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In general there exists no projection of a space of continuous functions onto a

subspace with the property that the distance between the projections of any two

points does not exceed the distance between the two points. Nevertheless, we shall

see that there is a projection of (7(5n_1) onto a suitable Euclidean w-dim subspace

with the property that the volume of the projection of a A>dim box does not exceed

the volume of the box if k > 1. The specific definitions are given later, but we can say

here that volume, as defined in an w-dim Minkowski space, is equivalent to saying

that the smallest box containing the unit sphere has volume 2n.

We then prove a weak Kirzbraun type theorem which enables us to deduce that

Kolmogorov's Principle, as applied to Lebesgue area, holds for surfaces in C. From

this we conclude that a generalization of Lebesgue area is an extension. Previously

it was known that the generalization agreed with Lebesgue area only on those

surfaces for which a lower area agreed with Lebesgue area.

The crucial result is, essentially, the following: Let

f(x) = a0/2 + 2 {an cos nx + bn sin nx)

and

g(x) = a0/2 + 2 (an cos nx+ßn sin nx).

Then
|aip\-*i«i| S max [f(x)g(y)-f(y)g(x)].

x.y

We will frequently use the methods of [SI, §5]. fn fact, the idea of this paper, as

in that, is to study a function by means of a suitably constructed convex function.

For the notation in Lemma 5, see [F].

1. Let V be a normed vector space. If b = (b1,..., bn) e Vn let B be the vector

subspace of V spanned by b. Let V be normed by | | and F" by || || where

\W = 1W-
If A: is a n x n matrix let K* e L(Fn, Vn) be denned by K*b = c where c' = 2, Kjb''-

We shall write Kb for K*b. Let K, T, U and A be n x n matrices of determinant one

where, in addition, T is triangular with positive entries on the diagonal, U is

orthogonal and A is diagonal with positive entries on the diagonal. Let S be an

arbitrary nxn matrix. We recall that Trace S=(djd£) det [Z+eSJI^o. Thus

Trace FS n and Trace A ä n.
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Let f\b = b1 a • ■ ■ a/3n. If £=(£i,..., £„), where each £( is a continuous linear

functional over V, then /\ £=£a a ■ ■ • a £n and [/\ /), /\ £] = det [Ub%

If P is a norm on F" then we say that £ supports P at Z> if 1(b) = P(b) and £?£P. If

£ supports P at b and if ^(tV) = S{P(b)jn for all 1 ̂  /, /^ «, then £ supports P properly

at b.

Lemma 1. 7/£ supports Pproperly at b then P(Sb)^ l(Sb) = (Trace S)P(b)/n.

The proof is immediate.

Let Q and A/ be norms on K" defined by Q(b)= \\b\\y/n and M(/j) = maxt7 Q(Ub).

Let Ö and M be norms on /\n Fdefined by Q(A b) = n~n sup^ infr Qn(TKb) and

M(/\   =     infjf Mn(Kb). The norm, on A" K is defined by

IA^| = sup {[A 6, AH I ICil = ••• = |£nl = i}.

Lemma 2. /«the above definitions each supremum is a maximum, each infimum is a

minimum and M(/\ b) = n~n minr M"(Tb).

Proof. Because of the Hahn-Banach Theorem, we can suppose that V=B. In

addition, we can suppose that A b¥=0. Hence we can choose £ so that £,(60 = 8/.

Then M(Kb)^ Q(Kb) = |]Kb\\ V«ä 11, K)b>'| y/n for each i so that \\t,\\M(Kb)

= \mii K^Wn^ \2i Kii8p\Vn= \Kj,\\/n for all i and p. Thus in the definition

of M, K may be restricted to lie in a compact set. A similar argument holds for Q

and I   |. Finally, for each K there exists U and Psuch that UK=T.

Let P(A b) = n~n mmK Pn(Kb).

Lemma 3. If nnP{/\ b) = Pn(b) and if Ubi) = S(P(b)ln, then £ supports P properly

at b.

Proof. For each S let Sm = I+S/m. Then det Sm = 1 + (Trace S)/m + o(m ~ l) as

m -> oo. Since mSm = mI+S, mP(Smb)SmP(b)+P(Sb) so that

P(S7>) = w[F(5'mft)-P(/3)] g w[|detSm|1",-l]P(Ä)

since Pn(Smb)^n"P(/\ Smb)= [det 5m|P"(i). Hence

P(S/j) ^ m [(Trace 5')/(wn) + o(w-1)]P(i)

= (Trace S)[P(/3)]/n + wo(m-1).

