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MARK L. TEPLY, Milwaukee and BLAS TORRECILLAS, Almeria 

(Received February 2, 1992) 

1. INTRODUCTION 

In this paper, all rings R have an identity element 1 and all modules are unital 

left ft-modules unless it is specifically indicated to the contrary. Additionally, r will 

always denote a nontrivial torsion theory of left H-modules with associated filter -SfT 

of left ideals and localization QT of R. For any module M, we let r (M ) denote 

the r-torsion submodule of M. If T(R) = 0, the canonical map R —• QT is a 

monomorphism. As usual, a torsion theory r is called perfect if the r-localization 

of each module is QT eg) M. A module M is r-injective if ExtR(T, M) = 0 for 

every r-torsion T. We let E(M) denote the injective hull of a module M; then 

ET(M) = {eG E(M) \ Ie C M for some / E .i? r} is r-injective. For these definitions 

and more information on torsion theories, see [9] or [17]. 

A r-torsion module T is said to have r-bounded order if T can be embedded in a 

module tha t has a set of generators annihilated by some I 6 «-̂ V- (r-bounded order 

is also called uniformly negligible in some papers.) In case J-ifr has a cofinal subset of 

two-side ideals, then T has r-bounded order if and only if IT = 0 for some I G -£*--• 

Modules with r -bounded order appear many places in the literature; for example, 

see [1], [3], [7], [10], and [13]. 

There have been a number of definition of divisibility relative to r proposed in the 

literature (e.g., see [9], [12], [17], and [18].) The success of these definitions usually 

depends on the context in which they are used. Here we define a module D to 

be r-divisible if D is a homomorphic image of a direct sum of r-injective modules . 

Our class of divisible modules agrees with the usual divisible modules when r is the 

usual torsion theory for a Dedekind domain. Since QT is r-injective, then every QT-

module is r-divisible. As with the usual class of divisible modules over an integral 

domain, our class of r-divisible modules is closed under injective hulls, r-injective 

hulls, homomorphic images, and direct sums. If T(R) = 0, then the class of r-divisible 
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modules is closed under direct products. While the class of r-divisible modules may 

not be closed under extensions, we note that if Ext(A/, D) = 0 for each r-divisible 

module D and if 

0 -> Di — X — D2 — 0 

is exact with £>i, D2 r-divisible, then Ext(M, A") = 0. This fact will give the effect 

of extension closure for some of our work with r-divisible modules. 

Following the notation of [6], we say that a module B is a B* -module if 

Ext/*(H,A) = 0 for each r-divisible X and each X with r-bounded order. In 

[6], B*-modules were studied for the usual torsion theory over a valuation domain. 

The motivation for studying 1?*-modules in [6] comes from the study of Baer mod-

ules over commutative integral domains. The purpose of this paper is to initiate 

the study of B*-modules for torsion theories over more general rings. This general 

study has an interesting relationship with (1) the study of r-injective modules, (2) 

the Bounded Splitting Problem for torsion theories (see [1], [3], [7], and [10]), and 

(3) the Baer problem for torsion theories (see [8]). 

In Section two we present some basic propositions that are useful for studying B*-

modules. Since B*-modules are defined in terms of two distinct classes of modules, we 

separate these properties to facilitate their use. We call a module M a D*-module 

if Ext#(M, D) = 0 for every r-divisible module D. We characterize D*-modules 

in Theorem 3.1 under the mild assumption that T(R) = 0. In Theorem 4A we 

characterize the modules M such that Ext(M, T) = 0 for all T with r-bounded 

order, provided that T(R) = 0 and S£T has a cofinal subset of two-sided ideals. We 

then use Theorem 4.1 to obtain a generalization of some results ([7, Theorem 2.2] and 

[1, Theorem 2.3]) on the Bounded Splitting Problem for torsion theories. Finally, in 

Section Five we combine our results to give some applications for B*-modules. For 

example, finitely generated B*-modules over local rings are free, and (^-modules 

that are B*-modules are characterized. 

We will use pd(M) and wd(M) to denote the projective and weak dimensions, 

respectively, of a module M. Other terminology from homological algebra can be 

found in [2] or [16]. 

