
A Weakest Precondition Semantics for an

Object-Oriented Language of Refinement

Ana Cavalcanti1 and David A. Naumann2

1 Departamento de Informática
Universidade Federal de Pernambuco, Po Box 7851 50740-540 Recife PE Brazil

Phone: +55 81 271 8430 Fax: +55 81 271 8438
alcc@di.ufpe.br www.di.ufpe.br/∼alcc

2 Department of Computer Science
Stevens Institute of Technology, Hoboken NJ 07030 USA

naumann@cs.stevens-tech.edu www.cs.stevens-tech.edu/∼naumann

Abstract. We define a predicate-transformer semantics for an object-
oriented language that includes specification constructs from refinement
calculi. The language includes recursive classes, visibility control, dy-
namic binding, and recursive methods. Using the semantics, we formulate
notions of refinement. Such results are a first step towards a refinement
calculus.

Keywords: refinement calculi, semantic models, object-orientation, verification

1 Introduction

There has been extensive study of formal type-systems for object-oriented lan-
guages, and some study of formal specification, but formalization of development
methods [BKS98, Lan95] lags behind both the language features and the infor-
mal methods presently used. This paper presents a semantic basis for formal
development of programs in languages like Java and C++. Our language, called
rool (for Refinement Object-oriented Language), is sufficiently similar to Java
to be used in meaningful case studies and to capture some of the central difficul-
ties, yet it is sufficiently constrained to make it possible to give a comprehensible
semantics.

We assume the reader is familiar with basic concepts and terminology of
object-oriented programming. We address the following challenging issues.

• Dynamic binding of methods means that the version of a method that will be
invoked is determined only at run time. Such programs exhibit phenomena
similar to higher-order imperative programs.

• Classes are important in practice for modularity, but they are complicated to
model (for which reason many studies focus on instance-oriented subtyping).

• Object-oriented programs involve fine-grained control of visibility in terms of
private, inherited, and public identifiers.

Our language has mutually recursive classes and recursive methods. We omit ref-
erence types, however. Pointers are ubiquitous in practice, but so are techniques

J. Wing, J. Woodcock, J. Davies (Eds.): FM’99, Vol. II, LNCS 1709, pp. 1439–1459, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

1440 Ana Cavalcanti and David A. Naumann

to isolate deliberate sharing from the many situations where value semantics is
preferable. Our object values are tuples with recursive nesting but no sharing.
We leave pointers as an important but separate issue [AdB94].

Our work is part of a project that aims to extend to object-oriented program-
ming the most widely-used and well-developed formal methods – those associated
with Hoare logic and weakest preconditions. Because behavioural subclassing in-
volves intermingled programs and specifications [LW94], it is natural to extend
a refinement calculus [Mor94, BvW98]. As usual in refinement calculi, our se-
mantics is based on weakest preconditions.

In the approach we adopt, commands denote functions on formulas. In iso-
lation, purely syntactic transformer semantics is dubious. While our collabora-
tors are developing a state-transformer semantics which will make it possible
to prove operational soundness, we have taken the preliminary step of giving
a set-theoretic semantics for predicate formulas and expressions, for the type-
correctness results. Object states are represented by tuples of attribute values,
and in general types denote sets of values. Methods are treated as procedures
with a distinguished self parameter. Classes denote tuples of method mean-
ings. Predicate formulas denote sets of states. The interplay between the value-
oriented semantics of expressions and the formula-oriented semantics of com-
mands is mediated by the semantics of formulas.

The semantics is based on a typing system. In the methodological literature
simpler approaches are usually taken: there is a fixed global typing, or untyped
variables are used and types are treated as predicates. A fixed global typing is
unsuitable for formulating laws about subclasses and inheritance; and treating
types as predicates risks inconsistency in the presence of higher-order phenom-
ena. We employ techniques that have become standard in type theory and deno-
tational semantics; the semantics is defined in terms of typing derivations, which
provides convenient access to necessary contextual information.

We do not treat more advanced notions of subtyping than those in Java: we
are interested in reasoning about type casts and tests as they are used in Java and
its cousin languages. The typing system is similar to that of [Nau98b], and also
to those used in typing algorithms, where subsumption is incorporated into rules
for different constructs rather than being present as a general rule. Nonetheless,
soundness of our definitions is not at all obvious, due to subtleties of modelling
dynamic binding as well as mutually recursive classes. In this paper, we disallow
mutually recursive methods, which lets us use a simpler, though non-trivial,
well-ordering to show the semantics is well defined.

The main contribution of this paper is the extension of standard weakest
precondition semantics to a Java-like language with classes, visibility, dynamic
binding, and recursion. We give basic results on soundness of the definitions,
define notions of program and class refinement, and show that the constructors
of rool are monotonic with respect to refinement. Our semantics is being used
in ongoing research on practical specification and verification. For reasons of
space we omit many definitions and proofs that appear in [CN99].

A Weakest Precondition Semantics for an Object-Oriented Language 1441

e ∈ Exp ::= self | super | null | new N
| x | f (e) variable, built-in application
| e is N | (N)e type test, type cast
| e.x | (e; x : e) attribute selection and update

ψ ∈ Pred ::= e | e isExactly N boolean expression, exact type test
| (∨ i • ψi) | ψ ⇒ ψ | ∀ x : T • ψ

c ∈ Com ::= le := e | c; c multiple assignment, sequence
| x : [ψ,ψ] specification statement
| pc(e) parameterized command application
| if []i • ψi → ci fi alternation
| rec Y • c end | Y recursion, recursive call
| var x : T • c end local variable block
| avar x : T • c end angelic variable block

pc ∈ PCom ::= pds • c parameterization
| m | le.m method calls

pds ∈ Pds ::= ? | pd | pd ; pds parameter declarations
pd ∈ Pd ::= val x : T | res x : T | vres x : T

Table 1. Expressions, selected predicates, commands, and parameterized com-
mands.

2 Language

The imperative constructs of rool are based on the language of Morgan’s refine-
ment calculus [Mor94], which extends Dijkstra’s language of guarded commands.
Specifications are regarded as commands; we use the word command to refer to
specifications, commands in the traditional sense, and hybrids where program-
ming structures and specifications are mixed.

Data types T are the types of attributes, local variables, method parameters,
and expressions. They are either primitive (bool, int, and others) or class names
N . Primitives may include functional types such as arrays of integers.

The expressions e are generated by a rule in Table 1. We assume that x
stands for a variable identifier, and f for a literal or built-in function. Built-ins
should include primitive predicates like equality. The update (e1; x : e2) denotes
a fresh object copied from e1 but with the attribute x mapped to a copy of e2.
Attribute selection e.x is a run-time error in states where e denotes null, and
(N)e is an error if the value of e is not of dynamic type N . The type test e is N
checks whether non-null e has type N ; it is false if e is null, like instanceof
in Java. The predicates ψ of rool include formulas of first-order logic, program
expressions of type bool, and exact type tests e isExactlyN .

