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A WEAK-TO-STRONG CONVERGENCE PRINCIPLE FOR
FEJÉR-MONOTONE METHODS IN HILBERT SPACES

HEINZ H. BAUSCHKE and PATRICK L. COMBETTES

We consider a wide class of iterative methods arising in numerical mathematics and optimization
that are known to converge only weakly. Exploiting an idea originally proposed by Haugazeau,
we present a simple modification of these methods that makes them strongly convergent without
additional assumptions. Several applications are discussed.

1. Introduction. Let � be a real Hilbert space with scalar product �· � ·�, norm � · �,
and distance d. In 1965, Bregman proposed a simple iterative method for finding a common
point of m intersecting closed convex sets �Si�1≤i≤m in � . He showed that, given an arbitrary
starting point x0 ∈ � , the sequence �xn�n≥0 generated by the periodic projection algorithm

�∀n ∈ �� xn+1 = Pn�modm�+1xn
(1.1)

where Pi denotes the projector onto Si and where the mod m function takes values in
�0
 � � � 
m−1, converges weakly to a point in S =⋂m

i=1 Si. In Gubin et al. (1967) (see also
Bauschke 1995, Bauschke and Borwein 1996, Bauschke et al. 1997, and Combettes 1997),
certain regularity conditions on the sets were described that guaranteed strong convergence
of the iterations. To this day, however, it remains an open question whether the convergence
of (1.1) can be strong without such conditions.
In his unpublished 1968 dissertation, Haugazeau (1968) proposed independently a

strongly convergent variant of (1.1), requiring essentially the same kind of computations.
To describe his method let us define, for a given ordered triplet �x
 y
 z� ∈ � 3,

H�x
 y� = {
u ∈ � � �u−y � x−y� ≤ 0}
(1.2)

and let us denote by Q�x
 y
 z� the projection of x onto H�x
 y�∩H�y
 z�. Thus, H�x
x�=
� and, if x �= y, H�x
 y� is a closed affine half space onto which y is the projection of
x. Haugazeau (1968) showed that, given an arbitrary starting point x0 ∈ � , the sequence
�xn�n≥0 generated by the algorithm

�∀n ∈ �� xn+1 = Q
(
x0
 xn
Pn�modm�+1xn

)
(1.3)

converges strongly to the projection of x0 onto S.
Algorithm (1.1) is Fejér-monotone with respect to the solution set S in the sense that

every orbit �xn�n≥0 it generates satisfies

�∀x ∈ S��∀n ∈ �� �xn+1−x� ≤ �xn −x��(1.4)
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Under this monotonicity condition, �xn�n≥0 converges weakly to a point in S if and only if
all its weak cluster points lie in S. This basic fact was used in Bauschke and Borwein (1996)
and Combettes (2001) to unify and harmonize weak convergence results in numerous areas
of numerical mathematics and optimization, including nonlinear fixed-point theory, approx-
imation theory, equilibrium theory for sums of monotone set-valued operators, variational
inequalities, convex feasibility, and nonsmooth minimization.
In many disciplines, including economics (Khan and Yannelis 1991), image recovery

(Combettes 1996), mechanics (Dautray and Lions 1993), electromagnetics (Dautray and
Lions 1993), quantum physics (Dautray and Lions 1993), and control theory (Fattorini
1999), problems arise in infinite dimensional spaces. In such problems, norm convergence
is often much more desirable than weak convergence, for it translates the physically tangi-
ble property that the energy �xn −x�2 of the error between the iterate xn and a solution x
eventually becomes arbitrarily small. The importance of strong convergence is also under-
lined in (Güler 1991), where a convex function f is minimized via the proximal-point algo-
rithm: It is shown that the rate of convergence of the value sequence �f �xn��n≥0 is better
when �xn�n≥0 converges strongly than when it converges weakly. Such properties have a
direct impact when the algorithm is executed directly in the underlying infinite-dimensional
space, as is the case, for instance, in optical signal processing (Vanderlugt 1992). They are
also relevant when the algorithm is implemented in a finite dimensional setting through
discretization, since the behavior of certain iterative methods is closely related to that of
their discretized counterpart and the number of iterations required by the two methods to
converge to within a given tolerance is essentially the same (Allgower et al. 1986, Argyros
1997).
A question that naturally arises in connection with Fejér-monotone algorithms in infi-

nite dimensional spaces is whether weak convergence can be improved to strong conver-
gence without further assumptions. The following simple example shows that the answer is
negative.
Example 1.1. Let �xn�n≥0 to be an orthonormal sequence in � . Then �∀n ∈�� �xn� =

1, and, by Bessel’s inequality, �∀x ∈ ��
∑

n≥0 ��x � xn��2 ≤ �x�2. Hence, �xn�n≥0 is Fejér-
monotone with respect to S = �0, xn �→n 0, and xn ⇀n 0.
More elaborate constructions of Fejér-monotone methods for which weak convergence

holds but strong convergence fails are provided in Genel and Lindenstrauss (1975) and Güler
(1991). Of course, in specific applications, it is usually possible to achieve strong conver-
gence at the expense of additional restrictions on the constituents of the problem (Bauschke
1995, Bauschke and Borwein 1996, Bauschke et al. 1997, Brézis and Lions 1978, Combettes
1995, 1997, Gubin et al. 1967, Kiwiel and Lopuch 1997, Moreau 1978, Petryshyn and
Williamson 1973, Raik 1969, and Rockafellar 1976). Typically, these restrictions involve
linearity, compactness, or Slater assumptions, and they are therefore quite stringent.
The purpose of this paper is to present a generalization of Haugazeau’s (1968) method

(1.3) for the general problem of finding a point in a possibly empty closed convex set
S in � , and to analyze its convergence properties. Our main result is a weak-to-strong
convergence principle, which essentially states that a simple Haugazeau-like transformation
of a weakly convergent Fejér-monotone method yields a strongly convergent method without
any additional restrictions.
A general model for Fejér-monotone methods is proposed in §2 and an abstract

Haugazeau method is introduced and analyzed in §3. The weak-to-strong convergence prin-
ciple is derived in §4 and applied to various problems in §§5 and 6. Throughout, Id denotes
the identity operator on � , and FixT the set of fixed points of an operator T . PC denotes
the projector onto a nonempty closed and convex set C, dC the distance function to C,
NC its normal cone, �C its complement, and 1C its characteristic function, which takes
value 1 on C and 0 on �C. �f denotes the subdifferential of a function f � � → � and
lev≤� f = �x ∈ � � f �x� ≤ � its lower level set at height � ∈ �. The expressions xn ⇀n x



250 H. H. BAUSCHKE AND P. L. COMBETTES

and xn →n x denote, respectively, the weak and strong convergence to x of a sequence
�xn�n≥0, and ��xn�n≥0 its set of weak cluster points.

