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Abstract. We propose a novel method for recognition of structured im-
ages and demonstrate it on detection of windows in facade images. Given
an ability to obtain local low-level data evidence on primitive elements
of a structure (like window in a facade image), we determine their most
probable number, attribute values (location, size) and neighborhood re-
lation. The embedded structure is weakly modeled by pair-wise attribute
constraints, which allow structure and attribute constraints to mutually
support each other. We use a very general framework of reversible jump
MCMC, which allows simple implementation of a specific structure model
and plug-in of almost arbitrary element classifiers. The MC controls the
classifier by prescribing it “where to look”, without wasting too much
time on unpromising locations.
We have chosen the domain of window recognition in facade images to
demonstrate that the result is an efficient algorithm achieving perfor-
mance of other strongly informed methods for regular structures like
grids, while our general model covers loosely regular configurations as
well.

1 Introduction

Recent development in construction of virtual worlds like Google Earth or Bing
Maps 3D heads toward higher level of detail and fidelity. Popularity of applica-
tion such as Street View shows that reconstruction of urban environments plays
an important role in this area. While acquisition of extensive data in high reso-
lution for this purpose is feasible today, their automated processing is now the
limiting factor for delivering more realistic experience and it is a task for com-
puter vision at the same time. In urban settings, typical acquired data are images
of buildings’ facades and their interpretation can help discover 3D structure and
reduce the complexity of the resulting model; for example, it would allow going
beyond planar assumptions in dense street view reconstruction presented by [1].
Complexity is particularly important when the representation has to scale with
the size of cities in applications such as [2] who plan to combine range data with
images. The work of [3] dealing directly with structural regularity in 3D data
also supports our ideas.



2 Radim Tyleček and Radim Šára

While facades as man-made scenes exhibit intensive regularity and structure
when compared to arbitrary natural scenes, they still present a great variety of
styles, configurations and appearance. The design of a general facade model that
is able to cover their range is thus a challenging problem, and several approaches
have been proposed to deal with it.

Shape grammars, as introduced in [4] and later picked up by [5], are the basic
essence for all recent methods based on procedural modeling to overcome the
limitations of traditional segmentation techniques. The idea of shape grammars
is that image can be explained by combining rules and symbols.

Some aspects of probabilistic approach were first discussed in [6], including
the use of Reversible Jump Markov Chain Monte Carlo (RJMCMC). The pro-
posed grammar is simple, based on splitting and the results are demonstrated for
highly regular facades only. In a similar fashion [7] determines the structure by
splitting facade to a regular grid of individual tiles and subdividing them. Meyer
and Reznik [8] presented a pipeline for multi-view interpretation, where heuris-
tics based on interest points were designed to detect positions of windows, and
subsequently used MCMC to localize their borders. Ripperda [9] has designed
a comprehensive dictionary of rules, on which the proposed method substan-
tially depends; the results presented on simple facades show this approach has
difficulty to achieve good localization.

The most recent method of [10] combines trained randomized forest classi-
fiers with shape grammar to segment Haussmannian facades into eight classes.
Their model assumes windows form a grid while allowing different intervals. In
the second step, positions of rows and columns are stochastically estimated by a
specific random walk algorithm that does not propose dimension changes. They
evaluated their results quantitatively on a limited dataset of Haussmannian fa-
cades in Paris which is available online.

The majority of the mentioned algorithms for single-view facade interpreta-
tion work with hard constraint on grid configurations of windows and employ
strong domain-specific heuristics. Additionally, they require user design of spe-
cific grammar or training, while both processes are prone to overfitting. Our
contribution is in the design of segmentation framework with the following prop-
erties:

– a general model allows a simple implementation avoiding strong domain
specific heuristics,

– structure is not modeled by a global grid, but softly by local pair-wise con-
straints, allowing loosely regular configurations,

– different element classifiers can be conveniently plugged in,
– efficient interpretation is achieved as the classifier is guided by the sampler

and need not even visit all image pixels in practice,
– the number, spacing and exact size of facade elements need not to be known

in advance and does not rely on preprocessing that can fail i.e. in irregular
cases like in Fig. 4.