We identify a subset Le of Exp; these left-expressions can appear as the target
of assignments and method calls, and as result and value-result arguments.

le ∈ Le ::= le1 | self | self .le1 le1 ∈ Le1 ::= x | le1.x

Assignments to self and method calls with self as a result or value-result ar-
gument would never appear in user programs, but they are used in the seman-

1442 Ana Cavalcanti and David A. Naumann

tics. We allow le in le := e to range over finite non-empty sequences of left-
expressions, and e over corresponding lists.

For alternation we use an informal indexed notation for finite sets of guarded
commands. Specification statements are as in [Mor94]. Methods are defined
using procedure abstractions in the form of Back’s parameterized commands
val x : T • c, res x : T • c, or vres x : T • c [CSW99]. These correspond to
parameter passing by copy: call-by-value, by-result, and by-value-result, respec-
tively. In each case, x stands for a finite sequence of variable identifiers, T for a
corresponding list of types, and c for a command. We use x to stand both for
a single variable and for lists of variables; the context should make clear which
one is meant. The same comment applies to our uses of e and T .

A parameterized command can be applied to a list of arguments to yield
a command. A method call is a parameterized command. A call m refers to a
method of the current object; a call le.m refers to a method associated with the
object that is the current value of le. We do not allow method calls e1.m(e) where
e1 is a general expression, because it is convenient in the semantic definitions
that the object is named by a variable (the same is done in [AL97]). If e1 is
not a left-expression, e1.m(e) is equivalent to var x : T • x := e1; x .m(e) end,
where x is fresh. This is not an adequate replacement for e1.m(e), when e1 is a
left-expression, because it does not make persistent the changes to e1. However,
calls of the form le.m(e) are available in rool.

A program is a sequence of class declarations followed by a command.

Program ::= cds • c
cds ∈ Cds ::= ? | cd cds
cd ∈ Cd ::= class N1 [extends N2]

pri x1 : T1; prot x2 : T2; {meth m =̂ (pds • c) end}∗;
end

A class declaration cd introduces a class named N1. The optional extends-clause
determines the immediate superclass of N1. In its absence, N1 extends object,
which has no attributes or methods. The pri and prot clauses introduce the
private and protected attributes of N1 (recall that x1 and x2 can be lists). The
visibility mechanism is similar to that of Java: private attributes are visible
just inside the class, and protected attributes are visible in the class and in
its subclasses. Following the pri and prot clauses, there is a list of method
declarations. The method introduced by meth m =̂ (pds • c) end is named m;
its body is the parameterized command (pds • c). All methods are considered
to be public.

3 Typing

Besides the data types T , other phrase types θ are available for predicate for-
mulas, commands, parameterized commands, and complete programs.

θ ::= T | pred | com | pcom(pds) | program

A Weakest Precondition Semantics for an Object-Oriented Language 1443

The types of phrases, in the context of a collection of class declarations, a specific
class, and some method parameter and local variable declarations, are given by
the typing relation B . For example, Γ,N B c : com asserts that c is a com-
mand that can appear in the body of a method in class N . Here Γ is a typing
environment; it records class declarations as well as locals for c: the attributes
visible in N , and method parameters and local variables in scope. Similarly,
Γ,N B e : T asserts that in a method of N , e is an expression of type T .

3.1 Typing Environment

We assume the existence of two disjoint sets of names: the set CName of class
names and the set LName of local names. A local may be either an attribute, a
method, a method parameter, or a local variable. We also distinguish two class
names: object and main. The former is the superclass of all classes. The latter
does not refer to a class itself, but to the main part of a complete program.

A typing environment Γ is a record with six fields: attr , meth, vis , cnames ,
supcls , and locals . The first, attr , is a finite partial function CName 7 7→LSignature.
An LSignature associates a local name with a type: LSignature =LName 7 7→Type.
The field attr records the names and types of all declared and inherited at-
tributes of every declared class. Similarly, meth records the names and signa-
tures of all declared and inherited methods of the known classes: meth has type
CName 7 7→ MDecs where MDecs = LName 7 7→ Pds .

The third field of a typing environment, vis , records the visibility of the
attributes of the declared classes: vis has type CName 7 7→ (LName 7 7→ Visibility)
where Visibility = {pri , prot , ipri}. If, we have that for an attribute x of a class
N , vis N x = pri , then x is a private attribute of N that was declared (and not
inherited) by N ; the inherited private attributes of N are associated to ipri .
Finally, prot refers to the protected (either inherited or declared) attributes.

The cnames field of a typing environment is a set containing the name of all
declared classes: cnames = dom attr = dommeth = dom vis . The distinguished
class name object is supposed to be in cnames , while main, which does not
refer to a class, is supposed not to be in cnames . Moreover, the class object is
associated to the empty signature in both attr and meth.

The supcls field of a typing environment associates a class name to the name
of its immediate superclass: supcls has type CName 7 7→ CName. All declared
classes have a direct superclass: either a class mentioned explicitly in their dec-
larations or object. On the other hand, object itself does not have a super-
class. Furthermore, a superclass is a declared class and the inheritance relation-
ship is not allowed to have circularities. The subtype relation ≤Γ is defined by
T1 ≤Γ T2 ⇔ (T1,T2) ∈ (Γ.supcls)+ ∨ T1 = T2.

The last component of a typing environment, locals , is an LSignature that
records the types of the visible atributes of the current class, and of any method
parameter and local variables in scope. The attributes are also recorded in attr ;
this redundancy simplifies typing rules. The classes referred to in the signatures
in the range of either attr or meth and in locals must be declared.

1444 Ana Cavalcanti and David A. Naumann

N 6= main

Γ,N B self : N

N ′ ∈ Γ.cnames

Γ,N B new N ′ : N ′
Γ,N B e : N ′ N ′′ ≤Γ N ′

Γ,N B e is N ′′ : bool

Γ,N B e : N ′ N ′′ ≤Γ N ′

Γ,N B (N ′′)e : N ′′
Γ,N B e : N ′ Γ.attr N ′ x = T visib Γ N ′ N x

Γ,N B e.x : T

Γ B e : bool

Γ B e : pred

Γ B ψi : pred for all i

Γ B (∨ i • ψi) : pred

Γ ; x : T B ψ : pred

Γ B ∀ x : T • ψ : pred

Γ,N B e : N ′ N ′′ ≤Γ N ′

Γ,N B e isExactly N ′′ : pred

(Γ ; x : N ′′) B ψ : pred N ′′ ≤Γ N ′

(Γ ; x : N ′) B x isExactly N ′′ ∧ ψ : pred

Table 2. Typing of selected expressions and predicates.

