated for this semigroup rather than

RU j + °° {, is a result about ideals; and these statements follow from

those proved via the observation that {0, + oo } is a retract of

RU { + oo }, as ordered semigroups.

2. Let 22 be a commutative associative ring with unit. We will

designate by P the additive ordered semigroup of real numbers with

+ oo adjoined.

Definitions. By a pseudovaluation on 22, we shall mean a function

p : 22—>P satisfying :

(1)_    i(D = 0,        piO) = + oo ,
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(2) p(xy) è p(x) + p(y) (x, y E R),

(3) p(x - y) £ iní(p(x), p(y))        (x, y E R).

The pseudovaluation p will be called radical if it satisfies :

(4) p(x") = np(x)        (x E R, n > 0).

By a valuation we shall mean a pseudovaluation satisfying the

stronger condition:2

(5) p(xy) = p(x) + p(y)        (x, y E R).

Radical pseudovaluations will play the role of radical (or "perfect")

ideals.

In the statements below, asupremumof the form sup8es^(xs) —p(s)

will be understood to be taken only over the set of s ES such that p(s)

9a + °°. This set will always be nonempty because every semigroup 5

will be understood to contain 1.

Our first lemma describes the operation of "radicalizing" a pseudo-

valuation. The idea is not new, cf. [l, Theorem 9.4]. The significance

of the final inequality is that certain types of upper bounds for p(x)

are not increased ; this will allow us to obtain upper as well as lower

bounds for the valuations to be constructed in Theorem 1 and later

results.

Lemma 1. Let p be a pseudovaluation on R. Then the function p*(x)

= limn_>00 p(xn)/n is defined for all xER, and is a radical pseudovalua-

tion, }^p. Further, if x is an element of R, and S a multiplicative semi-

group containing x, then

&\xpp*(xs) — p*(s) ^ sup/>(xs) — p(s).
sGS «ES

Proof. Take xER; we wish to prove p*(x) defined and ¡±p(x). If

some p(x") equals + oo, this is clear. Assuming all p(x") finite, we

have for every positive integer N:

lim inf p(x")/n  =        inf        ( lim inf p(xmtf+i)/(mN + i) )
i=0,...,iV-l   \       m /

^        inf       f lim inf p(xmN)/(mN + i) +lim inf p(xi)/(mN + i) ).
<=0.N-l \       m m /

The second term is clearly 0. The first gives, regardless of i:

2 The term (pseudo)valuation is often used with the additional restriction that

the ideal I = p~1(+ <*>)QR be ¡0}. In such terms, the functions we are consider-

ing are equivalent to (pseudo)valuations on quotient rings R/I, or in the language of

the algebraic geometer, (pseudo)valuations "centered" on subschemes of Spec R.
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lim inf pixmN)/mN ^ pixN)/N        (by condition (2)).
m

Comparing with what we started from, we see that the lim inf in

question will also be the supremum of its terms, hence will be their

limit.

That conditions (1) and (2) carry over to p* is immediate, and (4)

follows from the way p* was constructed. To prove (3), let us expand

(x+y)n using repetitions of terms instead of binomial coefficients.

Applying condition (3), we see :

p*(x + y) = lim p((x + y)n)/n
n

^ lim min (p(x{) + p(yn~i))/n

/ i   p(x<)      n - i p(yn~i)\
= hm mm I-1-1.

n   tin \n       i n       n — i}

We now note that when i and n—i are both large, p(x')/i will be

near p*(x) and p(yn~')/(n—i) will be near p*(y), and the sum in the

above formula is a convex linear combination of these. If m is large and

i/n is small, the sum will be near to p*(y) (unless p*(x) = + =°, in

which case it may be larger), and similarly, if n is large and (n—i)/n

small, it will be near to or larger than p*(x). We conclude that for n

large, the minimum in the above formula will be near to or larger

than mm(p*(x), p*(y)), so the limit is ^min(£*(x), p*(y)). Q.E.D.

To obtain the last inequality asserted, let us denote the supremum

on the right by q(x); thus taking any particular tES, we have

p(tx) ikp(t)-\-q(x). Since xES, we can, for any sES, and n>0, apply

this property recursively to xnsn :

p(xnsn) S p(xn~1sn) + q(x) á • • • á p(sn) + nq(x).

Dividing by n and taking the limit, we get p*(xs) ^p*(s)+q(x);

hence if p*(s)^ + oo, p*(xs) —p*(s) úq(x), as desired.

Let us say that an element x is regular under p, or p is regular on x,

if for all y, p(xy) =p(x) +p(y).