Since windows are the most prominent elements of a facade, we choose detection
of window-like image elements to be the target of this paper.
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Fig. 1. Hierarchy in probability model, numbers in brackets are section references.

2 Structural Recognition Framework

We consider the problem of recognizing elements in an image, like windows in a
facade. Our model parameters (variables) consist of complexity k (the number of
windows), shape attributes A (i.e. size, aspect), location attributes X (window
center locations) and element neighborhood relation N . The recognition task
can then be formulated as follows: Given image data I, we search for model pa-
rameters θ = (k,A,X,N) by finding the mode of the following joint distribution
p(I, θ)

θ∗ = argmax
θ
p(I|θ)p(θ), (1)

which is computed with Bayes theorem from data likelihood p(I|θ) and structural
model prior p(θ). We will decompose our probability model hierarchically as
shown in Fig. 1 and propose pdfs specific for the task of window detection in
facade images. Then we can apply stochastic RJMCMC framework to find the
optimal value θ∗ by effectively sampling from the space of possible combinations
of parameters θ. More details on its implementation will be given in the following
sections.

3 Structural Model

The structural model is based on pair-wise element neighborhood and attribute
constraints, yielding bottom-up approach. We are given a set of k ∈ N ele-
ment locations X =

{

xi ∈ R2; i = 1, . . . , k
}

. Our neighborhood representation
is based on a planar graph G(X) = {V (X), D(X)}, where vertices V (X) =
{vi; i = 1, . . . , k} correspond to elements and edgesD(X) = {(u, v); u, v ∈ V (X)}
to relative neighborhood relationship between them.

Since we are dealing with image elements attributed by their locations X in
image plane, we can limit the edge set D(X) to a reasonable planar subgraph
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and Relative Neighborhood Graph (RNG) turns out to be a natural choice [11].
It is defined by the following condition: Two points u and v are connected by an
edge whenever there does not exist a third point r that is closer to both u and
v than they are to each other (in Euclidean metric). It is known that RNG is a
unique subgraph of Delaunay Triangulation (DT), and can be computed from
it efficiently, in O(n) time. This choice defines a function X 7→ G(X), where the
graph is uniquely constructed from a set of element locations X.

We define neighbors as elements that are in immediate proximity of each
other and such that they share some attributes. This neighborhood N is to
be recovered as a part of the solution, and we represent it by binary labels
N = {luv ∈ {0, 1} ; (u, v) ∈ D(X)} for edges indicating mutual neighborhood of
two elements when luv = 1. Such two elements are then members of the same
structural component, where all connected elements are related by attribute
similarity constraints. Labels luv = 0 allow the existence of dissimilar elements
in proximity of each other.

An edge (u, v) has an orientation attribute ouv ∈ {h, v}, which is a function of
locations xu, xv of elements on its endpoints. It is given by the angle ψ between
vertical direction and line connecting element locations. The case of |ψ| < π

4
determines vertical orientation (h), the other case is horizontal (v). This choice
defines a function D(X) 7→ {h, v}.

The prior probability model p(k,N,X,A) = p(A|k,N,X)p(k,N,X) splits
into attribute constraints p(A|k,N,X) and structure prior p(k,N,X). The pa-
rameters of the underlying distributions were chosen empirically.

3.1 Attribute Constraints

The attribute constraints evaluate the similarity of two neighboring elements (in
terms of N); such attributes can be shape or appearance.

For facades, we assume our elements can be represented by a rectangular
shape template with its borders parallel to image borders. The shape attributes
A = {W,H, T} = {(wi, hi, ti) ; i = 1, . . . , k} are described in Fig. 2 and the
column width ti = t is given and fixed. Our attribute constraints will then

hi

ti

wi

Fig. 2. Left: Window shape template is parametrized by its width wi ∈ (0, 1), height
hi ∈ (0, 1), both relative to image height Ih, and the width of the central column
ti ∈ (0, 1) relative to the window width. Right: Shape template (red) is matched with
image edges (blue).