Thus £(S*) = (Trace S)P(b)/n^P(Sb).

Lemma 4. If nnP(f\ b) = Pn(b) then there exists £ swcA £ supports P properly

atbandP(f\b) = [A b, f\ £].

Proof. The first part of the lemma is a consequence of the last lemma and the

Hahn-Banach Theorem. Finally, n"P(A b)=Pn(b) = nn[f\ b, f\Q.

If £ supports P properly for some b, then we say that £ supports P properly.

Lemma 5. M(/\ 6) = max {[A b, A£] I £ supports Nproperly}.
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Proof. Let -q support M properly. Because of Lemma 4 we need only show that

[A °> /\v\=M(/\ b) so that we may assume that [f\ b, /\v]>0. We can also

assume that M(/\ b) = n-nMn(b). Let = ^(TjO, vn = * hi A ■ • • /\rjn_1], vn-x

= * [rix A ••■ Aij„_2a vn],..., v1 = * [f 2 A f 3 A • ■ • A vn]. Thus vf ■ %=0 for i > j and

JVr/j^O for all i. By replacing vt with ± pt|»t|-1 we can suppose that {i\} is an ortho-

normal set, iyry,=0 for i>j and vt-iji>0. Now let i// = t'J. Then C/=[wJ] is an

orthogonal matrix and c'= {Ub)'= ^u{bk = ^vkbk so that r)t(cr)=vj-r)i. Now we

have [A b, Av] = {A c, A^]=IT=i Vi(ci)^{«~1 Z Vi(ci)}n = n'nM"(c) = n~nMn{b)

= A/(A b).

Lemma 6. ß = M.

Proof. We can suppose that /\b^0 and that V=B. Since nnM(/\ b)

= «nA/(A Aft) = minr Mn(TKb)^ minT Q"(TKb) for all tf, M(/\ /7)ä ß(/\ °n

the other hand, there exist U0 and T0 such that nnM(/\ U0T0b) = nnM(/\ b)

= Mn(T0b) = Qn(U0T0b) = Mn(U0T0b). Let d=U0T0b. Suppose that ß'(W) and

A/'(fiO both exist. Since ß and M are convex, MS ß and M(d) = Q(d), it follows

that Q\d) = M'(d). Let l = M'{d). By Lemma 4, Udi) = 8{M(d)ln = B'iQ(d)ln so
that, by Lemma 1, Q(Td)^ Q(d) = M{d) for all F. Hence Q(Ab)=Q(/\d)
=zM(/\ d) = M(/\ b). If ßV) or A/'(i7) does not exist, let ßm be a sequence of

smooth uniformly convex norms approaching ß from below. As before there exist

Um and Tm such that Qm(dm) = Mm(dm) where dm = UmTmb. If there is a unique f/m

satisfying the required condition, then Mm is also differentiable in a neighborhood

of dm by the implicit function theorem. Otherwise, we can modify Qm slightly to

obtain the desired condition. Thus ß = lim ßm = lim Mm = M.

We have proved

Lemma 7. Let be Vn. Then there exists deVn with /\d=/\b and nnM(/\ d)

= Mn{d)=Qn{d).

Lemma 8. // nnM(/\ d) = M\d) = Qn(d) then N(d', d>) = r,(d>, dj)for all 1 ̂  i,n

where 2rj(d\ di)=\di\2+ \dj\2 and

N{d\ d') = Max r^cos d-d''sin 8, a" sin 0 + 6?'cos 0).
e

Proof. Let U be the n x n matrix whose upper left corner is

"cos 0 —sin 8'

sin 8     cos 0

and whose lower right corner is the (« — 2) x (« —2) identity matrix. If tA/=e then,

by the hypothesis, Q{d) ä ß(e). Thus

2 Kl2 ^ k? = |rf1cosö-rf2sine|a+|d1sine + rfacos 0|2 + ^\dl\2
i> 2

so that ^(d1, d2) = N(d1, d2). A similar argument holds for all i<j.
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Let c\ ..., c" e B. If c = Sb and if |det S\ ^ 1 then we say that the volume of the

box spanned by c does not exceed the volume of the box spanned by b, even though

we have not defined volume in B. We observed in [S3] that the definition of |/\ b\