A typing Γ,N B phrase : θ holds just if it is well formed and is derivable using
the rules to be presented in the sequel. Well formedness is characterised by three
properties. First, Γ has to satisfy the conditions above for environments. Sec-
ondly, the current class must be declared: N 6= main ⇒ N ∈ Γ.cnames . Thirdly,
domΓ.locals should include all visible attributes of N , i.e. the declared private
and the declared and inherited protected attributes – all but the inherited pri-
vate ones. We assume that no parameter or local variable has the same name
as an attribute of the class. If N is main there are no restrictions on Γ.locals ,
which contains only parameters and local variables.

3.2 Expressions and Predicates

Typing rules for some expressions and predicates are in Table 2. The boolean
expression e is N ′′ is well-typed when the type of e is a superclass of N ′′. The
type of e.x is that of the x attribute of the class of e, provided this attribute
is visible from the current class. In a hypothesis like Γ.attr N ′ x = T , which
involves partial functions, we mean that the expressions are defined and equal.
Visibility is considered in visib Γ N ′ N x , a condition stating that, according to
Γ , x is an attribute of N ′ visible from inside N . We define visib Γ N ′ N x to
hold if and only if N ≤Γ N ′, Γ.vis N x 6= ipri , and N 6= N ′ ⇒ Γ.vis N x 6= pri .
The attributes visible in N are those declared in N itself and those inherited
from its superclasses that are not private.

A typing Γ,N B ψ : pred is for a predicate on the state space of a method
in class N , where Γ.locals declares local variables, parameters, and attributes
to which ψ may refer. We say ψ is typable in Γ,N , meaning Γ,N B ψ : pred
is derivable; similarly for command typings later. In some rules we omit the
current class N because it does not change throughout the rule. The environment
Γ ; x : T , differs from Γ just in the locals field: we define (Γ ; x : T).locals to be
Γ.locals ⊕ {x 7→ T}, where ⊕ denotes function overriding.

The rule for isExactly is similar to the rule for is, but we also need coercion
rules for is and isExactly in combination with ∧ and⇒. As an example, consider

A Weakest Precondition Semantics for an Object-Oriented Language 1445

(Γ ; x : T) B c : com par ∈ {val, res,vres}
Γ B (par x : T • c) : pcom(par x : T)

Γ.meth N m = pds

Γ,N B m : pcom(pds)

Γ,N B le : N ′ Γ.meth N ′ m = pds

Γ,N B le.m : pcom(pds)

Γ B le : T Γ B e : T ′ T ′ ≤Γ T sdisjoint le

Γ B le := e : com

Γ B pc : pcom(val x : T) Γ B e : T ′ T ′ ≤Γ T

Γ B pc(e) : com

Γ B pc : pcom(vres x : T) Γ B le : T sdisjoint le

Γ B pc(le) : com

Γ B ψi : pred Γ B ci : com

Γ B if []i • ψi → ci fi : com

(Γ ; x : T) B c : com

Γ B (var x : T • c end) : com

Table 3. Typing of selected parameterized commands and commands.

a class Pt of points and an extended class Cpt with an added attribute color . The
predicate (x .color = red) is not typable in a context (Γ ; x : Pt),N . However, if
for instance (Γ, x : Cpt),N B x .color = red : pred, we would like the predicate
x is Cpt ⇒ x .color = red to be typable in a context where x has type Pt . Using
only the separate rules for is and ⇒, it is not typable as such; but it can be
typed by a coercion rule for is like the one for isExactly in Table 2. Rules
like this allow the derivation of typings in more than one way, but the semantic
definitions ensure that the meaning is independent of derivation (Lemma 6).

Substitution on formulas and expressions is standard, but it is worth noting
that the free variables of e.x are those of e. This is because x is in the role of
an attribute name.

3.3 Parameterized Commands, Commands, and Programs

Typing rules for selected commands and parameterized commands are presented
in Table 3. The type of a parameterized command records its parameter decla-
rations. In the cases of m and le.m , the declarations are recorded in the meth
attribute of the typing environment. Of course, le.m is well-typed only if the
type of le is a class with a method m. An omitted rule deals with multiple
parameters.

To preclude aliasing, the rule for assignment stipulates sdisjoint le. This
means that, if le is a list, then no member of le is a prefix of another, after
deleting self . For example, neither x , x .y nor x , self.x is sdisjoint , but x , y.x is.
If pc is a parameterized command with parameter declaration val x : T , then
pc(e) is well-typed when the type of e is a subtype of T . If x is a result or a

1446 Ana Cavalcanti and David A. Naumann

value-result parameter, then pc can only be applied to sdisjoint left-expressions.
If x is a result parameter, pc(le) is well-typed when T is a subtype of the type
of le. When x is a value-result parameter, these types have to be the same.

A complete program cds • c is well-typed in an environment where only
global variables x are in scope, just when c is well-typed in the environment
Γ determined by cds and x : T , and considering that the current class is main.

Γ,main B c : com Γ = ((VDecs cds main); x : T)
Vmeth Γ cds nomrec Γ cds

(?; x : T) B cds • c : program

The fields of the environment ? are all empty, so that in (?; x : T) the only non-
empty field is locals , which records the global variables x : T of the program. The
function VDecs extracts information from and checks a sequence of class decla-
rations. In the environment determined by this function, the classes are associ-
ated with both its declared and inherited methods. The condition Vmeth Γ cds
checks that the method bodies in cds are well-typed in the environment Γ . The
method bodies are checked in an environment that includes their signatures, so
recursive calls are appropriately dealt with. Mutually recursive calls, however,
are not allowed. This is verified by the condition nomrec Γ cds .

The absence of mutual recursion between methods can not be checked as
easily as the absence of mutual recursion between procedures of a traditional
imperative program. By way of illustration, consider classes C , D and C ′; the
class C has an attribute a of type integer and a method m1 that, for instance,
increments a by 1. The class D has an attribute c of class C , a method m2 with
a call c.m1(), and some other methods. There is no mutual recursion, as m1 does
not call m2. However, suppose that in a subclass C ′ of C we declare an attribute
d : D and redefine m1 introducing a call d .m2(). Now, if the private attribute c
of D happens to have dynamic type C ′ when m2 is called, then mutual recursion
will arise. To rule out mutual recursion, we require that if a method m2 calls a
method m1 then neither m1 nor any of its redefinitions calls m2.

3.4 Properties of Typing

To a large extent, a context determines the type of an expression; an exception is
null, for which we have Γ,N B null : N ′ for all N ,N ′. Some phrases, however,
can be typed in many contexts. For example, considering again the class Pt and
its subclass CPt , the command x := new CPt can be typed in Γ ; x : Pt and also
in Γ ; x : CPt . Nonetheless, an expression typing does determine a derivation.

Lemma 1. For all typings Γ,N B e : T, there is at most one derivation.

For predicates, the coercion rules make it possible to derive certain typings
in more than one way. For example, if ψ is derivable in (Γ ; x : N ′),N , then
(Γ ; x : N ′),N B x is N ′ ⇒ ψ : pred can be derived using the rules for is and
⇒, or using a coercion rule; more on this later.