Lemma 2. Let p be a radical pseudovaluation on 22, and x an element

with p(x)¿¿-\-co. Then the function px(y) =lim„_>00 p(yxn) —np(x) is

defined for all y ER, and is a radical pseudovaluation >,p, which is

regular on x. Further, for any y ER and any multiplicative semigroup S

containing x, we have:

5uppx(ys) - px(s) ^ sup p(ys) - p(s).
íes »es
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Proof. The sequence p(yx") —np(x) converges because it is non-

decreasing, by (2). The verifications of conditions (1), (3), (4) for px

are straightforward. For (2), let u, vER; then px(uv), px(u) and

px(v) can be arbitrarily closely approximated by p(uvx2")—2np(x),

p(uxn)—np(x), and p(vx") — np(x) for sufficiently large re. By (2) for

p, we see that p(uvx2n) —2np(x) ^ (p(ux") —np(x))-\-(p(vx") —np(x)),

whencepx(uv) ^px(u) +px(v).

We get the asserted inequality similarly: Each term px(ys) —px(s)

may be approximated by expressions (p(ysx")—np(x)) — (p(sx")

— np(x)) =p(y(sx")) —p(sx") ; but each of these is a term of the right-

hand supremum (because xES).    H

Note that if an element y is regular under p, then the special in-

equality proved in Lemma 1 (resp. Lemma 2), with S taken to be R,

implies that y remains regular under p*(resp. px), and p*(y)=p(y)

(resp. px(y)=p(y)).

If p(x) = -\- «j, we define px to be p. This has all the properties

proved in Lemma 2.

Theorem 1. Let p be a pseudovaluation on a commutative ring R.

Then there exists a valuation v on R satisfying :

(6) p(x) SI v(x) tZ sup p(xs) — p(s)        (x E R)-
sSR

In fact, if we are given any set-theoretic total ordering of R, then v can

be chosen so that (6) is satisfied with the supremum on the right taken over

only the semigroup Sx generated by elements ^x under this ordering.

Proof. Let us think of pseudovaluations ^p as certain points in

the compact product of intervals Hx<er [p(x), + °° ].

Assume R totally ordered. To every finite chain xi<x2< ■ ■ ■ <xn

in R, let us associate the pseudovaluation ( • • • (p*)n • ■ ■ )Xn, which

is radical, and is regular on Xi, • * • , xn. Considering our index set of

finite subsets of R as directed by inclusion, we have a net of points in a

compact space ; let v be a cluster point of this net.

It is immediate that v will be a pseudovaluation, and regular on all

elements, hence a valuation. To prove that for every xER we have:

(6') p(x) ^ v(x) ^ sup p(xs) - p(s),
t£Sx

we shall show that the same inequality holds for the pseudovaluation

associated with any chain xi < • • • <x„ containing x. Say x = x,-. For

j = l, • • -, re, let pj stand for ( • • • (p*)Xl • • • )Xj. Let q(x) designate

supsl=sxp(xs) — p(s), and let q*, qi, ■ ■ ■ , qn be constructed in the same

way from p*, pi, ■ ■ ■ , pn. Noting that Sx is a semigroup containing
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Xx, ■ • ■ , Xi, we can conclude from Lemmas 1 and 2 that:

p(x) Ú p*(x) Ú px(x) Û Ú pi(x)  = qi(x) g ig q*(x)ú q(x).

The central equality holds because p( is regular on x. But by the ob-

servation following Lemma 2, this equality means that the value at x

is not affected by further regularizations, hence pn(x)=pi(x), and,

p(x)^pn(x)^q(x).Q.E.D.

(The above compactness argument may be replaced by a more

familiar Zorn's Lemma argument if 22 is not ordered, using the fact

that the set of radical pseudovaluations satisfying (6) is inductively

ordered under " ^ ", and closed under regularizations; or by an induc-

tion if 22 is we/Z-ordered.)

Let us chop this down to something more manageable:

Theorem 2. Let pbea pseudovaluation on a commutative ring 22, and

S a multiplicative semigroup in R such that p\ S is a semigroup homo-

morphism from S to P. Then there exists a valuation v^p on 22, such

that v\S = p\S.

Proof. Choose a partial ordering of 22 such that all elements of 5

precede all elements not in S. Apply Theorem 1, noting that for xES,

the first and last terms of (6') are equal, implying v(x) =p(x).

The next statement mixes valuations and ideals, but avoids men-

tion of pseudovaluations. Note that the hypothesis on S and I is a

sort of strong disjointness relative to v.

Corollary 1. Let R be a ring and v a valuation on 22. Let I be an

ideal of R and S a multiplicative semigroup such that there do not exist

sES, aEI satisfying v(s) =v(a) <v(a — s). Then there exists a valuation

v' ^v on R such that v'\I= + «> ,v'\S = v\S.

Proof. The function p(x)=supa<=i v(x-\-a) will be a pseudovalua-

tion on 22, and our hypothesis implies that p = v on S. In particular,

p\S is a semigroup homomorphism, hence we can apply Theorem 2

and get the desired v'.

We now give an analog of a familiar characterization of radical

ideals. (This result was proved by Cohn for 22 a field [l, Theorem

13.3].)

Corollary 2. A psuedovaluation on a ring R is equal to an infimum

of valuations if and only if it is radical. If p is an arbitrary pseudo-

valuation, the infimum of all valuations ^p is p*.