2. BASIC LEMMAS 

In this section we give some basic results that will be useful in the study of B*-

modules. These results show that some of the basic properties of H*-modules for the 

usual torsion theory over a valuation domain extend to arbitrary torsion theories over 

much more general rings. Due to the definition of H*-modules, these basic properties 

are mostly homological in nature. To facilitate the use of these basic results, we also 

separate out the hypothesis that B is a D*-module whenever possible. 
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We begin with the restriction on the homological dimension of a D*-module. 

L e m m a 2 .1 . pd B ^ 1 for every D*-module B. 

P r o o f . Since E(M)/M is r-divisible for every module M, we have the exact 

sequence: 

0 = Ext (fl, E(M)/M) -> E x t 2 ( £ , M) — Ext2 (H, E(M)) = 0 

D 

L e m m a 2.2 . Let M be a right QT-module. If B is a D*-module, then 

Tor*(M, B) = 0. 

P r o o f . Let zP be injective, and let B be a D*-module. Since M is a right 

(3 r-module, then H o m z ( M , C ) is r-divisible. So by hypothesis and [2, VI. 5.1], we 

have 

0 = E x t * (H, Hom z (M , C)) = H o m z (Tor*(M , B\ C). 

Since zP
 c a n be any injective, we must have Tor (M, B) = 0. D 

Kaplansky's basic idea [14] (see also [7] and [10]) gives us more information about 

Tor. 

L e m m a 2 .3 . Let R be a commutative ring. If ExtR(B,T) = 0 for all T with 

r-bounded order, then Tor(H, It/I) = 0 for all I 6 J£?r. 

P r o o f . Since I £ SfT} then Homz(Ic/I , E) has r-bounded order for any injec-

tive zE- By hypothesis and [2, VI. 5A] 

0 = E x t ( H , H o m z ( f l / I , F ) ) .= Homz (Tor(B, R/I), E). 

Since zF can be any injective, then Tor(H, R/1) = 0. D 

In case r is the usual torsion theory over a commutative domain, then every 

nonzero ideal is in J£?r; so Lemma 2.3 gives RB flat. However, in the general case, 

very few ideals may be in S£T\ so we need to do a little more work. 

P r o p o s i t i o n 2.4. If R is a commutative ring, then every B*-module is Bat. 

P r o o f . Let B be a H*-module. Using Lemma 2.3, we obtain Tor (H ,T) = 0 

for all r-torsion T by a standard transfinite induction argument. 

Since 0 —• r (M ) —> M —> M/r(M) —> 0 is exact for any module /*M, it is now 

sufficient to show tha t T o r ^ H , F) = 0 for any r-torsionfree F. Since wd B ^ pd B ^ 

1 by Lemma 2 A , the natural inclusion F —+ ET(F) gives an exact sequence: 

0 = Tor2 (B, ET(F)/F) - Ton(fi, F) - Ton (5, ET(F)). 
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But ET(F) is always a Q r -module ; so Tori (-9, ET(F)) = 0 by Lemma 2.2, and the 

result follows from the exact sequence. D 

We can also consider some other basic relationships of D*-modules with ®. 

L e m m a 2.5 . If B is a D* -module, then QT ®R B is a projective QT-module. 

P r o o f . Let B be a D*-module. Since Tor H (Q r ,H ) = 0 by Lemma 2.2, then 

the hypothesis and [2, VI.4.1.3] yield 

E x t Q r ( g r ® -9, D) 9* ExtR(B, D) = 0 

for each Q r -module D. D 

P r o p o s i t i o n 2.6. If QT is a D* -module, then the multiplication map u\: QT <&R 

QT —> QT is an isomorphism; i.e., the canonical map R —• QT is an epimorphism in 

the category of rings. 

P r o o f . Note that 

0 -+ ker/* -* QT ® H QT A QT — 0 

splits as an exact sequence of Q r-modules and that ker/.i = T(QT ®R QT). But 

QT ®QT is a projective Q r -module by Lemma 2.5. Thus 

r(QT O H QT) C r ( © QT) = © T(QT) = 0, 

so tha t ker/.i = 0. D 

In case r is the usual torsion theory over a domain, the flatness of a B* -module 

makes if r-torsionfree. In the general commutative case, we must modify this con-

clusion. 

P r o p o s i t i o n 2.7. Let R be a commutative ring, and let B be a B*-module. Then 

T(B) = T(R)B. 