is equivalent to setting equal to 2" the volume of the smallest box in B which con-

tains the unit sphere. If the sides of such a box P are ± 1,where l^j = 1,/= 1,

then there exist c' with |c'| = 1 and i)i(ci)=\. Suppose ly/c'^O for some///. Then

let di be determined by the conditions r)j(di) = 0 for j^i, \dl\ = 1 and r)i(dt)>0. Now

set ij=t)j for j^i and let f, have norm one and support the unit sphere at dK

It is clear from the geometry that the box whose sides are ffc= + 1 has volume not

exceeding that of P. Hence we can suppose that rji(ci) = h{. Furthermore, by the

Cauchy inequality,\fde F" then ti(c/) = 2 ^i(^) = 2 Kl = ß(<0 so that 17 supports Q

properly at c.

Theorem 1. M{/\ b)=\/\b\ = Q(/\ b) for all f\be f\n V.

Proof. We can suppose that /\ Z>/0. By the preceding remarks, we can assume

that 7] supports Q properly at b and that \f\b\ = [f\b, A1?]- By Lemma 1, Q(TKb)

^ Q(b) for all TK so that Q(A b) = n-nQn{b) = [/\ b, A ^HA bV °n the other
hand, if £ supports Q properly at d, with A d^O, and if/(A)= Q(Ad), then/has a

minimum at / so that \di\ = Q(d)ln for each i: if \d1\=k2\d2\ with k=£ ± 1, then

\<Plk\a+\kd2\*£\dl\2+\tP\2. Now let e e V. Then

Q(d)[Ue) + (n-\)\e\]ln = £(|<P|e, \e\d2,..., \e\dn)

^ Q(\d*\e, \e\d2,..., \e\d«) = Q(\e\d) = \e\Q(d).

Hence £i(e) = |e| so that, by replacing e with — e, we see that ^ 1. It follows that

1^1 = 1 and, similarly, \Q = 1 for all i. Hence Q(/\ d) = n-"Qn(d) = [A d, A Q

^ IA d\ and an application of Lemma 6 completes the proof.

Lemma 9. Let X be a compact Hausdorff space and V= C(X). If

/= C/V..,/»)eF«

then IA/I =R where P = max {det [fix,)] \xlf...,xne X}.

Proof. Let yu ..., yn e X and p} be the measure on X which has unit mass at yf.

Let Uf)=f(y3). Then det [/(>-,)] = det [£,(/<)] = [A I A/l^l A/l-°n the other
hand if £ls..., £„ are linear functionals of norm one over C(X) there exist measures

A, with j I A| = 1 such that Uf) = jfdXt for all/e C(X). Hence

[A £, A/] = det [{,(/*)] = f  ■ • f det [/'(xt)] dX&J- ■ -dXn(xn) ^ R.
J X       J X

An interesting consequence is the following: if fe Vn there exists K and

xu ..., xne X such that, if we set g> = (Kf)\

= c   and  g\x,) = Sjc

where cn= | A/I-
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2. Let /F = [ — 77,77], Ak + 1 = Akx [0,77] and Sm be the unit w-sphere canonically

embedded in Rm + 1 for some mS: 1. Let r\ Am -> JRm + 1 be defined by

t^ö) = cos a' sin   +   • - sin am,      1 <;   < wj,

rm(ü) = cos am and

Let pm(ö) = sin a2 sin2 a3- ■ ■s'mm~1am so that J^m /xm(a) da = Km = a.Te& S™.

Iff g 6 C(Sm) let

if, g) = j fg d\m = K-1 j   (fo rm)(g o Tm)ixm

where Am is Haar measure on Sm. If x e Sm let ct%y) = jV"1'2 and

<ji(x) = K-ll2(m+ l)1/2.yf for r= 1, 2,..., w + Then (V, oJ)=8J. Let £m+1 be the

vector subspace of C(Sm) spanned by o-1,..., crm + 1 and let P, Q : C(Sm) -> Em+1 be

defined by
m+ 1

i = l

and

Qf= (/,»V+(/,«V.

If /=2™=W then |/|=A--1,2(m + l)1'2[y/j2]1'2 so that Fm+1 is a Euclidean

subspace of C(5"m).

Let r?(/,g)=[|/|2 + |^|2]/2 and

M/> i?) = max v(fcos     g sin 0,/sin 0+g cos 6).
e

Iff geEm+1 then A(/ g) = v(f, g).