2. Fejér-monotone methods. Let us first recall an important result on the weak con-
vergence of Fejér-monotone sequences.

Proposition 2.1. (Browder 1967, Lemma 6) Let F be a nonempty closed and convex
subset of � . Suppose that �xn�n≥0 ⊂ � is Fejér-monotone with respect to F . Then xn ⇀n

x ∈ F ⇔ ��xn�n≥0 ⊂ F .

Proof. We provide a short proof for completeness (see also Bauschke and Borwein
1996, Combettes 2001). Fix z ∈ F . By monotonicity, ��xn − z�2�n≥0 converges and so does
��xn�2− 2�xn � z��n≥0. Now take z1 and z2 in F ∩��xn�n≥0. Then it follows that ��xn �
z1−z2��n≥0 converges. Hence, �z1 � z1−z2� = �z2 � z1−z2�, i.e., z1= z2. Thus, F ∩��xn�n≥0
contains at most one point. Since �xn�n≥0 is bounded, the assertion is proved. �

Our formalization of Fejér-monotonicity will revolve around the following class of
operators.
Definition 2.2. � = {

T � � → � � dom T = � and �∀x ∈ ��FixT ⊂ H�x
Tx�
}
.

The class � is fundamental because (i) it contains several types of operators commonly
found in various areas of applied mathematics and in particular in approximation and opti-
mization theory (Proposition 2.3); and (ii) it allows us to completely characterize Fejér-
monotone sequences (Proposition 2.7). Before we proceed with specific examples, we need
to recall that an operator T � � → � with dom T = � is firmly nonexpansive if

�∀ �x
 y� ∈ � 2� ��T − Id �x− �T − Id �y � Tx−Ty� ≤ 0
(2.1)

or, equivalently, if

�∀ �x
 y� ∈ � 2� �Tx−Ty�2 ≤ �x−y�2−��T − Id �x− �T − Id �y�2�(2.2)

nonexpansive if

�∀ �x
 y� ∈ � 2� �Tx−Ty� ≤ �x−y��(2.3)

and quasi-nonexpansive if

�∀ �x
 y� ∈ � ×FixT� �Tx−y� ≤ �x−y��(2.4)

Clearly, (2.2) ⇒ (2.3) ⇒ (2.4).

Proposition 2.3. Consider the following properties:
(i) T is the projector onto a nonempty closed and convex set C ⊂ � .

(ii) T is the resolvent of a maximal monotone operator A� � → 2� , i.e, T =
�Id +�A�−1 where � ∈  0
+�!.

(iii) dom T = � and T is firmly nonexpansive.

(iv) T is a subgradient projector relative to a continuous convex function f � � →�,
such that lev≤0 f �= Ø, i.e.,

T � x �→




x− f �x�

�g�x��2 g�x� if f �x� > 0

x if f �x� ≤ 0

(2.5)

where g is a selection of �f .

(v) dom T = � and 2T − Id is quasi-nonexpansive.
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(vi) T ∈� .
Then:

�i� ⇒ �ii�⇔ �iii�
⇓ ⇓

�iv�⇒ �v�⇔ �vi��

Proof. (i) ⇒ (ii): Take A = NC (Brézis 1973, Ex. 2.8.2). Alternatively, (i) ⇒ (iii) is
shown in (Goebel and Kirk 1990, Ch. 12) (i) ⇒ (iv): Take f = dC (Bauschke and Borwein
1996, Remark 7.6). (ii) ⇔ (iii): see Bruck and Reich (1977) (see also Rockafellar (1976)
for (ii) ⇒ (iii)). (iii) ⇒ (vi) follows immediately from (2.1). (iv) ⇒ (vi): First, observe
that T is well defined everywhere, since dom �f =� and f �x� > 0 ⇒ f �x� > infy∈� f �y�
⇒ g�x� �= 0. Moreover, FixT = lev≤0 f . Now take x ∈ �FixT and y ∈ FixT . Then
�y−x � g�x��+ f �x� ≤ f �y� ≤ 0. Consequently, �y−Tx � x−Tx� ≤ 0, i.e., y ∈ H�x
Tx�.
We conclude �∀x ∈ �� FixT ⊂ H�x
Tx�. (v) ⇔ (vi): Put R = 2T − Id . Then

�∀ �x
 y� ∈ � 2� 4�y−Tx � x−Tx� = �2�Tx−x�+ �x−y��2−�x−y�2
= �Rx−y�2−�x−y�2�(2.6)

It therefore follows that

�∀ �x
 y� ∈ � 2� y ∈ H�x
Tx� ⇔�Rx−y� ≤ �x−y��(2.7)

Since FixT = FixR, we are done. �

The above proposition calls for some remarks.
Remark 2.4. The equivalence (v) ⇔ (vi) parallels the well-known fact (Goebel and

Kirk 1990, Theorem 12.1)

2T − Id is nonexpansive ⇔ T is firmly nonexpansive.(2.8)

However, firmly nonexpansive operators form a proper subset of � . Thus,
(iv) �⇒ (iii): take � = �, f � x �→max�x+1
2x+1, and g = 1 −�
0 +2 ·1 0
+�!. Then

(2.5) yields

�∀x ∈ �� Tx =




x if x ≤−1

−1 if −1< x ≤ 0

−1/2 if x > 0�

(2.9)

Consequently, the inequality in (2.1) fails for x =−y = 1/8.
(v) �⇒ (iii): Take � = � and T = �3/4�1� Id . Then certainly FixT = �0 and 2T − Id =

�1�/2−1��� Id is quasi-nonexpansive. However, the inequality in (2.1) fails for x = 1 and
y = '.
Remark 2.5. Take ( ∈  0
+�! and R� � → � with dom R = � . In [30], Măruşter

studied the property,

�∀ �x
 y� ∈ � ×FixR� �y−x � Rx−x� ≥ �Rx−x�2/(�(2.10)

Now suppose T � � → � and dom T = � . Then T ∈ � ⇔ R = Id +(�T − Id � satisfies
(2.10). Indeed, FixT = FixR and, for every �x
 y� ∈ � ×FixT , y ∈ H�x
Tx� ⇔ �y−Tx �
Tx−x� ≥ 0 ⇔ �y−x � Tx−x� ≥ �Tx−x�2 ⇔ �y−x � Rx−x� ≥ �Rx−x�2/(.