P r o o f . By Proposition 2.4, B is flat. Hence 

0 = TOT
R
(QT/R, B)->R®RB-+QT®RB 

is exact, where R = R/T(R). From this sequence and Lemma 2.5, we obtain the 

exact sequence 

0 - * H / r ( H ) B ^ © Q r . 

Since © Q r is r-torsionfree, we must have T(B)/T(R)B C ker a = 0, and hence 

T(B) = T(R)B. D 



We also note that in the noncommutative case, B*-modules may be far from 

torsionfree and that conclusion of Proposition 2.7 may not hold. For example, if 

R is the ring of differential polynomials over a universal differential field, then R is 

well-known [4] to be a principal left and right ideal domain with the property that 

each (usual) torsion module is injective. Since each divisible module is also injective 

for this ring R, then every I?-module is a H*-module. Hence there are non-flat 

H*-modules in this case (cf. Proposition 2.4.) 

However, Proposition 2.7 suggests that the theory of 5*-modules can be expected 

to be smoother if r is a faithful torsion theory (i.e., if T(R) = 0). This will be true 

even in the noncommutative case, as we will see in subsequent sections. 

3 . D*-MODULES 

In studying H*-modules, Fuchs and Viljoen [6] effectively separate out the D*-

modules for the usual torsion theory over a valuation domain as those modules B 

with pdH B $C 1. In this section we give a general characterization of F)*-modules 

for arbitrary torsion theories over any ring with T(R) = 0. This characterization 

bears some relationship to the results of Section 4 of [18], where a different form 

of divisibility is studied. It also lays the groundwork for studying the structure of 

J3*-modules and simplifies the study of rings in which certain classes of modules are 

£)*-modules (e.g., see Corollaries 3.2 and 3.3.) 

We begin with our characterization of D*-modules for faithful torsion theories. 

T h e o r e m 3.1 . Let T(R) = 0. Then following statements are equivalent for a 

module B. 

(1) B is a D*-module. 

(2) pd B ^ 1, Torf (QT, B) = 0, and QT ®R B is a projective QT-module. 

P r o o f . (1) = > (2) is immediate from Lemmas 2.1, 2.2, and 2.5. 

(2) = > (1). Let D be r-divisible, and let 0 EQ —> D be an epimorphism, where 

each EQ is r-injective. Let FQ be a free I2-rnodule with an epimorphism FQ —> 

EQ. Since T(R) = 0, FQ C ® Q T ; so the r-injectivity of each EQ gives rise to an 

epimorphism © a ( © Q r ) -+ ®EQ -> D. Since Tor(QT,H) = 0, [2, VI.4.L3] yields 

Ext* ( £ , © Q T ) -= ExtQ r(QT OK H,©QT) = 0, 

as QT <S>R B is QT-projective. Since pdB ^ 1, we have an exact sequence 

Ext*(£, © QT) - Ext*(£, D) -> 0, 

and hence Ext*(B, D) = 0 by exactness. • 
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Fuchs and Viljoen [6, Lemma 1.6] observe that the only ideals of a commutat ive 

valuation ring tha t are 5*-modules for the usual torsion theory are the principal 

ideals. Similarly, Grimaldi [11, Theorem 3] examines when every ideal of an integral 

domain is a Baer module. Our next two corollaries provide this type of information. 

Coro l lary 3 .2 . The following statements are equivalent when T(R) = 0. 

(1) Every finitely generated left ideal of R is a D*-module. 

(2) For each finitely generated left ideal I, pd I ^ 1 and QT ®/j I is a projective 

QT-module, and wd(QT) / j ^ 1. 

Coro l lary 3 .3 . Let r be perfect and let T(R) = 0. Then the following statements 

are equivalent. 

(1) Every left ideal of R is a D*-module. 

(2) £ • g£ - dimR ^ 2 and QT is a left hereditary ring. 

(3) Every submodule of a free left R-module is a D* -module. 

P r o o f . (1) = > (2). Since r is perfect, each left ideal of QT has the form 

QT <8>R I for some left ideal I of R. Hence the result follows easily from Theorem 3.L 

(2) = > (3). Let RA C 0 R. Since r is perfect, (QT)R is flat and 

Qr ®R A C QT ®R (© .R) = 0 Q r -

Since QT is left hereditary then QT <g) A must be projective as a QT-module. So the 

result follows from Theorem 3.L 

(3) = > (1). Trivial . • 

4 . BOUNDED SPLITTING 

In this section we examine the other half of the definition of H*-modules, namely 

the modules B for which E x t ( H , T ) = 0 for all T with r-bounded order. 