To show type-correctness of method calls we need the following result. It is
similar to the coercion rules, but in fact it does not depend on them.

A Weakest Precondition Semantics for an Object-Oriented Language 1447

Lemma 2. The following rule is admissible, in the sense that the conclusion is
derivable if the hypothesis are.

Γ,N B ψN ′ : pred for all N ′ ≤Γ N N 6= main

Γ,N B (∨N ′≤Γ N • self isExactly N ′ ∧ ψN ′) : pred

Many type systems include a rule of subsumption, but this would make coher-
ence (Lemma 6) harder to prove. The useful effects of subsumption are built-in
to the typing rules.

4 Semantics

Since rool includes infeasible (discontinuous) constructs, recursive class defini-
tions cannot be interpreted by standard domain-theoretic techniques. We deal
with recursive classes by separating attributes from methods, so the domain
equations to be solved are simple “polynomials” involving first-order records.

The semantics [[Γ,N B phrase : θ]] of each derivable typing, except method
call, is defined as a function of the semantics of its constituent phrases. Most typ-
ing rules have a corresponding semantics which we present in a form that mimics
the typing rule, to remind the reader of the typings for constituent phrases and
any side conditions on those typings. Some phrases are treated indirectly through
syntactic transformations described later.

Method calls are the most complicated part of the semantics, and they are
discussed last. Semantics of method call goes beyond recursion on typing deriva-
tions. Moreover, we need the semantics to be defined for any phrase typable in
an extended typing system defined as follows. The first change is that constraints
involving the predicate visib are dropped. The second is that, in the rules for
type tests and type casts, the subtyping constraint is dropped.

Semantically, e is N ′′, for example, can only hold if N ′′ is a subtype of the
declared type of e. Nevertheless, this constraint is incompatible with the seman-
tics of assignment, which as usual is interpreted by substitution. Consider, for
instance, a context Γ with locals x : Pt , z : SCPt where SCPt ≤Γ CPt ≤Γ Pt .
In this context, both x := z and x is CPt are typable, but substitution yields
z is CPt which is not typable in the original system because CPt 6≤Γ SCPt .

All results in Section 3.4 hold for both typing systems. The constraints we
drop are natural for user programs, but such constraints are not found in seman-
tic studies. Although user specifications would not refer to non-visible attributes,
such predicates can be used in proofs of laws.

4.1 Environments, Data Types, and States

An environment is a finite partial function CName 7 7→ (LName 7 7→ PCom) that
for a given class associates method names to parameterized commands. As for-
malized later on, the parameterized command corresponding to a method will
be that given in its declaration, with an extra parameter me. This parameter

1448 Ana Cavalcanti and David A. Naumann

is passed by value-result and provides the attributes of the object upon which
the method is called. This facilitates interpretation of the method body in the
context of its calls.

For a given typing environment Γ , we define the set [[Γ]] of environments
compatible with Γ . The environments η in [[Γ]] are characterized by the following
conditions. First, dom η = Γ.cnames . Also, dom(η N) = dom(Γ.meth N) for all
N ∈ dom η. Finally, the parameter declarations are those recorded in Γ.meth,
along with the extra value-result parameter me; for all N ,m there is some c
such that η N m = (vres me : N ; Γ.meth N m • c). In the environments we
construct later, c is derived from the declared body as a fixpoint.

In addition to the environment, the semantic function for expressions also
takes a state as argument. A state assigns type-correct values to the attributes of
the current object, and to the parameters and local variables. It also records the
class of the current object. Object values, like states, assign values to attribute
names. Our formalization begins with a universal set of untyped values, which
are then used for the semantics of specific data types and state types.

The sets Value and ObjValue are the least solutions to the equations below.
We assume the unions are disjoint. The symbol −C means domain subtraction.

Value = {error,null} ∪ {true, false} ∪ Z∪ObjValue
ObjValue = {f : ({myclass} ∪ LName) 7 7→ (CName ∪ Value) |

myclass ∈ dom f ∧ f myclass ∈ CName ∧
({myclass} −C f) ⊆ (LName 7 7→ Value)}

Values for other primitive types should also be included. An object value is
a mapping from field names to values, with the distinguished name myclass
mapped to a class name.

The meanings of data types are parameterized by a typing environment. For
primitives, we define [[bool]]Γ = {error, true, false} and [[int]]Γ = {error} ∪ Z.
For N in Γ.cnames , we define [[N]]Γ to be the correctly-typed object values.

[[N]]Γ = {error,null} ∪
{f : ObjValue |

dom f = dom(Γ.attr (f myclass)) ∪ {myclass} ∧
f myclass ≤Γ N ∧
∀ x : dom(Γ.attr (f myclass)) • f x ∈ [[Γ.attr (f myclass) x]]Γ }

It is straightforward to prove that N ≤Γ N ′ implies [[N]]Γ ⊆ [[N ′]]Γ .
States are elements of ObjValue, although the “attributes” in a state include

values of parameters and local variables. We write [[Γ,N]] for the set of states for
class N and typing environment Γ . An state σ is in [[Γ,N]] just if it satisfies the
following conditions. First, σ gives values to the attributes of the actual class, if
it is not main, and to the variables in Γ.locals .

N 6= main ⇒ domσ \{myclass}= dom(Γ.attr (σ myclass)) ∪ dom(Γ.locals)

The union is not disjoint: Γ.locals declares the visible attributes and any lo-
cal variables and method parameters; Γ.attr(σ myclass)) declares all attributes,

A Weakest Precondition Semantics for an Object-Oriented Language 1449

including inherited private ones. If N is main, σ gives values just to the vari-
ables in Γ.locals . Also, if N is not main, then myclass is a subclass of N ;
otherwise, myclass is main itself. The last condition is that σ assigns val-
ues of the correct type. For N 6= main and x in domσ \ {myclass} we require
x ∈ dom(Γ.attr N) to imply σ x ∈ [[Γ.attr N x]]Γ , and x ∈ domΓ.locals to imply
σ x ∈ [[Γ.locals x]]Γ . Just the latter implication applies if N = main.

4.2 Expressions and Predicates

For η ∈ [[Γ]], σ ∈ [[Γ,N]], and derivable Γ,N B e : T , we define [[Γ,N B e : T]]η σ,
the value of e in state σ. It is an element of [[T]]Γ (Lemma 5).

We assume that for built-in function f : T → U a semantics is given, as a
total function [[T]]Γ → [[U]]Γ . The semantics of self is as follows.

[[Γ,N B self : N]]η σ = ({myclass} ∪ dom(Γ.attr (σ myclass))) C σ

This uses domain restriction (C) of σ: the attributes and myclass are retained;
local variables and parameters are dropped. The similar definition for super and
those for null and variables are omitted. We define [[Γ,N B new N ′ : N ′]]η σ as
init Γ N ′ where init Γ N ′ is an object initialized with default values: false for
boolean attributes, 0 for integers and null for objects. For other primitive types
a default initial value should be given.