Proposition 2.6. Every T in � satisfies the following properties.
(i) FixT =⋂

x∈� H�x
Tx�.
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(ii) FixT is closed and convex.

(iii) �∀( ∈ !0
1 � Id +(�T − Id � ∈� .

Proof. (i): Definition 2.2 states that FixT ⊂ ⋂
x∈� H�x
Tx� and we must therefore

show that
⋂

x∈� H�x
Tx� ⊂ FixT . This follows from the implications y ∈ ⋂
x∈� H�x
Tx�

⇒ y ∈H�y
Ty� ⇒ �y−Ty�2 ≤ 0⇒ y ∈ FixT . (i)⇒ (ii), since the sets �H�x
Tx��x∈� are
closed and convex. (iii): If (= 0 the result is straightforward. Now take x ∈� , y ∈H�x
Tx�,
( ∈ 0
1 , and let T ′ = Id +(�T − Id �. Then dom T ′ = dom T = � and

�y−T ′x � x−T ′x� = (�y−Tx � x−Tx�−(�1−(��x−Tx�2
≤ (�y−Tx � x−Tx� ≤ 0�(2.11)

Thus, y ∈ H�x
T ′x�, and hence FixT ′ = FixT ⊂ H�x
Tx� ⊂ H�x
T ′x�, which completes
the proof. �

We now describe a general scheme to construct Fejér-monotone sequences.

Proposition 2.7. Let F be a nonempty closed and convex subset of � . Then a sequence
�xn�n≥0 ⊂ � is Fejér-monotone with respect to F if and only if

�∀n ∈ �� xn+1 = 2Tnxn −xn
(2.12)

where �Tn�n≥0 lies in � and F ⊂⋂
n≥0 FixTn.

Proof. Take a sequence �xn�n≥0 constructed as in (2.12), where �Tn�n≥0 lies in �
and F ⊂ ⋂

n≥0 FixTn. Next, fix z ∈ F and n ∈ �. Then z ∈ FixTn ⊂ H�xn
Tnxn� and, by
Proposition 2.3, 2Tn − Id is quasi-nonexpansive with fixed-point set FixTn. Therefore,

�xn+1− z� = ��2Tn − Id �xn − z� ≤ �xn − z�
(2.13)

which shows that �xn�n≥0 is Fejér-monotone. Conversely, suppose that �xn�n≥0 is Fejér-
monotone. For every n ∈ �, let Tn be the projector onto the nonempty closed convex set,

Hn = {
z ∈ � � �xn+1− z�2 ≤ �xn − z�2}

=
{
z ∈ �

∣∣∣∣
〈
z− xn +xn+1

2

∣∣∣∣xn −xn+1

〉
≤ 0

}
�(2.14)

Then Tnxn = �xn + xn+1�/2 and the recursion (2.12) holds. Moreover, dom Tn = � and
F ⊂ Hn = FixTn = H�xn
Tnxn�. Tn therefore satisfies the required conditions. �

Henceforth, we shall consider a slightly less general iterative model.
Algorithm 2.8. Given ) ∈  0
1 , a sequence �xn�n≥0 is constructed as follows. At iter-

ation n ∈ �, suppose that xn is given. Then select Tn ∈ � and set xn+1 = xn + �2− )�
�Tnxn −xn�.

Theorem 2.9. Let �xn�n≥0 be an arbitrary orbit of Algorithm 2.8, and suppose that
F =⋂

n≥0 FixTn �= Ø. Then �xn�n≥0 is bounded. Moreover:
(i) xn ⇀n x ∈ F ⇔ ��xn�n≥0 ⊂ F .

(ii)
∑

n≥0 �xn+1−xn�2 < +� and
∑

n≥0 �xn −Tnxn�2 < +�.

Proof. For every n ∈ � and z ∈ F , z ∈ FixTn ⊂ H�xn
Tnxn� and therefore,

�xn+1− z�2 = �xn − z�2+2�2−)��z−Tnxn � xn −Tnxn�
−)�2−)��xn −Tnxn�2

≤ �xn − z�2−)�2−)��xn −Tnxn�2 ≤ �xn − z�2�(2.15)
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Hence, �xn�n≥0 is Fejér-monotone and, thereby, bounded. (i) Apply Proposition 2.1. (ii) By
virtue of (2.15), we get

∑
n≥0

�xn+1−xn�2 = �2−)�2
∑
n≥0

�xn −Tnxn�2 ≤ �2−)��x0− z�2/)�(2.16) �

Remark 2.10. The summability properties need not hold for the more general iteration
(2.12): For instance, take x0 �= 0 and �∀n∈�� Tn � x �→ 0. Then F = �0 and (2.12) produces
the sequence ��−1�nx0�n≥0.

3. An abstract Haugazeau method. In this section, we investigate a generalization of
(1.3) based on the same operator theoretic framework as in Algorithm 2.8.
Algorithm 3.1. At iteration n ∈ �, suppose that xn is given and select Tn ∈ � . If

H�x0
 xn�∩H�xn
Tnxn� �= Ø, set xn+1 = Q�x0
 xn
Tnxn�; otherwise stop.
In Haugazeau (1968), a necessary and sufficient condition was derived for H�x
 y�∩

H�y
 z�=Ø as well as the expression of Q�x
 y
 z� when H�x
 y�∩H�y
 z� �=Ø. With these
results, the conceptual Algorithm 3.1 can be rewritten more explicitly.
Algorithm 3.2. (Explicit reformulation of Algorithm 3.1).

Step 0� Set n = 0 and fix x0 ∈ � .

Step 1� Select Tn ∈� .

Step 2� Set 'n = �x0− xn � xn − Tnxn�, �n = �x0− xn�2, *n = �xn − Tnxn�2, and
+n = �n*n −'2

n .

Step 3� If +n = 0 and 'n < 0 stop. Else set

xn+1 =




Tnxn if +n = 0 and 'n ≥ 0

x0+ �1+'n/*n��Tnxn −xn� if +n > 0 and 'n*n ≥ +n


xn +
*n

+n

�'n�x0−xn�+�n�Tnxn −xn�� if +n > 0 and 'n*n < +n


(3.1)

then set n = n+1 and go to Step 1.
From a numerical standpoint, it is important to observe that, given Tnxn, the update equa-

tion xn+1 = Q�x0
 xn
Tnxn� requires only modest computations. Therefore, the bulk of the
execution cost of iteration n resides in the determination of Tnxn, just as in Algorithm 2.8.
Some basic properties of Algorithm 3.2 are detailed below.
Definition 3.3. An orbit is a finite or infinite sequence �xn� generated by an algorithm.

An infinite orbit is denoted by �xn�n≥0.