The determination of such B is closely related to the Bounded Splitting Problem 

for torsion theories, which asks when all r-torsionfree B satisfy E x t # ( H , T ) = 0 for 

all T with r -bounded order. Various aspects of the Bounded Splitting Problem have 

been examined by many authors (e.g., see [1], [3], [7], [10], and [13].) We are able to 

use our characterization in Theorem 4.1 to give a generalization of [1, Theorem 2.3] 

and [7, Theorem 2.2]. We note that Theorem 4.1 also has a relationship to the 

study of Baer modules (also called UF-modules); these are the modules B for which 

E x t * ( H , T ) = 0 for all r-torsion T (e.g., see [5], [6], [8], [11], and [14].) 

The proof of our next result is inspired by work on BSP. 
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Theorem 4 .1 . Let r(R) = 0 and assume that S£r has a cofinal subset of two-sided 

ideals. Then the following statements are equivalent for a module RB. 

(1) Ext(H, T) = 0 for all T with r-bounded order. 

(2) TOT
R
(R/K, B) = 0 and B/KB is a projective R/K-module for each two-

sided ideal K E «#V. 

P r o o f . (1) = > (2). Let K be a two-sided ideal in JS?r. Then EomR(R/K,C) 

has r-bounded order for any fP. If RP is injective, then [2, VI.5.1] and (1) yield 

Horn* (Tor*(#/K , B), C) = ExtH (B, KomR(R/K, C)) = 0. 

Since RP can be any injective, we must have Tor (R/K, B) = 0. 

Let an exact sequence 

(*) 0 -* M -> N -i. H/KH -> 0 

of fl/A'-modules be given. We wish to show that (*) splits. Since Ext^(B,M) = 0 

by (1), then there is a commutative diagram 

0 — • M —• H <=• B —• 0 

i 'i ' -I 
0 — • M —• N --U B/KB —> 0 

where p is the natural map, II is formed by a pull-back, and kf = IR- Thus 

ghf = pkf = p\B = p and hf(KB) = Khf(B) C KN = 0. Hence hf induces a 

homomorphism (hf)': B/KB —• N such that g(hf)' = IR/KB- Therefore, (*) splits. 

(2) = > (1). Let RT satisfy KT = 0 for some two-sided ideal K G J5fT. For any 

exact sequence 

0 — > T — > X — > B — > 0 , 

(2) gives a diagram with split second row: 

0 T X 

1 
B 

I 
0 = =  Toт(R/K  B)  —<•  T  5 = ^  X/KX  — •  B/KB  -+ 0 

We  readily  see  that  the composition  X  —•  X/KX  —• T  gives  a  map to split  the  first 

row  of  the diagram.  • 

R e m a r k  .  Since  Homz(R/I,C)  has  r-bounded  order  for  any  right  ideal  I  such 

that  I  D  RKR  G --zf
r
,  then  the  argument  in  the  first  paragraph  of  the  proof  of 

Theorem  4.1  also  shows  that  Tox
R
(R/I

)
B)  = 0. 
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If R has a lot of cyclic flat modules (e.g., if 1? is a von Neumann regular ring), 

then Theorem 4 A gives nicer results when applied to all left ideals. 

Coro l lary 4 .2 . Let T(R) = 0 and assume that J?T has a cofinal subset of two-sided 

ideals K such that (R/K)R is flat. Then the following statements are equivalent. 

(1) ExtR(Iy T) = 0 for all left ideals I of R and all T with T-bounded order. 

(2) R/K is a left hereditary ring for all two-sided ideals K £ S£T such that 

(R/K)R is Hat. 

(3) ExtR(Ay T) = 0 for every submodule RA of a free module and every T with 

T-bounded order. 

P r o o f . (1) =t> (2). Let K be a two-sided ideal in JSfr with (R/K)R flat. 

Then 0 = TorR(R/KJ<) =- K/K2 and hence K2 = K. Let K C RI C R. Now 

I/K = I/KI is a projective I?/K-module by Theorem 4.L Therefore R/K is left 

hereditary. 