Lemma 10. Let yn=U%2 {Josin' «* ym = A"m+i/(4Tr).

Proof. tfm + x = f_ „ {|S ym sin a1 da1} da0 = 47rym.

Lemma 11. N(Qf, Qg)^N(fg).

Proof. If there exist Fand G with N(Qf, QG)^N(Qf Qg) and A(F, G)^N(fg),
then it is sufficient to prove the lemma with / and g replaced by F and G, re-

spectively.

If h e COS"") let

£ o T(a) =   r • • • r h(r(a)) (n aA . -der.
•"m+l Jo Jo 1^ = 2 J

Then (A, ct1) = («, o-1) and (h, am + 1) = (h, o-m+1) so that Qh = Qh. In addition, h ° t is

independent of a2,...,am. Let F:Fm+1->F2 be defined by T(h ° tm)(d) = h °

rja1, it ß,77/2). Then Ffa1 0 T)(a)= cos a1, F(o-m + 1 o T)(a) = sin a1 and F re-

stricted to the plane determined by o-1 ° t and o-m + 1 ° t is an isometry. Hence
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N(TQf, TQg) = N(Qf, Qg). That N{Tf, Tg)^N(f, g) is evident. Thus we can sup-
pose that m=l. Furthermore, if we use the Weierstrass approximation theorem,

there is no loss in generality in supposing that

n

n=l

and

g - ^(8) = ^+2 («» cos n6+ßn sin "d)-
z     n = l

Let us now write/for/° tj and g for g o Tl. Thus/and g are defined on [ — 77, 7t],

but we shall not distinguish between these functions and their periodic of period 2tt

extensions over all of R1. Let ck and sm be denned by ck(8) = cos kd and sm(8)

= sin m8, k = 0, 1, 2,..., and m=l, 2, 3.As we have already noted, we can

suppose that

(1) /= a0l2 + 2(anCn + bnsn)   and  g = a0/2 + 2 (ancn + ßnSn)

where the sums are finite sums. The change from CiS1) to the space of continuous,

periodic functions on [—it, tt] is, of course, an isometry, and the lemma can be

reformulated as follows: Let

(f,g) = jjm(e)de  and 0*.|^c+gdj,.

Then \alß1-bla1\ = \Qf i\'Qg\fkN(f, g). Hence we can suppose that a2 + a?>0.

Let F(0) = [/(0)-/(7r+0)]/2 and G(0) = [g(0)-g(7r+0)]/2. Since TV is convex,

N(F, G)5= A(/, g) while QF= Qf and QG=Qg. Hence we can suppose, in (1), that

ok = bk = ak=ßk = 0 if k is not odd.

Let p be chosen so that

(aA + «i/3i) cos 2p + (a2-b2 + a2-ß2) sin 2p = 0.

Let F(6)=f(d-p) and G(8)=g(8-p). Then N(F, G) = A/(/,g) while

£>F = («! cos  —   sin /»)c! + (ax sin  + cos

and

QG =     cosp—ßi sin+ (<*! sin/> + /3i. cosp)s1.

Let n2 be the plane determined by c1 and 5X. The induced metric on n2 is Euclidean

so that r,=N on n2. Hence N(QF, QG)=V(QF, QG) = v(Qf, Qg) = N(Qf, Qg).
Hence, in (1), we can suppose that a1b1 + a1ß1 = 0.

Now let cos w=a1/r and sin w= —ajr where r = (a2 + a2)ll2>0. Then a1 cos w

+ a1 sin w = bi cos w — ß1 sin u=0. Let F=/cos iv—g sin vv and G=/sinw +

gcosw. Then N(F, G) = N(f, g) and N(QF, QG) = N(Qf, Qg) so that we can

suppose that b1 = a1=Q.
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Let 0(0) = 0(t>— 0), F=(/-/)/2 and G = (g+g)/2. It is easy to see that ßF= ß/

and QG=Qg. Since

|Fcos m-G sin u\ S [|/cos w-g sin u| + |/cos w+g sin w|]/2,

|Fcos u-G sin «|2 g [|/cos u—g sin «|2 +1/cos u+g sin m|2]/2

and similarly,

|Fsin u + G cos w|2 ^ [|/sin « + g cos m|2+ |/sin u—g cos w|2]/2

for all u so that A(F, G)^N(f, g). Hence we can suppose that

(2) / = 2 a<A-  and  £ = 2

where the summation is over a finite collection of odd natural numbers. Further-

more, we can suppose that aL^0 and jS^O.