A Weak Structure Model for Regular Pattern Recognition 5

reflect the fact neighboring windows most probably have the same dimensions.
We start by decomposition

p(A|k,N,X) = p(W |H, k,N,X)p(H|k,N,X)1(A|X), (2)

where p(W |H, k,N,X) =
∏k

i=1 p(wi|hi) is the aspect ratio with distribution
p(wi|hi) = β( wi

wi+hi
, αr, βr). When any of the windows overlap with another, we

set unit function 1(A|X) = 0, effectively avoiding such window configuration.
To model constraints on heights H, we introduce a set of latent variables

hc, one for each component c of graph G(X) with neighborhood N . The height
similarity within components is enforced in

p(H|k,N,X) =
∏

c

(

p(hc)
∏

i∈Vc

p(hi|hc)

)

, (3)

where c is from the set of all components, Vc is the set of windows in the com-
ponent c and p(hc) = β(hc, αh, βh) is the common height prior. Each height
in a component c should be most probably equal to hc, which is expressed by
p(hi|hc) = N (hi − hc, 0, σh).

3.2 Structural Prior

The structure prior p(k,N,X) = p(N,X|k)p(k) combines structural regularity
p(N,X|k) and complexity p(k).

Structural Regularity. In order to model multiple assumptions on p(N,X|k),
we express it as a probability mixture [12]:

p(N,X|k) = ω1pa(X|N)p(N) + ω2ps(X|N)p(N) + ω3pc(N |X)p(X), (4)

where
∑k

i=1 ωi = 1, ω123 = 1
3 and k was omitted in p(·) for simplicity. We assume

element locations in p(X) are mutually independent and uniformly distributed
in image. The neighborhood prior p (N) =

∏

(u,v) p(luv) takes into account the

possibility of suppressing an edge where p(luv = 0) = psup, p(luv = 1) = 1−psup
and psup = 0.01 is the probability of a suppressed edge.

Alignment. The first assumption on the position of elements is that neighboring
elements should be horizontally or vertically aligned. We model this by measuring
angles ϕ(xu, xv) ∈ (−π

4 ,
π
4 ) between the line connecting element locations xuxv

and horizontal (ouv = h) resp. vertical (ouv = v) direction, and express them in

pa(X|N) =
∏

(u,v)∈D(X)

p(xu, xv|luv), (5)

where p(xu, xv|luv = 1) = β(ϕ′(xu, xv), βϕ, βϕ), βϕ = 50 and ϕ′(xu, xv) =
2
π
(ϕuv + π

4 ) ∈ (0, 1) is the angle normalized to unit interval. The probability
in the case of a suppressed edge is p(xu, xv|luv = 0) = pa0.
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Spacing. The second assumption is that the distance between elements in a
horizontal or vertical neighborhood should most probably be equal. We model
this by comparing distances to horizontal and vertical neighbors in

ps(X|N) =
∏

(u,v,z)∈D2(X)

p(xu, xv, xz|luv, lvz) (6)

where (u, v, z) denotes a pair of edges (u, v), (v, z), u 6= z with the common vertex
v and the same orientation. The distance term is expressed by p(xu, xv, xz|luv =
lvz = 1) = β( ∆uv

∆uv+∆vz
, β∆, β∆), where β∆ = 50 and ∆uv = |xu − xv| are

distances to the neighbors. As in the previous case, the probability in the cases
with any suppressed edge is p(xu, xv, xz|luv 6= 1 ∨ lvz 6= 1) = ps0.

Configurations. We model higher-order dependencies in the structure configu-
rations with

pc(N |X) =

k
∏

i=1

p(lij |(i, j) ∈ D(X)), (7)

where the probabilities p(lij |(i, j) ∈ D(X)) model the expected degree of a given
vertex i, including orientation of edges (i, j) connected to it, i.e. the typical
grid configuration is to have two vertical and two horizontal edges incident with
vertex i.

With the grid assumption and the window size prior, we can estimate the
number of rows m = 1

2µh
and columns n = 1

2µhrh
, assuming the space between

the windows to be equal to the window size. This heuristic plays only a minor
role in our model and helps us to derive the vertex configuration probability
p(lij |(i, j) ∈ D(X)). It is given in Table 1, where rows and columns correspond
to the number of horizontal and vertical edges connected to the window vertex.
The maximum degree of a vertex in RNG is six with at most three horizontal
and three vertical edges.