(2) => (3). Let RA C 0 # and let Ii be a two-sided ideal in J2?r with (R/K)R 

flat. Then 

0 - R/K ®RA^ R/K ®R ( © 1?) 

is exact, and hence A/KA is isomorphic to a submodule of 0 R/K. Since R/K is 

left hereditary, then A/KA is a projective I2/A'-module, and the result follows from 

Theorem 4 .1. 

(3) => (1). Trivial. • 

Minor modifications of this proof yield the following similar result. 

Coro l lary 4 .3 . Let T(R) = 0 and assume that S£T has a cofinal subset of two-sided 

ideals K such that (R/K)R is Bat. Then the following statements are equivalent. 

(1) Extf l ( I ,T) = 0 for all finitely generated left ideals I € S?T and all T with 

T-bounded order. 

(2) R/K is a left semihereditary ring for all two-sided ideals K £ S£r such that 

(R/K)R is flat. 

(3) Ext/*(A ,T) = 0 for all finitely generated submodules RA of a free module 

and all T with T-bounded order. 

A torsion theory r is said to have the bounded splitting property (BSP) if each 

module M, for which T(M) has r-bounded order, has T(M) as a direct summand . 

The study of BSP was initiated by Kaplansky [13] and has been pursued by many 

other authors (e.g., see [1], [8], [10], and their references). It is easy to see that r has 

BSP if and only if Ext(F, T) = 0 for each r-torsionfree F and each T with r-bounded 

order. 

The following two results generalize [7, Theorem 2.2] and [1, Theorem 2.3], which 

give information about BSP for torsion theories over commutative rings. 
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T h e o r e m 4 .4 . Let T(R) = 0 and assume that S£T has a cofinal subset of two-sided 

ideals. Then the following statements are equivalent. 

(1) r has BSP. 

(2) For each two-sided ideal K G --̂ V, R/K is a left perfect ring and 

Tor f (ItVI, B) = 0 for each T-torsionfree B and each right ideal I such that ID K. 

P r o o f . (1) => (2). Let A be a two-sided ideal in SfT. Theorem 4 A and 

its following Remark show that Torf (R/I, B) = 0 for all r-torsionfree B and all 

In D A'. By Theorem 4.1 we also have (II .R)/A(IIIJ) projective as an R/K -module; 

so (UR)/K(UR) is direct summand of 0 I 7 / A ' . Hence [10, Theorem 5.1] implies 

that R/K is left perfect. 

(2) = > (1). Let A be a two-sided ideal in S£T and let B be r-torsionfree . Since 

Tor f (R/I, B) = 0 for each IR D Ii, and r(Ic) = 0, an easy induction (similar to 

the proof of [7, Lemma 2.1]) shows that Tor*( I t / I , B) = 0 for all n ^ 1. Hence [2, 

VI.4.1.2] yields 

0 = TOT
R
(R/I, B) S Tor* / K(I t /I , B/KB) S TOT

R/K ((R/K)/(I/K), B/KB). 

Thus B/KB is a flat I2/A-module. Since R/K is left perfect, B/KB must be a 

projective R/K-module. Therefore, r must have BSP via Theorem 4.L • 

Corol lary 4 .5 . Let R be a commutative ring with T(R) = 0. Then the following 

statements are equivalent. 

(1) T has BSP. 

(2) For each K G J^ r , R/K is a perfect ring and Torf (12/A, B) = 0 for each 

T-torsionfree B. 

5 . H*-MODULES 

In this section we combine our previous results to obtain some information about 

B* -modules . 

We begin with an example that further illustrates the differences between the 

general case and the classical commutative domain case. 

E x a m p l e 5 . 1 . Let P be the ring of differential polynomials over a universal 

differential field [4], and let M be a maximal left ideal of P. Let R = {r ^ P \ 

Mr C M} be the idealizer of M in P. Then R is a left and right hereditary, left 

and right noetherian domain with unique nontrivial two-sided ideal M [15]. Then 

S£ = {R, M} forms a filter for a torsion theory r of left I2-modules (as M
2 = M and 

R/M is a division ring). Now r is perfect, .5? = J2fr has a cofinal subset of two-sided 

ideals, each r-torsion module is isomorphic to 0 R/M, and T(R) = 0. We make the 
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following observations about B*-modules for 1?. 