Now let </>*(0) = i/.(0 + 772), F=(f+g*)l2 and G = (g-/*)/2. First we observe that

2F* =f* —g= — 2G and, similarly, G* = F, so that

A(F, G) ä |F A G| ä max [F(0)G*(0)-F*(0)G(0)] = |F2 + G2|
8

£ T- f [F2(0) + G2(0)]rf0.

Next we see that |Fcos w — G sin u\^ [|/cos m—g sin u\ + |g* cos u+f* sin w|]/2

so that |Fcos u — G sin m|2^ [\f cos w—g sin w|2 + \f sin w+g cos «|2]/2S A(/ g).

Similarly, |Fsin w + G sin w|2^ A(/, g) so that A(F, G)^N(f, g). An easy com-

putation yields

(3) F = ^ Akck+^ Akck
kel keJ

and

G = ^Aksk— ^Aksk
kel keJ

where I and 7 are finite sets of odd natural numbers which are congruent to one and

three, respectively, mod 4, and

Ak = (ak+ßk)l2  if kel,

= (ak-ßk)l2 i(keJ.

Hence

\QF A QG\ = A2^2A2 = [F2(8) + G2(6)] d6 ^ A(F, G).

Theorem 2. /// g e C(Sm) then \Pfr\Pg\^ N(f, g).

Proof. If U is an orthogonal (n+ 1) x («+ 1) matrix and if 0 e C(Sm) let U*<f>

= <j>U~1. There exists U such that P(U*f)= Q(U*f) and P(U*g)= Q(U*g). Thus

g)=N(U*f, C/*g)5 I ß£/*/A ßC/*g| = \PU*fAPU*g\ = \PfAPg\.
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Theorem 3. Iff, g e C(Sm) then \Pf/\Pg\S \fAg\.

Proof. There exist Pand G such that F/\G=fhg and N(F, G)=\FaG\. Hence

\PfAPg\ = \PFaPG\^N(F, G)=\FA G\ = \fAg\.

Lemma 12. Let at=(a},..., af) e Rn and a= |det [a{]\. Then

Proof. There exists a rotation U such that [Ua] is triangular. Hence we can

suppose that af = 0 for j>i. We can also suppose that bi = a\>0 for all i. In this

case

(   l     ^     171/2

by a well-known arithmetic-geometric inequality. Since |a, A a; | ä bfi,, the lemma

follows.

Theorem 4. Letf1,...,fneC(Sn-1). Then \ f\ Pf\ g | A/I-

Proof. We can suppose that nnM(f\/) = Mn{f) = ö"(/) by Lemma 7. Hence, by

Lemma 8, Theorem 2 and Lemma 12,

{On   r-. ^n/2

J^IlPf ap/l}

= »"n{« 2 l/'l2}"'2 = «-n0"(/) = a?(A/) = IA/I-

3. We will recall the definitions of Lebesgue area [S2, S3] for surfaces in normed

vector spaces and metric spaces. Then we will show that isometric surfaces in a

suitable space C of continuous functions have equal areas from which it will

follow that the area defined here for surfaces is a generalization of Lebesgue area

defined on surfaces in Euclidean space. It was known that the two areas agreed on

surfaces in Euclidean space for which the lower area coincided with the Lebesgue

area. To prove that Kolmogorov's Principle holds in C we will require a theorem of

the Kirzbraun type.

Let Q be an «-cell, V be a normed vector space and C(Q, V) be the space of

continuous functions on Q into V. If z e C(Q, V) and if there exists a subdivision

of Q into a finite number of /7-simplexes on each of which z is linear, then z is
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quasilinear. The set of such functions is dense in C(Q, V). If z is quasilinear then

we define the elementary area of z, <f(z), by <^(z) = 2 |z(A)| where the summation is

taken over the Simplexes on which z is linear and, if z is linear on A, then |z(A)|

= |A dz\ volA- If *e C(0, V) letLvx=lim inf^* i{z). It is clear that Lvx^Lwx if

If is a vector subspace of V and that there exists a separable subspace S of V such

that Lsx=Lvx. Since S can be mapped linearly and isometrically into m, the space

of bounded sequences, and since isometric surfaces in m have the same area, it

follows that Lvx^Lmx if x e C(Q, m) and if X and x are isometric. Similarly, if x

is continuous on Q into a metric space Ji we can define Lj(X—Lmx for X isometric

to x. We write Lx for Lmx. If C is a suitable space of continuous functions, then each

separable metric space can be mapped isometrically into C. After we show that

isometric surfaces in C have the same area then, by the above considerations, we will

have Lcx=Lmy whenever x and y are isometric. Thus, when we show that LEnX

=LCiS«-i)x whenever X and x are isometric, we shall be able to conclude that L

extends LE .