Proof. It is clear that the pointwise infimum of a family of valua-

tions (if it is defined!) is a radical pseudovaluation. Thus it suffices to

show that if p is a radical pseudovaluation, then for each xER there
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is a valuation v^p such that v(x) =p(x). This follows from Theorem 2

on taking S= {1, x, x2, ■ • ■ }. The second claim follows because it is

clear that p* is the least radical pseudovaluation ¡îp.

Note. If a pseudovaluation ^ona ring R annihilates a multiplica-

tive subgroup GÇZi?, then so will any pseudovaluation p'^p, by (1)

and (2). In particular in the above results, if R is an algebra over a

field k and the given pseudovaluations annihilate k— {o}, so will the

valuations constructed.

3. We shall now sketch two examples to show that the above con-

structions cannot in general be made to carry the class of pseudo-

valuations satisfying £-1(+ »)= JO} into itself.

First, let R be a polynomial ring in one indeterminate x over a field

k, and define the valuation v by v(a) = greatest i such that x* divides a.

Then p(a) =v(a)2 defines a pseudovaluation, but p*(x) = + °°, so no

valuation ^psatisfiesn'-1(+ <x>) = {o}.

Now let R be the polynomial ring in two indeterminates x and y

over a field k of characteristic 0. For each « = 1,2, • • -, the members

of R restricted to the line x = « give polynomials in y alone. Let vn(a)

denote the greatest i such that yi divides the restriction of a to x = w.

This will be a valuation satisfying vñl(-\- °o ) = (x — n)R.

Define p — mîn nvn; p is a radical pseudovaluation, and ¿>_1(+°°)

= {o}. Note that p(y"(x—l) ■ ■ -(x — re)) =w(re+l), and p is zero on

k— {0j. The latter property will be shared by any (pseudo) valua-

tion ^p.

But now let us observe that if v is any pseudovaluation on R equal

to zero on nonzero members of the base field, then, since any three of

the elements x — i are linearly dependent over this base field, v(x — i)

can assume no more than two distinct values for i=l, ■ ■ ■ . In par-

ticular, if this v is a valuation, and is < + » at y and at all *—*, we

can obtain a bound of the form v(y"(x — \) ■ ■ ■ (x — n))Scn. But p

does not satisfy such a bound, so any valuation ^p must assume the

value + 00 on y or some x — i.

Note, however, that if p is any pseudovaluation on a. field, the ideal

¿>_1(+ °° ) is necessarily zero.

4. Generalizations. If p is a valuation on a ring R, and a a real

number, 0<a<l, then the function m(x) —ap<-x) is an ultrametric

multiplicative pseudovaluation on R, that is, a nonnegative real-

valued function satisfying:

(F) m(\) = 1,       m(0) = 0,

(2') m(xy) á m(x)m(y),

(3') m(x — y) ^ sup(w(x), m(y)).
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Our above results all translate directly into facts about such multi-

plicative valuations and pseudovaluations. It is natural to ask

whether the same results hold for the related classes of functions in

which the ultrametric inequality (3') is replaced by the weaker tri-

angle inequality:

(3") m(x — y) ^ m(x) + m(y).

In fact, they do. The only proof that we cannot adapt essentially

verbatim from §2 (interchanging 0 and + oo, etc.) is of the fact that

radicalization preserves the triangle inequality. The radical of m is

defined by m*(x) =lim„ m(xn)lln. We find that

m((x — y)n) ^23 (ï)tn(x') m(yn~i).

For any e>0, we can show that for n sufficiently large, each of the

terms m(xi)m(yn~i) approximates m*(x)'m*(y)n~i to within a factor

of (1+í)", hence the sum approximates (m*(x)-\-m*(y))n to within

such a factor, hence, taking wth roots and letting n approach infinity,

m*(x — y) ^m*(x)+m*(y).

Returning to additive valuations as in preceding sections, we would

like to know whether the results we have proved can be generalized to

valuations into semigroups of the form A U { + oo }, for arbitrary

ordered abelian groups A. The real numbers and {o} are the only

ordered groups in which we can both divide by integers (for radicaliz-

ing) and take limits of bounded ascending sequences. For any other A,

we must expect in general that the valuation v we construct from an

A -valued pseudovaluation p will not be into A itself, but some ex-

tension of A. The formal statements of our results would also have

to be modified: for instance, inequalities between suprema of infinite

sets would have to be changed to statements that every upper bound

for one set is an upper bound of the other, because the suprema them-

selves might not exist.

But we have not succeeded in proving any such generalizations of

our results.

Note that if we look for A in which we can take least upper bounds

of bounded sets, but not necessarily divide by integers, there are not

only {o} and R, but also Z. Hence one can prove that if p in the

hypothesis of Theorem 1 is already radical, and is ZW{ + oo}-

valued, the v of the conclusion can also be taken ZU { + oo } -valued.
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