Table 1. Neighborhood configuration prior p(lij |(i, j) ∈ D(X)), where degh(i), degv(i)
are functions of neighboring labels lij . The pc0 = 10−4 is the probability of a single
(unstructured) window, pc1 = 0.099 is the probability of a single row or column of
windows, pc2 = 0.9 is the probability of a window grid, pc3 = 10−5 is the probability
of more dense configurations.

degh(i), degv(i) 0h 1h 2h 3h

0v pc0
1
2
pc1

1
(m−2)

pc1 pc3

1v 1
2
pc1

1
4
pc2

2
(m−2)

pc2 pc3

2v 1
(n−2)

pc1
2

(n−2)
pc2

1
(m−2)(n−2)

pc2 pc3

3v pc3 pc3 pc3 pc3
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Structural Complexity. The prior for number of elements can be modeled
with Poisson distribution p(k) = Pois(k,mn) based on the estimation of number
of rows m and columns n given above.

4 Data Likelihood

The data likelihood p(I|K,N,A,X) is solely task-specific and can be chosen
arbitrarily as long as it can be evaluated by means of probability density or
likelihood ratio.

In the task of window detection in facade images, the input is image I =
{i; i = 1, . . . , Iw · Ih} defined as a set of pixels and we assume it is rectified,
i.e. the windows borders are parallel to the image borders, and Iw, Ih are image
width and height.

We want to express the probability of observing image I if window parameters
and structure are given. We combine two features: image edges J and color C in
p(I|k,A,X,N) = p(J |k,A,X,N)p(C|k,A,X,N). We use color to detect regions
of interest and edge features for localization of the windows’ borders.

4.1 Edge Likelihood

We assume that window borders correspond to edges, and use Canny detector
to find them. However, this model will not fully hold in real world situations,
when we obtain the input by detecting edges in a picture—there can be windows
which do not have all pixels with underlying edges and vice versa, some edges
do not belong to any windows at all. The latter case will typically prevail.

We use binary imaging model for window edges represented by oriented edge
image J = {Ji ∈ {0, 1, 2} ; i ∈ I}, where Ji = 1 if pixel i belongs to an horizontal
edge detected in I (foreground), resp. Ji = 2 for vertical edge; otherwise Ji = 0
(background). We define d(J) ∈ (0, 1) as a distance transform of the edge image
J normalized by max(Ih, Iw). We use the gradient of d(J) to distinguish between
horizontal and vertical edges. Similarly, we introduce edge image R(A,X) ren-
dered from the current configuration specified by attributes A,X and the shape
template in Fig. 2 with nearest neighbor discretization. Assuming pixel indepen-
dence, we can write p(J |A,X) =

∏

i∈I p(Ji|Ri(A,X)) where the probability of
observing a pixel i in the edge image J given the rendered configuration R is

p(Ji = 0|Ri = 0) = pTN = 1− 2pFN,

p(Ji ∈ {1, 2} |Ri = 0) = pFN = 0.1, (8)

p(Ji = 0|Ri ∈ {1, 2}) = pFP(d(i))(1− pFX), d(i) > 0,

p(Ji = 1|Ri = 1) = p(Ji = 2|Ri = 2) = pTP = pFP(0),

p(Ji = 2|Ri = 1) = p(Ji = 1|Ri = 2) = pFX,

where pFP(d(i)) = β(d(i), βFP = 500, 1) makes rectangles close to edges more
probable and acts as a guide for directing the random walk. The pFX = 10−9 is
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the probability assigned when the edge specified by the configuration crosses an
image edge with opposite direction.

The edge likelihood can be efficiently evaluated from pre-computed integral
edge images, one for each orientation, yielding constant computational complex-
ity O(1) per edge; this speed-up is possible thanks to rectified images and helps
make random sampling (described in Sect. 5) very efficient.