Lemma 13. Let {A, a) and (B, ß) be metric spaces and suppose that A is totally

bounded. If x is continuous on A into C{B) then {x(a) \ a e A} is equicontinuous.

Proof. Choose e>0. There exists i?>0 such that \x(a) — x(a')\<e whenever

a(a, a')<rj. Since A is totally bounded there exist alt..., an e A such that

n

A <= y {a e A I a(a, af) < ■>?}.
i = i

For each /' = 1,..., n there exists St > 0 such that | [x(ai)](b) - [x{ai)](b') \ < e whenever

ß(b, b') < Sj. Let S = minSj. If aeA then there exists je {I,...,«} such that

a(a, öy)<T). Hence \x(a) — x{a,)\ < e. Now if b, b' e B and ß{b, b') < S, we have

I [x(a)](b) - [x(a)](b')\ ̂  I [x(a)](b) - [x(aj)](b)\ +1 M«,)P) - [x{aj)W)\

+ \[x(aj)W)-[x(a)](b')\ < 3«.

Next we prove a Kirzbraun-type theorem.

Theorem 5. Let K and L be subsets of C{B) and suppose that L is equicontinuous.

Iff.K-^L and if \tu—tv\ ̂ k\u-v\ for some k>0then there exists T: C(B) -> C(B)

such that T\K=t and \Tx-Ty\£k\x-y\.

Proof. If beB, u e K and v e C(B) let ipb(u, v) = tu(b) + k\u-v\ and let Tv(b)

= infueK >jib{u, v). If v e K then \fib{u, v) — >jjb{i\ v) = tu(b) + k\u — v\ — tv(b)^k\u — v\

— \tu — tv\^0 so F extends t. Suppose that \w(b) — w(b')\< e for all w e L whenever

ß(b, b')<8. Then, if veC(B),

Tv(b)-Tv(b') = inf       v)-inf 4>b(", ») ^ sup [^(w, y)-0r(w, »)]
uGiT ueif ueK

= sup [rw(A)-r«(6')] S e.
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Similarly, Tiib')-Tv(b)^e, so that Tv e C(B). Finally, if v, w e C(B), then

\Tv-Tw\ = sup \Tv{b) — Tw{b)\ = sup linf </>b(u, v)—inf 4>b{u, w)\
b b    | b u |

^ sup sup |<A(,(w, f) — 0„(m, w)\ = sup sup |A:jw— u| —ä:|m — wjj
b      u b u

5? k\u—w\.

We saw in [S4] that Kirzbraun's Theorem could be used to prove Kolmogorov's

Principle. The present version of Kirzbraun's Theorem is all that was actually used

in the proof so that we have Kolmogorov's Principle: Let x and y be continuous

from an «-cell into C(P). Suppose that \x(q)-x(q')\^k\y(q)-y(q')\ for allq,q'eQ.

Then LCW)x^knLC(B)y.

Lemma 14. Let Pf=2Ui(f °V for allfe CiS"-1). Then \P\Z V«.

Proof. If/e COS71"1) then

^ 2 i/i2 - "i/i2-

Theorem 6. If x is continuous on Q into Euclidean n-space En, then LB«x=Lx.

Proof. We can identify En with £„cC(Sn_1), Let zk be a sequence of quasi-

linear functions converging to x in C(Q, C(Sn'1)) such that #(zk) -+ Lx=Lc<s*-i)x.

Then \Pzk-x\ = \Pzk-Px\ ^ \P\ \zk-x\ ^ \zk-x\\/n so that Pxk x. By Theorem

4 £'(Pzk)^S(zk). Thus L£vy^lim inf «f(Pzfc) g lim inf <?(zfc)=Lx. Since the in-

equality in the other direction is trivial, the theorem is proved.
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