(1) R/M is a D*-module. (Since R is left noetherian, then 0 ( ? T is r-injective 

[9, 41.1]; since R is left hereditary, homomorphic images of 0 QT must be r-injective 

[17, p . 212].) 

(2) Since each r-torsion module is semisimple, Ext(R/M, 0 R/M) = 0. 

(3) By (1) and (2), R/M is a r-torsion H*-module. 

(4) In view of (3), Proposition 2.7 cannot be extended to the case in which J?T 

has a cofinal subset of two-sided ideals. 

(5) Every submodule of a free I?-module is a B*-module. 

(6) Let 5 be a faithful simple fl-module. Then Ext (5 , R/M) £ 0 [15, Theorem 

1.3]. Hence S is not a F)*-module even though p d 5 ^ 1 and QT is flat (cf. Theorem 

3.1), and R does not have BSP for r (cf. Theorem 4.4). 

Combining Theorems 3.1 and 4.1, we have the following result. 

T h e o r e m 5.2 . Let T(R) = 0 and assume that 1£T has a cofinal subset of two-sided 

ideals. Then an R-module B is a B*-module if and only if the following conditions 

hold: 

(1) pdRB^L 

(2) T o r f ( Q T , 5 ) = 0. 

(3) QT ®# B is a projective QT-module. 

(4) For each two-sided ideal K E -£?T, Torf (R/K, B) = 0 and B/KB is a pro

jective R/K-module. 

Throughout [6] QT plays a special role in examining H*-modules. Our next two 

results indicate that this role carries over to a much more general setting than R 

being a valuation domain. 

P r o p o s i t i o n 5 .3 . Let R be a commutative ring, let r be perfect, and let T(R) = 0. 

Then a left QT-module B is a D*-module if and only if pdR B <^ 1 and QTB is 

projective. 

P r o o f . (=>) Theorem 3.1 gives the result since QT (&R B = B in this case. 

( < = ) . Since r is perfect, Theorem 3.1 implies that B is a D*-module. Let KT = 0 

for some K £ J-^T. Clearly A ' E x t # ( B , T ) = 0. So we only need to show tha t 

K ExtR(B,T) — ExtR(B,T). From the exact sequence 

Horn* (H, E(T)) --> Horrid (H, E(T)/T) -> Ext*(f l , M) -* 0, 

we see tha t it is sufficient to show that K Horn/? (H, E(T)/T) = HomH (H, E(T)/T). 
n 

Let / E HomR (H, E(T)/T) and let 1 = XI Qi^i with q{ E QT and z, G K (as r is 
i= i 
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perfect). For any 6 G B we have 

/
 n

 \
 n n n 

/(*) = (2>.*.)/(&) = £/(%*<) = X>./(%) = £*>'(<*.L)(
&
) 

^ t = i ' t = i t = i t = i 

n 

since I? is commutat ive . Thus / = £ 3i(ft7) 6 A'Hom f l (B,E(T)/T) as desired. 
1 = 1 

D 

Corol lary 5.4. Let R be a commutative ring, let r be perfect, and let T(R) — 0. 

Then QT is a B*-module if and only if pdR QT ^ 1. 

For the usual torsion theory over a valuation domain, any finitely generated B*-

module is free [6]. We generalize this to torsion theories over commutative local 

rings. (R has a unique maximal ideal, but no chain conditions are assumed.) 

P r o p o s i t i o n 5.5 . Let R be a commutative local ring R with V(1?) = 0. Then 

every finitely generated B* -module is free. 

P r o o f . Let B be a finitely generated H*-module and consider an exact sequence 

0-+K ->F->B-*Q 

with RF finitely generated and free. Since pd f l B ^ 1 by Lemma 2.1, then K is 

projective and hence free (as 1? is local). Write K = 0 R and choose L C K with 

L = 0 M , where M is the maximal ideal of R. Since M £ -S?T, then K/L = 

® ( # / M ) has r-bounded order. Since I? is a 1?*-module, the sequence 

0 -+ K/L -> F/L -> B - * 0 

must split. Hence K/L is finitely generated. By our construction, this forces K to 

be finitely generated. But B is flat by Proposition 2.4. Since any finitely related flat 

module is projective and since R is local, we now have that B is free. D 
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