Proposition 3.4. Let �xn� be an arbitrary orbit of Algorithm 3.2. Then:
(i) If xn+1 is defined, then �x0−xn� ≤ �x0−xn+1�.

(ii) If xn is defined, then xn = x0 ⇔ xn = xn−1 = · · · = x0 ⇔ x0 ∈
⋂n−1

k=0 FixTk.

(iii) If �xn�n≥0 is defined, then ��x0−xn��n≥0 is increasing.

(iv) The algorithm terminates at iteration n > 0 if and only if

xn �= x0 and �∃- ∈  0
+�!� Tnxn = -x0+ �1−-�xn�(3.2)

(v) �xn�n≥0 is defined if F =⋂
n≥0 FixTn �= Ø.
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Proof. (i) Let us first recall that the projector onto a nonempty closed convex set C ⊂�
is characterized by (Goebel and Kirk 1990, Ch. 12),

�∀x ∈ �� PCx ∈ C and C ⊂ H�x
PCx��(3.3)

Hence, xn is the projection of x0 onto H�x0
 xn� and xn+1 = Q�x0
 xn
Tnxn� ⇒ xn+1 ∈
H�x0
 xn� ⇒ �x0 − xn� ≤ �x0 − xn+1�. (ii) The first equivalence follows from (i) and
the second one can be established by induction. Indeed, it holds for n = 1 since x1 =
Q�x0
 x0
 T0x0� = T0x0. Furthermore, if it holds for some n > 0, then

xn+1 = xn = · · · = x0 ⇔




x0 ∈
⋂n−1

k=0 FixTk

x0 = xn+1 = Q�x0
 x0
 Tnx0�

= Tnx0

⇔ x0 ∈
n⋂

k=0
FixTk�(3.4)

(iii) follows from (i). (iv) By the Cauchy-Schwarz inequality +n ≥ 0 and the conditions
+n = 0 and 'n < 0 are equivalent to stating that the vectors x0 − xn and xn − Tnxn are
linearly dependent, nonzero, and their scalar product is strictly negative, whence (3.2). (v) It
is sufficient to show F ⊂⋂

n≥0H�x0
 xn�∩H�xn
Tnxn�, i.e., since �Tn�n≥0 ⊂� , F ⊂⋂
n≥0

H�x0
 xn�. For n = 0, it is clear that F ⊂ H�x0
 xn� = � . Furthermore, for every n ∈ �, it
results from (3.3) and Proposition 2.6(i) that

F ⊂ H�x0
 xn� ⇒ F ⊂ H�x0
 xn�∩H�xn
Tnxn�

⇒ F ⊂ H�x0
Q�x0
 xn
Tnxn��

⇒ F ⊂ H�x0
 xn+1�
(3.5)

which establishes the assertion by induction. �

Next, we turn our attention to the convergence properties of Algorithm 3.2.

Theorem 3.5. Let �xn� be an arbitrary orbit of Algorithm 3.2 and let F =⋂
n≥0 FixTn.

Then:
(i) If �xn�n≥0 is defined, then �xn�n≥0 is bounded ⇔ ��x0−xn��n≥0 converges.

(ii) If F �= Ø, then �xn�n≥0 is bounded and �∀n ∈ �� xn ∈ F ⇔ xn = PFx0.

(iii) If F �= Ø, then ��x0−xn��n≥0 converges and lim n �x0−xn� ≤ �x0−PFx0�.

(iv) If F �= Ø, then xn →n PFx0 ⇔ ��xn�n≥0 ⊂ F .

(v) If �xn�n≥0 is defined and bounded, then
∑

n≥0 �xn+1 − xn�2 < +� and∑
n≥0 �xn −Tnxn�2 < +�.

Proof. (i) follows from Proposition 3.4(i). (ii) By definition, for every n ∈ �, xn

is the projection of x0 onto H�x0
 xn�. On the other hand, as shown in the proof of
Proposition 3.4(v), F ⊂⋂

n≥0H�x0
 xn�. Hence,

�∀n ∈ �� �x0−xn� ≤ �x0−PFx0�
(3.6)

and the claim follows at once. (iii) follows from (ii), (i), and the previous inequality. (iv)
The forward implication is trivial. For the reverse implication, assume ��xn�n≥0 ⊂ F and
fix x ∈��xn�n≥0, say xnk

⇀k x. Such a point does exist for �xn�n≥0 is bounded by (ii). It
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follows from the weak lower semicontinuity of � · � and (iii) that
�x0−x� ≤ lim k�x0−xnk

� = lim
n
�x0−xn� ≤ �x0−PFx0��(3.7)

Consequently, since x ∈ F , x=PFx0 and, in turn,��xn�n≥0 = �PFx0. Next, since �xn�n≥0 is
bounded, we obtain xn ⇀n PFx0. The weak lower semicontinuity of � ·� and (iii) then yield

�x0−PFx0� ≤ lim
n
�x0−xn� ≤ �x0−PFx0��(3.8)

Therefore, �x0−xn� n→ �x0−PFx0�. However,
�xn −PFx0�2 = �x0−xn�2−�x0−PFx0�2+2�xn −PFx0 � x0−PFx0��(3.9)

Hence, we conclude xn

n→ PFx0. (v). For every n∈�, the inclusion xn+1 ∈H�x0
 xn� implies

�x0−xn+1�2−�x0−xn�2 = �xn+1−xn�2+2�xn+1−xn � xn −x0�
≥ �xn+1−xn�2�(3.10)

Hence,
∑

n≥0 �xn+1−xn�2 ≤ supn≥0 �x0−xn�2 < +�, since �xn�n≥0 is bounded by assump-
tion. In turn, since for every n ∈ � the inclusion xn+1 ∈ H�xn
Tnxn� implies

�xn+1−xn�2 = �xn+1−Tnxn�2−2�xn+1−Tnxn � xn −Tnxn�+�xn −Tnxn�2
≥ �xn+1−Tnxn�2+�xn −Tnxn�2
(3.11)

we obtain
∑

n≥0 �xn −Tnxn�2 < +�. �

4. The weak-to-strong convergence principle. To achieve convergence in
Algorithms 2.8 and 3.2, the sequence �Tn�n≥0 must be asymptotically well behaved, a
notion that we formalize as follows.
Definition 4.1. A sequence �Tn�n≥0 ⊂ � is coherent if for every bounded sequence

�yn�n≥0 in � there holds{∑
n≥0 �yn+1−yn�2 < +�∑
n≥0 �yn −Tnyn�2 < +� ⇒ ��yn�n≥0 ⊂

⋂
n≥0
FixTn�(4.1)

This property allows us to view the convergence of Algorithms 2.8 and 3.2 from a single
perspective.