4.2 Color Likelihood

A pixel color classifier matches the input RGB color image C =
{

ci ∈ (0, 1)3; i = 1, . . . , k
}

with a unimodal Gaussian distribution N (C̄, ΣC) for window pixels. Its mean
C̄ = (0.33, 0.36, 0.38) ∈ (0, 1)3 and covariance ΣC of window color were trained
on a single representative facade image and correspond to dark colors; higher
mean in blue channel is related to the reflection of sky in window glass. We
use the classifier to segment pixels either to foreground (window) or background
(non-window) sets Cf ∪ Cb = I. Assuming pixel independence, the probability
of observing segmented image is

p(C|A,X) =
∏

i∈Cf

pf (ci|A,X)
∏

j∈Cb

pb(cj |A,X), (9)

where the foreground color model is expressed by pf (Ci|A,X) = N (C̄, ΣC), the
background probability pb(cj |A,X) = pb is constant and we evaluate foreground
pixels only. Similarly to edge likelihood, color likelihood can be evaluated using
pre-computed integral images in linear time.

5 Recognition Algorithm

We have chosen reversible jump Markov Chain Monte Carlo (RJMCMC) frame-
work [13] that fits our task of finding the most probable interpretation of the
input image in the terms of target probability p(θ, I) in (1), which has a very
complex pdf as it is a joint probability of both attributes and structure. Our
solution θ∗ is found as the most probable parameter value the chain visits in a
given number of samples.

While the MCMC algorithm is simple, we need to carefully design proposal
distribution q that should approximate target distribution p(θ, I) well while it
is easy to sample from it. We should point out that the quality of the resulting
interpretation is determined by the probability model and the time necessary to
reach the solution is influenced by the proposal distributions. It turns out that
by exploiting the estimated structure we can efficiently guide the random walk
of our chain by repeatedly sampling the new state θ′ from the vicinity of the
current state from conditional probability q(θ′|θ).

We use an independent sampler q(θ|I) to initialize the Markov chain, which
samples the initial state θ0 either from the prior distribution θ ∼ q(θ) or ex-
ploits some image information in θ ∼ q(θ|I). This involves sampling the number
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of elements k ∼ q(k) first and then their attribute values (X,A) ∼ q(X,A)
independently. In practice we choose sampler to start with k0 = 1.

The conditional sampler q(θ′|θ, I) → θ′ is a mixture of individual samplers
such that each modifies a subset of parameters θ based on a specific proposal
distribution qm(θ′|θ, I). The main sampler only chooses from q(m) which of the
individual samplers m will be used to propose the next move. We will now
propose the set of samplers that will explore the space of parameters θ. Their
design must fulfill Markov Chain properties of detailed balance and reversibility
of all moves, i.e. given a move there must always exist a reverse move m′, and
their probability ratio must be reflected in the acceptance of Metropolis-Hastings
(MH) algorithm:

A = min

{

1,
p(θ′, I)

p(θ, I)
·
q(m′|θ′)

q(m|θ)

}

. (10)

5.1 Metropolis-Hastings Moves

Moves introduced in this section do not modify the model complexity k and can
be thus evaluated by a classical MH algorithm (10).

Attribute modification. This move picks up an element i ∼ U({1, . . . , k}) from
discrete uniform distribution and perturbs some of its attributes values ran-
domly. Additionally, attribute samplers can be designed to exploit image likeli-
hood to increase the acceptance rate. In the window detection scenario, we have
implemented three variants for this type of proposals:

– Drift - random variation of position x′i = xi + ∆, ∆ ∼ N (0, σ∆) without
changing the size,

– Resize - randomly pick up one of four window sides (left/right/top/bottom)
and move it by ∆,

– Flip - fix one of the window sides and flip the window around it.

Element resampling. This move is a more radical variant of the previous one,
we pick up an element i and change of all its attributes by sampling from the
prior distribution a′i, x

′
i ∼ q(ai, xi) or a

′
i, x
′
i ∼ q(ai, xi|I) if possible.

Attribute constraint enforcement. This move proposes changes to the attributes
according to the current neighborhood, a′i, x

′
i ∼ q(ai, xi|A,X,N). We pick up a

random edge (u, v) ∼ U(D(X)) and direction (u ⇒ v or v ⇒ u) and transfer
attribute values over the edge from one element to another according to the
specific constraints, i.e. a′u = av. For facades, we transfer both position and size
from one element to the other in dimension given by orientation of the connected
edge, i.e. height and vertical position for horizontal edge.
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Structure modification. We include move to allow changes to the neighborhood
structure: it picks up a random edge qd → (u, v) and changes its label l′uv =
1− luv, effectively suppressing or recovering the edge.