The value of the boolean expression e is N ′′ is determined by whether the
value of e is an object of class N ′′. We omit the null and error cases.

[[Γ,N B e : N ′]]η σ = v v 6∈ {null, error}
[[Γ,N B e is N ′′ : bool]]η σ = (v myclass ≤Γ N ′′)

Semantics of attribute selection, update, and cast are straightforward; they yield
error for null.

The semantics [[Γ,N B ψ : pred]]η of a predicate ψ is a subset of [[Γ,N]] (Lem-
ma 6). The semantics of expressions as formulas, and of the logical operations,
is standard and omitted. The semantics of isExactly is similar to that of is.

[[Γ,N B e : N ′]]η = f

[[Γ,N B e isExactly N ′′ : pred]]η =
{σ : [[Γ,N]] | f σ 6∈ {null, error} ∧ (f σ) myclass = N ′′}

The coercion rules have similar semantics; we consider that involving is and ∧.

[[(Γ ; x : N ′′),N B ψ : pred]]η = Σ N ′′ ≤Γ N ′

[[(Γ ; x : N ′),N B x is N ′′ ∧ ψ : pred]]η =
{σ : [[(Γ ; x : N ′),N]] | (σ x) 6∈ {null, error} ∧ (σ x) myclass ≤Γ N ′′ ∧ σ ∈ Σ}

This combines the interpretations of the combined operators.

1450 Ana Cavalcanti and David A. Naumann

(val x : T • c)(e) −→ (var l : T • l := e; c[l/x]) if l 6∈ (FV e) ∪ (FV c)
(res x : T • c)(le) −→ (var l : T • c[l/x]; le := l) if l 6∈ (FV le) ∪ (FV c)
(vres x : T • c)(le) −→ (var l : T • l := le; c[l/x]; le := l) if l 6∈ (FV le) ∪ (FV c)
(pd ; pds • c)(e, e ′) −→ (pd • (pds • c)(e ′))(e) if α(pd) 6∈ (FV e ′)
(• c)() −→ c
le.x := e −→ le := (le; x : e)
le.x , y := e, e ′ −→ le, y := (le; x : e), e ′

le, le ′ := e, e ′ −→ le ′, le := e ′, e
m(e) −→ self .m(e)

Table 4. Syntactic transformations

4.3 Commands and Parameterized Commands

For command typing Γ,N B c : com and environment η ∈ [[Γ]], the semantics
[[Γ,N B c : com]]η is a total function on formulas (Theorem 1) which, when
applied to a formula typable in Γ,N yields a result typable in Γ,N (Theorem 2).

Assignments to general left-expressions are dealt with using syntactic trans-
formations that yield assignments of update expressions to simple variables and
to self . Assignment to simple variables is interpreted using substitution.

Γ B x : T Γ B e : T ′ T ′ ≤Γ T

[[Γ B x := e : com]]η ψ = (e 6= error ∧ ψ[e/x])

We use an expression “error”. In this paper we omit error from the grammar
because it has no other use; its typing rule and semantics are straightforward.

User programs should not include assignments to self and method calls where
self is used as a result or value-result argument. Assignments to self are intro-
duced only in the syntactic transformations for parameter passing, when the
argument corresponding to the me parameter of a method is self . This guaran-
tees that self is always assigned an object of the current class, but the semantics
cannot depend on this assumption.

Γ,N B e : N ′ N ′ ≤Γ N

[[Γ,N B self := e : com]]η ψ =
(∨N ′≤Γ N • e isExactly N ′ ∧ ψ[e, e.x/self , x]) where x = dom(Γ.attr N ′)

This uses a disjunction over the subclasses N ′ of N ; each disjunct involves a
substitution for appropriate attributes. There is no need to check that e is not
error because error isExactly N ′ is false, for all N ′. If the only assignments
to self are those introduced in the semantics, self is always assigned an object
of the current class, in which case the semantics simplifies to ψ[e, e.x/self , x].
We need not give an operational justification for the general case.

We define [[Γ ; x : T B x : [ψ1, ψ2] : com]]η ψ to be ψ1 ∧ (∀ x : T • ψ2 ⇒ ψ)
as in Morgan’s work. We also use the standard semantics for control constructs
and blocks.

A Weakest Precondition Semantics for an Object-Oriented Language 1451

Parameter passing and various forms of assignment are reduced by the rule
below to more basic constructs using the relation −→ defined in Table 4.

c −→∗ c′ [[Γ,N B c′ : com]]η = g

[[Γ,N B c : com]]η = g

If Γ,N B c : com and c −→ c′ then Γ,N B c′ : com (Lemma 3). The reflexive-
transitive closure −→∗ of −→ reduces every derivable command typing to one
for which there is a direct semantic definition (Theorem 1). The first five trans-
formations rewrite parameter passing in the usual way; α(pd) denotes the set of
variables declared in pd , and FV gives free variables. The next three transforma-
tions rewrite assignments to left-expressions into assignments to simple variables
or self . The last transformation inserts the missing object (self) in a method
call m(e).

4.4 Programs and Method Calls

The meaning of a complete program is the meaning of its main command, in an
appropriate environment. The typing includes global variables x of c.

[[Γ,main B c : com]]η = f Γ = ((VDecs cds main); x : T)
Vmeth Γ cds η = Meths Γ cds

[[?; x : T B cds • c : program]] = f

The environment η records the methods available for objects of each of the
classes declared in cds ; these methods are extracted from cds by the function
Meths which builds η as follows.

For each class N and method m, the parameterized command η N m has an
extra value-result parameter me, and in its body each occurrence of an attribute
x of N or of a call to a method m of N is replaced by me.x and me.m. Only
“top level” occurrences of attributes are changed: if x is an attribute, then x .x
becomes me.x .x . For a class that inherits m, me must be given the more specific
type; it always has exactly the type of the object, compatible with the typing
rule for value-result parameters.

If the declared body of a method m contains recursive invocations, then
η N m is the least fixed point of the context determined by the body. This
approach is also used in Back’s work and [CSW98] to deal with recursive pa-
rameterized procedures. We forbid mutual recursion so that fixpoints can be
taken separately for each method. We justify existence of the least fixed point
by techniques used in the cited works; it depends on monotonicity (Theorem 3).

Finally we consider method calls le.m(e). Even though le.m is a param-
eterized command, typed for example as Γ,N B le.m : pcom(val x : T), no
transformation rule is applicable. In a state where the dynamic type of le is
N ′, η N ′ m takes the form (vres me : N ′; val x : T • c), and if we define fN ′

as [[Γ,N B (vres me : N ′; val x : T • c)(le, e) : com]]η, then we should define
[[Γ,N B le.m(e) : com]]η ψ to be fN ′ ψ. The semantics of method call is the

1452 Ana Cavalcanti and David A. Naumann

disjunction, over the possible classes N ′, of le isExactly N ′ ∧ fN ′ ψ. Thus the
semantics fN ′ is used just when it should be. The possible classes N ′ are the
subclasses of the static type N ′′ of le, determined by the derivation of le.