Theorem 4.2. Suppose that �Tn�n≥0 is coherent and let F =⋂
n≥0 FixTn. Then:

(i) If F �= Ø, then every orbit of Algorithm 2.8 converges weakly to a point in F .

(ii) (Trichotomy) For an arbitrary orbit �xn� of Algorithm 3.2, exactly one of the
following alternatives holds:

(a) F �= Ø and xn →n PFx0.

(b) F = Ø and �xn�→n +�.

(c) F = Ø and the algorithm terminates.

Proof. (i) follows from Theorem 2.9. (ii) If F �= Ø, then it follows from items
(ii) and (iv)–(v) in Theorem 3.5 that xn →n PFx0, whence (a). Thus, we now assume
F = Ø. It remains to prove (b), in which F = Ø and �xn�n≥0 is defined. Suppose that
�xn��→n +�. Then it follows from Proposition 3.4 (iii) that �xn�n≥0 is bounded, and then
from Theorem 3.5 (v) that

∑
n≥0 �xn+1−xn�2 <+� and

∑
n≥0 �xn−Tnxn�2 <+�. Condi-

tion (4.1) then yields Ø �=��xn�n≥0 ⊂
⋂

n≥0 FixTn = F = Ø, which is absurd. �



256 H. H. BAUSCHKE AND P. L. COMBETTES

Remark 4.3 (The weak-to-strong convergence principle).. The practical significance of
Theorem 4.2 is that when the solution set F is not empty and the sequence �Tn�n≥0 is
coherent, not only the generic Fejér-monotone method described by Algorithm 2.8 con-
verges weakly to a solution, but it can also easily be transformed into a strongly con-
vergent method in the form of Algorithm 3.2: It suffices to replace the updating rule
xn+1 = xn + �2−)��Tnxn −xn� by xn+1 = Q�x0
 xn
Tnxn�. Furthermore, while the solution
produced by Algorithm 2.8 is in general an undetermined point in F , that of Algorithm 3.2
is precisely the projection of the initial point x0 onto F .
As the elementary examples below show, all three cases may occur in the trichotomy

described in Theorem 4.2(ii).
Example 4.4. In Algorithm 3.2, take z �= x0 = 0 and at every iteration n:

(i) Tn = PHn
, where Hn = �x ∈� � �x− �1−2−n−1�z � z� ≥ 0 = FixTn. Then �∀n ∈

�� xn = �1−2−n�z and F = �x ∈ � � �x− z � z� ≥ 0 �= Ø. Hence, xn →n PFx0 = z.

(ii) Tn � x �→ x+ z. Then F = Ø and �∀n ∈ �� xn = nz.

(iii) Tn � x �→ x+�−1�nz. Then F =Ø, and we get successively T0x0 = z, x1 = z, and
T1x1 = 0. Hence, H�x0
 x1�∩H�x1
 T1x1� = H�0
 z�∩H�z
0� =Ø and the algorithm stops.
Moreover in each case �Tn�n≥0 is coherent.
We conclude this section with a useful fact.

Proposition 4.5. Fix . ∈  0
1 , �Tn�n≥0 in � , and define

�∀n ∈ �� T ′
n = Id +(n�Tn − Id �where(n ∈ !.
1 �(4.2)

Then �T ′
n�n≥0 is coherent if and only if �Tn�n≥0 is coherent.

Proof. �T ′
n�n≥0 ⊂ � by Proposition 2.6(iii). Moreover,

∑
n≥0 �yn − T ′

nyn�2 < +� ⇔∑
n≥0 �yn −Tnyn�2 < +�, and �∀n ∈ �� FixT ′

n = FixTn. �

5. Constraint disintegration methods. A general computational strategy to solve com-
plex problems is to disintegrate the solution set S as an intersection of simpler sets and
to devise an iterative method in which only one of these sets is acted upon at each iter-
ation (Lions and Temam 1966). In this section, we present one such implementation of
Algorithms 2.8 and 3.2 for solving the convex feasibility problem

Find x ∈ S =⋂
i∈I

Si
(5.1)

where �Si�i∈I is a countable family of possibly empty closed convex sets in � . Alternative
generalizations of (1.3) are studied in Combettes (2000) from a distinct viewpoint.

Assumption 5.1. �∀n ∈ �� Tn ∈�and FixTn = Si�n�, where
(i) The index control mapping i � �→ I satisfies

�∀ i ∈ I��∃Mi > 0��∀n ∈ �� i ∈ �i�n�
 � � � 
 i�n+Mi −1��(5.2)

(ii) For every i ∈ I , every bounded sequence �yn�n≥0⊂� , and every strictly increasing
sequence �nk�k≥0 ⊂ �, there holds




ynk

k
⇀ y

�∀k ∈ �� i�nk� = i∑
n≥0 �yn+1−yn�2 < +�∑
n≥0 �yn −Tnyn�2 < +�

⇒ y ∈ Si�(5.3)
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Condition (5.2) ensures that, for every index i, the set Si is acted upon at least once
within any Mi consecutive iterations.
Example 5.2. Take I =�. Then the mapping i, defined by �∀ i ∈ I��∀k ∈�� i�2i�2k+

1�−1� = i satisfies (5.2) with �∀ i ∈ I� Mi = 2i+1.
We now state and prove the convergence to a solution of (5.1) of two constraint disinte-

gration schemes based on Algorithms 2.8 and 3.2.

Theorem 5.3. Fix x0 ∈ � and ) ∈  0
1 . Then, under Assumption 5.1:
(i) Every orbit of the algorithm,

xn+1 = xn +(n�Tnxn −xn� where (n ∈ !)
2−) 
(5.4)

converges weakly to a point in S if S �= Ø.

(ii) Every orbit of the algorithm,

xn+1 = Q
(
x0
 xn
 xn +(n�Tnxn −xn�

)
where (n ∈ !)
1 
(5.5)

converges strongly to PSx0 if S �= Ø; if S = Ø, either (5.5) terminates or �xn�→n +�.