Proposals for latent heights hc are performed similarly by choosing uniformly
component c and then sampling hc ∼ N (h̄c, σh), where h̄c =

1
|Vc|

∑

i∈Vc
hi is the

mean height in the component.

5.2 Reversible Jump Moves

We also need to find the number of elements k, that controls the dimension of
parameters A,X. In order to compare the models in different dimensions, we
need to define dimension matching functions q→, q← for both direct and reverse
moves. Then the acceptance ratio can be calculated as A = min {1, α}, where

α =
p(θ′, I)

p(I)
·
q(m|θ′)

q(m′|θ)
·
q←(u←|θ

′)

q→(u→|θ)
· J→, (11)

where → refers to direct move, ← to reverse move, u are dimension matching

variables and J→ =
∣

∣

∣

∂f→(θ,u→)
∂(θ,u→)

∣

∣

∣
is the Jacobian of the transformation, following

the notation given in [13]. There are three moves:

Birth. By inserting a new element into our model we propose an increase of
dimension k → k′ = k + 1. We choose the communication variables to be
u→ = [a∗, x∗], where we sample the attributes of the new element a∗, x∗ ∼ q(a, x)
and obtain a new state where A′ = {A, a∗} and X

′ = {X,x∗}. The correspond-
ing dimension matching function is f→(A,X, u→) = f→({A,X}, [a∗, x∗]), which
inserts a∗ into the set, and its Jacobian J→ = 1. We will use the following
notation within this paper: terms in [ ] refer to communication variables and
terms in { } to parameters. The reverse move is death, for which we have no
communication variable u← = [ ], only choose an element i to be removed
from the set. To establish reversibility, we define inverse matching function as
f← (A′, X ′, u←) = f← ({A′, X ′}, [ ]) , where ai, xi are the removed attributes and
A = A′ \ ai, X = X ′ \ xi. The corresponding birth move acceptance is then

αbirth =
p(θ′, I)

p(I)

q(m|θ′)

q(m′|θ)
·
q(i|k′)

q(∗|k)
·

1

q→(a∗|A)
· 1, (12)

where q→(a∗|A) = p(a) is the prior probability of the new window, q(i|k′) = 1
k′

and q(∗|k) = 1
k
are the probabilities of selecting the windows a∗, ai.

Death. By removing an existing element from the set we propose a decrease of
dimension k → k′ = k − 1, and choose a window i ∼ U(1, k) to be removed.
With an appropriate change of labeling, the derivation of death move will be the
same as for birth, except for the inversion of ratios in (12).
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Replicate. This is a special case of the birth jump that exploits the structure
for predicting values for the new elements according to attribute constraints,
which can be generally described as sampling from a∗, x∗ ∼ q(a, x|N). For
facades, we uniformly sample an edge (u, v) ∼ U(D(X)) and place the new
window to the position according to x∗ = xu + α(xv − xu), where we choose
α ∼ U

({

1
2 ,

1
3 ,

2
3 , 2,−1

})

and calculate the new height by h∗ =
1
2 (hu + hv) and

the width w∗ analogically.

5.3 Convergence and Complexity

We have found that the typical necessary number of MCMC samples (classifier
calls) is proportional to image size in pixels |I| (from 30% for easy instances to
200% for difficult ones). This is a good news, we expected that the number will
grow exponentially with scene complexity. As a result, we fixed the number of
samples in our current method to a pessimistic estimate, but our experiments
suggest that significantly shorter sampling time could be achieved with suitably
designed stopping condition.

6 Experimental Results

We have performed a number of experiments with the implementation of window
detection in facades of various styles to demonstrate the universality of our
approach. We have run the Markov Chain for 5·105 iterations in our experiments,
which roughly equals to visiting all pixels in the analyzed images.

Because of a very recent appearance of a first public dataset known to us with
quantitative results in [10], we are among the first to compare with them. The
test part of the dataset consists of 10 rectified and annotated images of facades
from a street in Paris, which share attributes of Haussmannian style but differs
in lightning conditions. Direct comparison is not possible, because they segment
facade pixels into eight different classes of elements and our window detector
defines only two (window/non-window). To deal with this issue, we have merged
the columns of confusion matrix given in [10] into two, and the results are given in
Table 2. All parameters of our model were fixed for this experiment, specifically
the size prior was set such that the most probable relative window height is
h = 0.1 and aspect ratio r = 0.5.