[[Γ,N B (η N ′ m)(le, e) : com]]η = fN ′ all N ′ ≤Γ N ′′, for N ′′ the type of le

[[Γ,N B le.m(e) : com]]η ψ = (∨N ′≤Γ N ′′• le isExactly N ′ ∧ fN ′ψ)

The hypothesis depends on η N ′ m being typable in Γ,N . The free variables
in the original declaration of m are attributes visible in the class, now accessed
through the me parameter. Those attributes are not necessarily visible in the
context of the call, so references me.x are only typable in the extended system.

4.5 Example

The program below acts on a global variable c of type C . For clarity, we write
the body of a method with no parameters as a command, instead of as a param-
eterized command with an empty declaration.

class C pri x : int; meth Inc =̂ x := x + 1; meth Dec =̂ x := x − 1 end
• c.Inc()

We calculate the weakest precondition for this program to establish c.x > 0.
Writing CD to stand for the declaration of C above, we begin.

[[?; c : C ; B CD • c.Inc() : program]] (c.x > 0)

= [[Γ,main B c.Inc() : com]]η (c.x > 0)

Here the typing environment Γ = (VDecs CD main); c : C is as follows.

(attr = {object 7→ ?,C 7→ {x 7→ int} },
meth = {object 7→ ?,C 7→ {Inc 7→ ?,Dec 7→ ?} },
vis = {object 7→ ?,C 7→ {x 7→ pri} },
cnames = {object,C}, supcls = {C 7→ object}, locals = {c 7→ C})

The environment η = Meth Γ CD is shown below.

{object 7→?,C 7→ {Inc 7→ (vres me : C • me.x := me.x + 1), Dec 7→ . . .} }
We proceed as follows.

[[Γ,main B c.Inc() : com]]η (c.x > 0)

= (∨N ′≤Γ C• c isExactly N ′ ∧ [[Γ,main B (η N ′ Inc)(c) : com]] (c.x > 0))

[by the semantics of method call]

= c 6∈ {null, error} ∧ [[Γ,main B (η C Inc)(c) : com]] (c.x > 0)
[by C has no proper subclasses and the semantics of isExactly]

= c 6∈ {null, error} ∧ [by the definition of η]
[[Γ,main B (vres me : C • me.x := me.x + 1)(c) : com]]η (c.x > 0)

A Weakest Precondition Semantics for an Object-Oriented Language 1453

= c 6∈ {null, error} ∧ [by a syntactic transformation]
[[Γ,main B (var l : C • l := c; l .x := l .x + 1; c := l) : com]]η (c.x > 0)

= c 6∈ {null, error} ∧ [by the semantics of variable blocks]
∀ l • [[Γ ; l : C ,main B (l := c; l .x := l .x + 1; c := l) : com]]η (c.x > 0)

= c 6∈ {null, error} ∧ c.x 6= error ∧ (c.x > 0)[l/c][(l ; x : l .x + 1)/l][c/l]
[by the semantics of sequence and assignment]

= c 6∈ {null, error} ∧ c.x 6= error ∧ c.x + 1 > 0
[by a properties of substitution and update expressions]

The result obtained is exactly what should be expected.

5 Properties of the Semantics

This section shows that the semantics is a well-defined function of typings, and
that it is type-correct. Before presenting these theorems, however, we present
auxiliary results.

Lemma 3. The syntactic transformations preserve typing, in the sense that
Γ,N B c : com and c −→ c′ imply Γ,N B c′ : com, for all c, c′.

To prove the type-correctness theorem, we need typability to be preserved by
substitution on formulas. This result holds only in the extended type system,
where subtyping constraints are dropped from the rules for type tests and casts.

Lemma 4. (a) Suppose Γ,N B ψ : pred is derivable and x is free in ψ; let
T be the type of x (which is uniquely determined by Γ,N). If T ′ ≤Γ T and
Γ,N B e : T ′ is derivable then Γ,N B ψ[e/x] : pred is derivable. (b) Same as
part (a) but with self in place of x .

The rules for assignment and result-parameter passing also involve subtyping
constraints, but that does not invalidate Lemma 4 because predicate typings do
not depend on command typings.

Because the semantics of rool is not defined by structural recursion on
program texts, we need to show that the notation is coherent, in the sense
that [[Γ,N B phrase : θ]] is a function of the typing Γ,N B phrase : θ. Expression
typings have unique derivations (Lemma 1), and the semantics is defined directly
in terms of the typing rules, so coherence for expressions is immediate. As a
result, type-correctness for expressions is straightforward.

Lemma 5. If Γ,N B e : T then [[Γ,N B e : T]]η σ ∈ [[T]]Γ for all η ∈ [[Γ]] and
σ ∈ [[Γ,N]].

Due to the coercion rules, predicate typings are not unique. We need a coherence
lemma.

1454 Ana Cavalcanti and David A. Naumann

Lemma 6. The semantics [[Γ,N B ψ : pred]] of a predicate typing is a function
of the typing Γ,N B ψ : pred, and [[Γ,N B ψ : pred]] ⊆ [[Γ,N]].

For command typings, derivations are unique except for derivations of predicates
that occur within commands. Nevertheless, the semantics of commands does not
depend on semantics of predicates, so there is no issue of coherence.

There are two parts of the semantics of commands, however, that are not sim-
ply defined by structural recursion on derivations. The first is that for some com-
mands the semantics is given indirectly by syntactic transformation. Nonethe-
less, these transformations preserve typing (Lemma 3), and the derivations of
the transformed phrases are built from the derivations of the original phrases in
such a way that the semantics depends only on the semantics of subderivations.

Method calls are the second difficult part: [[Γ,N B le.m(e) : com]]η depends
on the semantics of method calls [[Γ,N B η N ′ m(e) : com]]η where N ′ ranges
over subtypes of the type N ′′ of le. The parameterized command η N ′ m can
contain method calls, so the semantics of a method call depends on the semantics
of method calls, which are certainly not part of the derivation of le.m(e).

However, we are only concerned recursion-free environments: those obtained
from Meth Γ cds , in which recursion has been resolved already. The semantics
of a method m of a class N depends only on methods N ′,m ′ that do not depend
on N ,m, and the relation “can call” on pairs N ′,m ′ is well founded. We combine
this lexicographically with the order “is a subderivation” to obtain a well founded
order. We define the notion of the semantics [[Γ,N B phrase : θ]] in the context
of some method N ′,m ′; this depends on subderivations of phrase : θ and also on
semantics for phrases in context of methods N ′′,m ′′ smaller than N ′,m ′.

Theorem 1. For all derivable Γ,N B c : com and all η ∈ [[Γ]], the semantics
[[Γ,N B c : com]]η is a total function on all formulas, regardless of type, provided
that η is recursion-free.