Proof. Let us first establish that �Tn�n≥0 is coherent, i.e., that (4.1) holds. To this
end, take a bounded sequence �yn�n≥0 in � , such that

∑
n≥0 �yn+1 − yn�2 < +� and∑

n≥0 �yn −Tnyn�2 < +�. Next, fix i ∈ I and y ∈��yn�n≥0, say ynk
⇀k y. Then, since by

Assumption 5.1(i)

⋂
n≥0
FixTn =

⋂
n≥0

Si�n� =
⋂
i∈I

Si = S
(5.6)

it suffices to show y ∈ Si. Condition (5.2) guarantees the existence of a strictly increasing
sequence �pk�k≥0 in �, such that

�∀k ∈ �� nk ≤ pk ≤ nk +Mi −1 and i�pk� = i�(5.7)

Hence, upon invoking the Cauchy-Schwarz inequality, we get

�∀k ∈ ���ypk
−ynk

� ≤
nk+Mi−1∑

l=nk

�yl+1−yl� ≤
√

Mi

√∑
l≥nk

�yl+1−yl�2�(5.8)

Consequently

∑
n≥0

�yn+1−yn�2 < +�⇒ ypk
−ynk

k→ 0⇒ ypk

k
⇀ y�(5.9)

In view of (5.7) and Assumption 5.1(ii), y ∈ Si and consequently �Tn�n≥0 is coherent. How-
ever, for any relaxation sequence �(′

n�n≥0 in !)/�2− )�
1 , �Id +(′
n�Tn − Id ��n≥0 is also

coherent by virtue of Proposition 4.5. It therefore follows from Theorem 4.2(i) that every
orbit of the algorithm

xn+1 = xn + �2−)�(′
n�Tnxn −xn� where (′

n ∈ !)/�2−)�
1 (5.10)

or, equivalently, of (5.4) converges weakly to a point in
⋂

n≥0 FixTn. In light of (5.6),
Assertion (i) is proved. Likewise, as Proposition 4.5 asserts that �Id +(n�Tn − Id ��n≥0 is
coherent, Assertion (ii) follows from Theorem 4.2(ii). �
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6. Applications. In this section, the weak-to-strong convergence principle is applied,
in the form of Theorem 5.3, to specific situations. Further examples can be constructed
by considering the Fejér-monotone methods described in Bauschke and Borwein (1996),
Combettes (2001), and Kiwiel and Lopuch (1997).

6.1. Common zeros of monotone operators. Let �Ai�i∈I be a countable family of
maximal monotone operators from � into 2� . Our first application concerns the problem
of constructing a common zero of the operators �Ai�i∈I , i.e.,

Find x ∈ �
 such that �∀ i ∈ I� 0 ∈ Aix�(6.1)

Alternatively, since the set of zeros of a maximal monotone operator is closed and convex,
this problem can be formulated in the format (5.1) by letting S be the set of common zeros
and �∀ i ∈ I� Si = A−1

i 0.
Henceforth, Ai
� = �Id −�Id +�Ai�

−1�/� denotes the Yosida approximation of Ai of
index � ∈  0
+�!, ran Ai = �w ∈ � � �∃v ∈ ��w ∈ Aiv its range, and grAi = ��v
w� ∈
� 2 �w ∈Aiv its graph. We shall exploit the fact that grAi is weakly-strongly closed (Brézis
1973, Proposition 2.5):

�∀ ��vn
wn��n≥0 ⊂ grAi�




vn

n
⇀ v

wn

n→ w
⇒ �v
w� ∈ grAi�(6.2)

Corollary 6.1. Fix x0 ∈� , ) ∈ 0
1 , and ��n�n≥0 in  0
+�!. Suppose that i � �→ I
satisfies Condition (5.2) and that, for every i ∈ I and every strictly increasing sequence
�nk�k≥0 in �, such that �∀k ∈ �� i�nk� = i, there holds infk≥0 �nk

> 0. Then:
(i) Every orbit of the algorithm

xn+1 = xn −�n(nAi�n�
�n
xn where (n ∈ !)
2−) (6.3)

converges weakly to a point in S if S �= Ø.

(ii) Every orbit of the algorithm

xn+1 = Q�x0
 xn
 xn −�n(nAi�n�
�n
xn� where (n ∈ !)
1 (6.4)

converges strongly to PSx0 S if S �= Ø; if S = Ø either (6.4) terminates or �xn� n→ +�.

Proof. Let �Tn�n≥0 = �Id −�nAi�n�
�n
�n≥0. Then, for every n ∈ �, FixTn = A−1

i�n�0= Si�n�

and Tn ∈ � by Proposition 2.3(ii). Next, we observe that (6.3) conforms to (5.4), and
(6.4) to (5.5). Therefore, the announced result will follow from Theorem 5.3 if we show
that Assumption 5.1(ii) is satisfied. To this end, fix i ∈ I and take a bounded sequence
�yn�n≥0 from which a subsequence �ynk

�k≥0 can be extracted, such that ynk
⇀k y and �∀k ∈

�� i�nk�= i. Next, define �∀k ∈�� vk = ynk
−�nk

Ai
�nk
ynk
, and note that �∀k ∈�� Ai
�nk

ynk
∈

Aivk. Now suppose
∑

n≥0 �2n�Ai�n�
�n
yn�2 < +�. Then vk −ynk

→k 0 and therefore vk ⇀k y.
Moreover, it follows from the assumption infk≥0 �nk

> 0 that Ai
�nk
ynk

→k 0. To sum up,




��vk
Ai
�nk
ynk

��k≥0 is in grAi

vk

k
⇀ y

Ai
�nk
ynk

k→ 0�

(6.5)

Therefore (6.2) implies 0 ∈ Aiy and (5.3) ensues. �
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As discussed in Rockafellar (1976), a special case of (6.1) of great interest is the problem
of finding a zero of a single maximal monotone operator A� � → 2� . In this case, tri-
chotomy reduces to dichotomy and Corollary 6.1 with (n = 1 for every n ∈� specializes to

Corollary 6.2. Fix x0 ∈ � and ��n�n≥0 in  0
+�!, such that infn≥0 �n > 0. Then:
(i) Every orbit of the algorithm

xn+1 = �Id +�nA�−1xn(6.6)

converges weakly to a zero of A if 0 ∈ ran A (Rockafellar 1976, Theorem 1) if 0 � ran A

then �xn� n→ +� [Reich 1977, Thm. 3].

(ii) Every orbit of the algorithm

xn+1 = Q
(
x0
 xn
 �Id +�nA�−1xn

)
(6.7)

converges strongly to the projection of x0 onto A−10 if 0 ∈ ran A; if 0 � ran A then �xn� n→
+�.