The numbers in Table 2 for window and wall classes show that our weak
structure model slightly outperforms Procedural Segmentation (PS) framework
[10]. This is clearly a success, because PS benefits from a randomized forest com-
bining 8 classifiers, trained on 15× 15 pixel patches in 20 images from the same
street as the test data, and a grammar specifically designed for Haussmannian
style. In contrast, our method is guided by far weaker cues: color of individ-
ual pixels, rectangular shape matching with image edges and size prior. In our
case the dominant role plays the weak structural model that emerges from the
data: it is able to select among objects of interest proposed by local classifiers
and, at the same time, support windows completing the structure even where
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a) Monge No. 13 b) Monge No. 43 c) Monge No. 50

Fig. 3. Visualization of results on part of Parisian dataset [10], facade a) is occluded
by plants, in facade b) cast shadow is present. False positive windows in c) are also
window-like regions: They have good response from both classifiers and match with
the neighbors. Detected windows are shown in red, neighborhood edges in green and
image edges are emphasized in blue. Results on the complete test set are available as
supplemental material.

the classifier response is low. This allows us to achieve good results even when
illumination varies and partial occlusion of windows is present, as shown in Fig.
3. Poor results of Randomized Forest (RF) segmentation from [10] included in
Table 2 give an idea how entirely unstructured approaches perform on this data.

For classes different than window and wall the results cannot be directly
compared with the other methods, but allow us to analyze the behavior of our
method in such classes. Balconies are typically overlapping windows in Hauss-
mannian style, but such overlaps are somehow randomly annotated as window

or balcony in the ground truth [10], even when the appearance is the same, in-
troducing some amount of ambiguity in the results. The shop class areas are

Table 2. Quantitative results on Haussmannian dataset [10] shown in percentage of
pixels from class specified in a row. Second column displays the percentage of pixels of
given class in the whole test set. RF stands for Randomized Forest, PS for Procedural
Segmentation. Our window detection rate of 83% is comparable to 81% rate for PS (in
bold face).

ground truth[10] RF [10] PS [10] proposed mapping of our classes
class area hit miss hit miss hit miss window non-window

window 11 30 70 81 19 83 17 •
wall 48 38 62 83 17 84 16 •
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a) Modern facade b) Irregular facade c) Sparse structure

Fig. 4. Results on facade images from Prague.

Fig. 5. Interpreted facades of a modern building. Left: Simple shape template with
t = 1 fails to detect light windows. Right: Change to t = 0.33 improves the result
significantly as the response from edge likelihood is stronger.

actually formed by shop-windows and the wall around them, and the visualized
results show that our detector follows this interpretation. The roof area was
difficult for our approach, since the color classifier considers them window-like.

While the authors in [10] claim their segmentation framework generalizes on
some mild variants of Haussmannian facades, we can say our framework is not
limited to any particular style at all. To prove this, we demonstrate results on
modern buildings in Fig. 5 and 4 a).

Finally, we have made experiments with loosely regular facade of Frank
Gehry’s Dancing House shown in Fig. 4 b), where window alignment shows
significant deviation from grid structure. We were successful in correctly locat-
ing all windows lying on the major plane as well as their neighborhood. The
ability to handle sparse regular structures is presented on the right in Fig. 4 c).
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7 Conclusion and Future Work

We have presented a recognition framework that uses a weak structure model to
locate elements in images, and demonstrated its potential in the task of window
detection in facades. Our experiments have demonstrated that structural regu-
larity given by pair-wise attribute constraints can efficiently guide a stochastic
process that estimates element locations and neighborhood at the same time.
We have shown that the conjunction of a weak non-specific classifier and a weak
structural model can lead to performance that would be hardly achievable by a
well-trained specific classifier. Despite the seemingly complex description of the
model, the ideas are simple and the implementation is straightforward.

In our future we would like to endow our recognition framework with more
powerful classifiers and an ability to handle relations on multiple levels that
would i.e. allow two different structural components to overlap.
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