Proof By induction with respect to the order discussed above.
Case assignment: for assignments to simple identifiers, and for assignments to
self , the semantics is given directly. Others are reduced by syntactic transforma-
tions to the simple case. By Lemma 3 the transformed assignments are typable
in Γ,N . Any assignment can be rewritten to a simple one which is unique up to
the order in which variables are listed; and order does not affect the semantics.
Case specification statement: this has a single typing rule and the semantics is
given directly.
Case application pc(e) of an explicit parameterized command (not a method
call): the transformation rules eliminate argument(s) e in favor of local variables
and assignments. The result is typable (Lemma 3). Moreover, the derivation of
the transformed command is composed of subderivations of the original com-
mand. Introducing local variables involves the choice of identifier l , but the
semantics is independent of the choice because l is bound by ∀.
Case method call applied to parameters: a method call m(e) is reduced to
self .m(e), which has the general form le.m(e). Let ψ be any formula. The seman-
tics for le.m(e) is defined provided each fN ′ , i.e. [[Γ,N B η N ′ m(le, e) : com]]η,

A Weakest Precondition Semantics for an Object-Oriented Language 1455

is defined. By the conditions on environments, η N ′ m(le, e) is typable. The
methods on which η N ′ m depends are smaller in our ordering, by the proviso
that η is recursion-free. By induction, [[Γ,N B η N ′ m(le, e) : com]]η denotes a
total function on formulas, and hence so does the semantics of the call.
Cases explicit recursion: this is defined using least fixpoints of program contexts.
Because these are monotonic (Theorem 3), the least fixpoints are well defined.
Cases sequence, alternation and variable blocks: in each case there is a direct
semantic definition and the result holds by induction. 2

Theorem 2. If Γ,N B ψ : pred and Γ,N B c : com are derivable then so is
Γ,N B ([[Γ,N B c : com]]η ψ) : pred, provided η is recursion-free.

Proof By induction, using the order defined above.
Case assignment: for simple variables, the semantics requires that the predicate
e 6= error ∧ ψ[e/x] be typable in Γ provided that ψ is. Thus we need that
Γ B x : T and Γ B e : T ′ and T ′ ≤Γ T imply Γ B ψ[e/x] : pred. That is by
Lemma 4(a). To type e 6= error, we use the typing rule for error (which gives
it any type), and then the rule for built-in functions to type the equality. For
assignments to self , suppose ψ is typable in Γ,N . For each N ′, we have, by
Lemma 4(b), ψ[e, e.x/self , x] typable in Γ,N ′. Moreover, if an assignment to
self is typable in Γ,N , then self is typable in Γ,N and so N 6= main. Thus, by
Lemma 2, (∨N ′≤Γ N • self isExactly N ′ ∧ ψ[e, e.x/self , x]) is typable in Γ,N .
Case specification statement: for Γ ; x : T B x : [ψ1, ψ2] : com to be derivable,
ψ1 and ψ2 are typable in Γ ; x : T . For ψ with Γ ; x : T B ψ : pred the semantics
yields ψ1 ∧ (∀ x : T • ψ2 ⇒ ψ), which can be typed for Γ ; x : T using the rules
for ∧, ∀, and ⇒.
Cases sequence: straightforward use of induction.
Case alternation: by induction, each fi in the semantics yields well-typed for-
mulas, and the guards have to be typable predicates in Γ,N , so the formula
(∨ i • ψi) ∧ (∧ i • ψi ⇒ fi ψ) is also typable using the rules for ∧, ∨, and ⇒.
Case method call: for method calls le.m(e), we have to show that the predicate
(∨N ′• le isExactly N ′ ∧ fN ′ ψ) is typable in Γ,N . By induction, each fN ′ ap-
plies to formulas typable in Γ,N , and each returns the same. Now le is typable
in Γ,N , so by using the rules ∨, ∧, and isExactly we obtain the desired result.
Case blocks: the weakest precondition [[Γ B (var x : T • c end) : com]]η ψ is
defined as (∀ x : T • f ψ), where f = [[Γ ; x : T B c : com]]η. If ψ is typable in
Γ then it is also typable in Γ ; x : T . Therefore f can be applied to ψ and by
induction f ψ is typable in Γ ; x : T , and hence by the typing rule for ∀ we get
(∀ x : T • f ψ) typable in Γ . Similar considerations apply to avar blocks. 2

It is straightforward to formulate and prove definedness and type-preservation
for complete programs, using Theorems 1 and 2.

6 Refinement

In this section we define notions of refinement and give the basic result on mono-
tonicity. To simplify definitions, we assume that all phrases are well-typed.

1456 Ana Cavalcanti and David A. Naumann

The fundamental refinement relationship v is between programs. This is
based on pointwise order on predicate transformers, as usual, but restricted
to healthy predicates just as in languages where procedures can be assigned
to variables [Nau98b, HH98]. As an example, if class CPt suitably refines Pt
we expect the refinement x := new Pt v x := new CPt . But the postcondition
x isExactly Pt is established only by the first assignment. The solution is to
restrict attention to monotonic predicates. For our purposes, a predicate ψ is
monotonic provided that for any object values ov1, ov2, if ov1 satisfies ψ and
ov2 myclass ≤Γ ov1 myclass , and ov2 agrees with ov1 on all the attributes of
ov1 myclass , then ov2 satisfies ψ.

Definition 1. For sequences of class declarations cds and cds ′, commands c
and c′ with the same free variables x : T, define (cds • c) v (cds ′ • c′) if and
only if, for all monotonic ψ,

[[?; x : T B (cds • c) : program]] ψ ⇒ [[?; x : T B (cds ′ • c′) : program]] ψ

The free variables of a program represent its input and output; therefore, it
makes sense to compare only programs with the same free variables.

A program can be refined by refining its command part and its class declara-
tions. Commands in rool apear in the context of a sequence of class declarations,
so we first define relation cds ,N B c v c′, which establishes that in the context
of cds the command c occurring in the class N is refined by c′.

Definition 2. For a sequence of class declarations cds, commands c and c′, and
a class N , define cds ,N B c v c′ if and only if, for all monotonic predicates ψ,

[[Γ,N B c : com]]η ψ ⇒ [[Γ,N B c′ : com]]η ψ

where Γ = (VDecs cds N); x : T, x are the method parameters and local vari-
ables in scope, and η = Meths Γ cds.

Because methods are parameterized commands, we need the analog of Defini-
tion 1 for them.

Definition 3. For sequence of class declarations cds, parameterized commands
pc and pc′, which have the same parameters, and a class N , cds ,N B pc v pc′

if and only if, for all (lists of) expressions e, cds,N B pc(e) v pc′(e)

This is a straightforward extension Back’s definition (see [CSW98]).
Using induction as in Theorems 1 and 2, the following can be proved.