Proof. In light of Corollary 6.1, it is enough to assume 0 � ran A, and to show that (i)
�xn� n→ +� in (6.6); and (ii) (6.7) does not terminate. The former result is already known
(Reich 1977, Theorem 3). As to the latter, our proof is patterned after that of Solodov and
Svaiter (2000, Theorem 2), and is based on a truncation argument found in Rockafellar
(1976). Suppose that the iterates �xk�0≤k≤n are well defined for some n > 0 (this is certainly
true for n = 1). Let

�∀k ∈ �0
 � � � 
 n� vk = �Id +�kA�−1xk and A′ = A+NC


where C =
{
v ∈ �

∣∣∣∣ �v� ≤ 1+ max
0≤k≤n

�vk�
}
�(6.8)

Recall that NC is maximal monotone with dom NC = C and that �∀v ∈ int�C�� NCv = �0
(Brézis 1973, Example 2.8.2). Thus, since by construction �vk�0≤k≤n is in dom �A�∩ int�C�,
we deduce on the one hand that

�∀k ∈ �0
 � � � 
 n� xk ∈ vk +�kAvk = vk +�kA
′vk
 i�e�
 vk ∈ �Id +�kA

′�−1xk
(6.9)

and on the other hand, that A′ is maximal monotone by virtue of Rockafellar’s sum theorem
(Brézis 1973, Corollary 2.7). Consequently, its resolvents are single-valued (Brézis 1973,
Proposition 2.2), and we derive from (6.9) that �∀k ∈ �0
 � � � 
 n� vk = �Id +�kA

′�−1xk.
Therefore, up to iteration n, replacing A by A′ does not affect the behavior of Algorithm
(6.7). However, since dom A′ ⊂ C is bounded, A′ is surjective (Brézis 1973, Corollary 2.2),
and it therefore has zeros. Hence, arguing as in the proof of Proposition 3.4(v), we obtain
Ø �= �A′�−10⊂⋂n

k=0H�x0
 xk�∩H�xk
 vk�. We conclude that xn+1 is well defined. �

Remark 6.3. When 0 ∈ ran A, Corollary 6.2(i) gives the weak convergence to a
zero of A of the classical proximal point algorithm, i.e., of the composition product∏

n≥0�Id +�nA�−1x0. Such results go back to the prox-regularization method of Martinet
(1970) (see also Brézis and Lions 1978 and Rockafellar 1976 for extensions to inexact iter-
ations and strong convergence conditions). An instance of Corollary 6.2(i) in which strong
convergence fails when 0 ∈ ran A is constructed in Güler (1991, Corollary 5.1).
Remark 6.4. A result closely related to Corollary 6.2(ii) was obtained via a different

analysis in Solodov and Svaiter (2000). In the method considered there, the update xn+1 is
the projection of x0 onto H�x0
 xn�∩H�xn+un
 yn�, where yn = �Id +�nA�−1�xn+un� and
�un� ≤ 5 max��xn −yn�
�xn +un −yn� for some 5 ∈  0
1!.
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6.2. Common fixed points of nonexpansive operators. Given a countable family of
nonexpansive operators �Ri�i∈I defined everywhere from � into � , we consider the common
fixed-point problem,

Find x ∈ � such that �∀ i ∈ I� Rix = x�(6.10)

Recall that if Ri is nonexpansive then Id −Ri is maximal monotone and therefore demi-
closed (Browder 1967, Lemma 4):

�∀ �yn�n≥0 ⊂ ��




yn

n
⇀ y

yn −Riyn

n→ w
⇒ w = y−Riy�(6.11)

Since the fixed-point set of a nonexpansive operator is closed and convex (Goebel and Kirk
1990, Lemma 3.4), (6.10) can be cast in the form of (5.1) by letting S be the set of common
fixed points and �∀ i ∈ I� Si = FixRi.

Corollary 6.3. Fix x0 ∈� and )∈  0
1 and suppose that i � �→ I satisfies Condition
(5.2). Then:

(i) Every orbit of the algorithm

xn+1 = xn +(n�Ri�n�xn −xn� where (n ∈ !)
1−) (6.12)

converges weakly to a point in S if S �= Ø (Browder 1967, Theorem 5).

(ii) Every orbit of the algorithm

xn+1 = Q�x0
 xn
 xn +(n�Ri�n�xn −xn�� where (n ∈ !)
1/2 (6.13)

converges strongly to PSx0 if S �= Ø; if S = Ø, either (6.13) terminates or �xn�→n +�.

Proof. Let �Tn�n≥0= ��Ri�n�+Id �/2�n≥0. Then, for every n∈�, FixTn = FixRi�n� = Si�n�

and Tn is firmly nonexpansive by (2.8). Hence, Tn ∈� by Proposition 2.3(iii) and it follows
from (6.11) that Condition (5.3) is satisfied. Since (6.12) conforms to (5.4) and (6.13) to
(5.5), the assertions follow from Theorem 5.3. �

In the case of a single nonexpansive operator R� � → � with domain � , dichotomy
rather than trichotomy occurs in (ii) and we obtain

Corollary 6.6. Fix x0 ∈ � and ) ∈  0
1 . Then:
(i) Every orbit of the algorithm

xn+1 = xn +(n�Rxn −xn� where (n ∈ !)
1−) (6.14)

converges weakly to a point in FixR if FixR �= Ø (Dotson 1970, Theorem 8); if FixR = Ø
then �xn�→n +� (Borwein et al. 1992, Corollary 9(b)).

(ii) Every orbit of the algorithm

xn+1 = Q
(
x0
 xn
 xn +(n�Rxn −xn�

)

 where (n ∈ !)
1/2 (6.15)

converges strongly to the projection of x0 onto FixR if FixR �= Ø; if FixR = Ø, then
�xn�→n +�.
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Proof. This is an application of Corollary 6.3, and we need only assume that FixR=Ø
and show that (i) �xn�→n +� in (6.14); and (ii) (6.15) does not terminate. The first result
follows from Borwein et al. (1992, Corollary 9(b)). To establish the second, suppose, as is
true for n = 1, that the iterates �xk�0≤k≤n are well defined for some n > 0. Let

R′ = PC �R
 where C =
{
x ∈ �

∣∣ �x� ≤ max
0≤k≤n

�Rxk�
}
�(6.16)

Then �∀k ∈ �0
 � � � 
 n� R′xk =Rxk and it follows that, up to iteration n, replacing R by R′

does not affect the behavior of Algorithm (6.15). However, R′ maps the nonempty, closed,
bounded, and convex set C into itself and it follows from the Browder-Göhde-Kirk theorem
(Goebel and Kirk 1990, Theorem 4.1) that FixR′ �= Ø. Hence, we can argue as in the
proof of Proposition 3.4(v), and establish that Q�x0
 xn
 xn +(n�R

′xn − xn�� exists. Since
R′xn = Rxn, xn+1 is therefore well defined. �

Remark 6.7. Alternatively, Corollary 6.6 can be derived from Corollary 6.2 by using
the equivalence between (ii) and (iii) in Proposition 2.3. However, our present proof is more
self-contained and relies only on the Browder-Göhde-Kirk theorem.
Remark 6.8. In the case FixR �=Ø, an instance of (6.14) in which strong convergence

fails is constructed in Genel and Lindenstrauss (1975).
Remark 6.9. In some applications, a nonexpansive operator R may be defined only on a

closed convex subset C of � . By setting R′ =PC �R�PC , we obtain a nonexpansive operator
R′ that is defined everywhere with FixR′ = FixR. Thus, we can apply Corollary 6.6 to R′

rather than R to find a fixed points of R. A similar remark can be made for Corollary 6.3.

6.3. Subgradient methods. Let �fi�i∈I be a countable family of continuous convex
functions from � into �, such that the sets �lev≤0 fi�i∈I are nonempty. Under consideration
is the problem

Find x ∈ � such that sup
i∈I

fi�x� ≤ 0�(6.17)

Upon calling S its set of solutions and setting �∀ i ∈ I� Si = lev≤0 fi, (6.17) is seen to fit
into (5.1).
Subsequently, for every i ∈ I the operator Gi is defined to be

Gi � x �→




x− fi�x�

�gi�x��2 gi�x�
 if fi�x� > 0

x if fi�x� ≤ 0

(6.18)

where gi is a selection of �fi. We shall say that the subdifferential �fi is bounded if it maps
bounded sets to bounded sets (see Borwein et al. 1994 for a discussion of this property).

Corollary 6.10. Fix x0 ∈ � and ) ∈  0
1 . Suppose that i � �→ I satisfies Condition
(5.2) and that the subdifferentials ��fi�i∈I are bounded. Then:

(i) Every orbit of the algorithm

xn+1 = xn +(n�Gi�n�xn −xn� where (n ∈ !)
2−) (6.19)

converges weakly to a point in S if S �= Ø.

(ii) Every orbit of the algorithm

xn+1 = Q
(
x0
 xn
 xn +(n�Gi�n�xn −xn�

)
where (n ∈ !)
1 (6.20)

converges strongly to PSx0 if S �= Ø; if S = Ø, either (6.20) terminates or �xn�→n +�.
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Proof. Let �Tn�n≥0 = �Gi�n��n≥0. Then, for every n ∈ �, FixTn = lev≤0 fi�n� = Si�n�

and Tn ∈ � by Proposition 2.3(iv). Hence, to apply Theorem 5.3, it suffices to verify
that Assumption 5.1(ii) holds. Fix i ∈ I and take a bounded sequence �yn�n≥0, such that∑

n≥0 �yn −Gi�n�yn�2 < +� and containing a subsequence �ynk
�k≥0, such that ynk

⇀k y and
�∀k ∈�� i �nk� = i. Then we must show fi�y� ≤ 0. Since fi is weak lower semicontinuous,
fi�y� ≤ lim kfi�ynk

�. Passing to a subsequence if necessary, we can assume �ynk
�k≥0 ⊂ �Si

(otherwise the conclusion is immediate). However, since �fi is bounded, ynk
−Giynk

→k 0
⇒ fi�ynk

�/�gi�ynk
��→k 0 ⇒ fi�ynk

� →k 0. Therefore fi�y� ≤ 0. �

The above results are applicable to the approximate minimization of a continuous convex
function f � � → � over a nonempty closed convex set C ⊂ � . Let us fix � ∈ � such that
lev≤� f �= Ø, and define the approximate solution set as S = C∩lev≤� f . Then the problem
is a special instance of (6.17) with I = �1
2, f1 = f −�, and f2 = dC . Furthermore, since
�∀x ∈ �C� �dC�x� = ��x−PCx�/dC�x�, (6.18) gives G2 = PC and Corollary 6.10 with

(2n = -n
(2n+1 = 1
 i�2n� = 1
 and i�2n+1� = 2(6.21)

yields

Corollary 6.11. Fix x0 ∈ � and ) ∈ 0
1 . Suppose that �̄ � infx∈C f �x� > −� and
that �f is bounded. Then:

(i) Every orbit of the algorithm

xn+1 = PC

(
xn +-n�G1xn −xn�

)
where -n ∈ !)
2−) (6.22)

converges weakly to a point in S if S �= Ø, i.e, if � > �̄ or if f has a minimizer on C and
� = �̄.

(ii) Every orbit of the algorithm

xn+1 = Q
(
x0
 zn
PCzn

)

 where zn = Q

(
x0
 xn
 xn +-n�G1xn −xn�

)
(6.23)

and -n ∈ !)
1 

converges strongly to PSx0 if S �= Ø; if S = Ø, either (6.23) terminates or �xn�→n +�.

Now, suppose that inf f ��� < min f �C� and that �f maps the bounded subsets of C to
bounded sets. Then we deduce from Corollary 6.11(i) that every orbit of the algorithm{

x0 ∈ C

) ∈ 0
1 
and xn+1 = PC

(
xn +-n

�̄−f �xn�

�tn�2
tn

)
where

{
tn ∈ �f �xn�

-n ∈ !)
2−) 
(6.24)

converges weakly to a minimizer of f over C. This classical result is due to Polyak (1969,
Theorem 1).

6.4. Bregman’s and Haugazeau’s methods. We conclude the paper by revisiting the
two algorithms which motivated the present work. More specifically, we recover the con-
vergence results of Bregman’s and Haugazeau’s algorithms mentioned in the Introduction
and describe the behavior of the latter in the inconsistent case. It is noteworthy that these
results are consequences of any of Corollaries 6.1, 6.3, or 6.10.

Corollary 6.12. Let �Si�1≤i≤m be nonempty closed convex subsets of � with intersec-
tion S and fix x0 ∈ � . Then:

(i) The orbit of Algorithm (1.1) converges weakly to a point in S if S �=Ø (Bregman
1965, Theorem 1).
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(ii) The orbit of Algorithm (1.3) converges strongly to PSx0 if S �= Ø (Haugazeau
1968, Theorem 3–2); if S = Ø, either (1.3) terminates or �xn�→n +�.

Proof. Take I = �1
 � � � 
m and i � n �→ n�modm�+1. Then (5.2) is satisfied and the
assertions follow from any of the following results:

(1) Corollary 6.1 with �∀ i ∈ I� Ai = NSi
and �∀n ∈ �� �n = (n = 1.

(2) Corollary 6.3 with �∀ i ∈ I� Ri = Pi and �∀n ∈ �� (n = 1.
(3) Corollary 6.10 with �∀ i ∈ I� fi = dSi

and �∀n ∈ �� (n = 1. �
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