Theorem 3. Suppose we have a sequence of class declarations cds, a class N ,
a parameterized command pc, and a context C[·] which is a parameterized com-
mand, and so, a function from parameterized commands to parameterized com-
mands. If we have that cds ,N B pc v pc′, then cds ,N B C[pc] v C[pc′]. Simi-
larly, the command constructors are monotonic.

This theorem justifies our treatment of recursion and recursive methods.

A Weakest Precondition Semantics for an Object-Oriented Language 1457

As a class is a data type, refinement of classes is related to data refine-
ment [HHS87]. We define the relation view , cds B cds ′ 4 cds ′′, for a list of meth-
ods view and sequences of class declarations cds , cds ′, and cds ′′. The meaning
is that in the context of cds , if only methods listed in view are used, then the
class declaration cds ′ can be replaced by cds ′′.

Definition 4. For a list of methods view, sequences of class declarations cds,
cds ′, and cds ′′, view , cds B cds ′ 4 cds ′′ if and only if, for all commands c that
uses only methods in view, (cds ; cds ′ • c) v (cds ; cds ′′ • c).

Refinement between single classes cd ′ and cd ′′ is a special case. By considering a
more general relation, we allow for restructuring a collection of class declarations.
In practice, Definition 4 would not be used directly, but it is the fundamental no-
tion with respect to which techniques such as downward and upward simulation
must be proved sound [HHS87, Nau98a].

7 Discussion

We have shown how the standard predicate-transformer model can be extended
to an object-oriented language. The semantics can be modified to allow arbitrary
mutual recursion among methods, at the cost of taking a single fixpoint for
the entire environment of methods. This makes it more complicated to prove
refinement laws, so we have chosen the simpler approach at this stage.

Others [Lei98, MS97, BKS98] have extended existing refinement calculi with
object-oriented features, but restricting inheritance or not dealing with classes
and visibility. Those works, however, deal with sharing and concurrency. An-
other approach to objects is implicit in the parametricity semantics of Algol-like
languages. It has been adapted to object-oriented programs by Reddy [Red98],
with whom we are collaborating to give a semantics for rool.

The main shortcoming of our semantics is that it is not entirely composi-
tional. Since our aim is to validate laws like those in [Bor98], for when one class
is a behavioural subclass of another, within the context of some other classes,
this is a potential problem. However, the touchstone criteria for behavioural re-
finement is that cds1 • c v cds2 • c should hold whenever cds2 is obtained from
cds1 by behavioural refinement of some classes. Fortunately, this has a natural
formulation with a single context that includes all relevant classes.

Our notion of class refinement corresponds to the notion of behavioural sub-
typing introduced by Liskov and Wing [LW94]. Definition 4 captures the essence
of their subtype requirement. In our framework the property of interest is refine-
ment of programs, which captures the notion of total correctness. The two ways
of defining the subtype relation presented in [LW94] are based on the downward
simulation technique [HHS87], specialized to the particular case of functional
data refinement. We expect that particular techniques like these can be proved
sound with respect to Definition 4. Similarly, Liskov and Wing claim, but do not
formalize, that their definitions satisfy the subtype requirement.

1458 Ana Cavalcanti and David A. Naumann

By using a language of specification and programming, we do not need a
distinction between specifications and implementations of classes. As already
seen in traditional refinement calculi, this simplifies both the theory of refinement
and the presentation and application of refinement laws.

Acknowledgement This work benefitted from discussions with our collaborators
Augusto Sampaio, Uday Reddy, Paulo Borba, and Hongseok Yang. UFPE and
Stevens provided generous support for travel.

References

[AdB94] Pierre America and Frank de Boer. Reasoning about dynamically evolving
process structures. Formal Aspects of Computing, 6:269–316, 1994.

[AL97] Mart́in Abadi and K. Rustan Leino. A logic of object-oriented programs.
In Proceedings, TAPSOFT 1997. Springer-Verlag, 1997. Expanded in DEC
SRC report 161.

[BvW98] R. J. R. Back and J. von Wright. Refinement Calculus: A Systematic In-
troduction. Graduate Texts in Computer Science. Springer-Verlag, 1998.

[BKS98] Marcello M. Bonsangue, Joost N. Kok, and Kaisa Sere. An approach to
object-orientation in action systems. In Johan Jeuring, ed., Mathematics of
Program Construction, LNCS 1422, pages 68–95. Springer, 1998.

[Bor98] Paulo Borba. Where are the laws of object-oriented programming? In I
Brazilian Workshop on Formal Methods, pages 59–70, Porto Alegre, Brazil,
19th–21st October 1998.

[CN99] A. L. C. Cavalcanti and D. A. Naumann. A Weakest Precondition Seman-
tics for an Object-oriented Language of Refinement - Extended Version.
Available at http://www.di.ufpe.br/~alcc

[CSW98] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. Proce-
dures and Recursion in the Refinement Calculus. Journal of the Brazilian
Computer Society, 5(1):1–15, 1998.

[CSW99] A. L. C. Cavalcanti, A. Sampaio, and J. C. P. Woodcock. An inconsistency in
procedures, parameters, and substitution in the refinement calculus. Science
of Computer Programming, 33(1):87–96, 1999.

[HH98] C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice
Hall, 1998.

[HHS87] C. A. R. Hoare and J. He and J. W. Sanders. Prespecification in data
refinement. Information Processing Letters, 25(2), 1987.

[Lan95] Kevin Lano. Formal Object-Oriented Development. Springer, 1995.
[Lei98] K. Rustan M. Leino. Recursive object types in a logic of object-oriented

programming. In Chris Hankin, ed., 7th European Symposium on Program-
ming, LNCS 1381. Springer, 1998.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of sub-
typing. ACM Transactions on Programming Languages and Systems, 16(6),
1994.

[MS97] A. Mikhajlova and E. Sekerinski, Class refinement and interface refinement
in object-oriented programs. In Proceedings of FME’97: Industrial Benefit
of Formal Methods. Springer, 1997.

[Mor94] Carroll Morgan. Programming from Specifications, 2ed. Prentice Hall, 1994.

A Weakest Precondition Semantics for an Object-Oriented Language 1459

[Nau98a] David A. Naumann. Validity of data refinement for a higher order impera-
tive language. Submitted.

[Nau98b] David A. Naumann. Predicate transformer semantics of a higher order im-
perative language with record subtypes. Science of Computer Programming,
1998. To appear.

[Red98] U. S. Reddy. Objects and classes in Algol-like languages. In Fifth
Intern. Workshop on Foundations of Object-oriented Languages. URL:
http://pauillac.inria.fr/ remy/fool/proceedings.html, Jan 1998.

	Introduction
	Language
	Typing
	Typing Environment
	Expressions and Predicates
	Parameterized Commands, Commands, and Programs
	Properties of Typing

	Semantics
	Environments, Data Types, and States
	Expressions and Predicates
	Commands and Parameterized Commands
	Programs and Method Calls
	Example

	Properties of the Semantics
	Refinement
	Discussion

