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A WEAKLY INFINITE-DIMENSIONAL COMPACTUM WHICH

IS NOT COUNTABLE-DIMENSIONAL

ROMAN POL1

Abstract. A compact metric space is constructed which is neither a countable

union of zero-dimensional sets nor has an essential map onto the Hubert cube.

We consider only separable metrizable spaces and a compactum means a

compact space.

A space is countable-dimensional if X = U^Li X¡ with X¡ zero-dimensional; a

space X is weakly infinite-dimensional if for each countable family {(^4,, B¡):

i = 0, 1, . . . } of pairs of disjoint closed sets in X there are partitions S, between A¡

and B¡ (i.e., closed sets separating A¡ and B¡ inX) with Hf_0 S¡ = 0 [A-P, Chapter

10, §47], [N].

Countable-dimensional spaces are weakly infinite-dimensional2 and an old open

question of P. S. Aleksandrov [Al, §4, Hypothesis] (cf. also [A2], [A-P, Chapter 10],

[S], [N, Problem 13-7]) asked whether the converse is true for compacta.3 In this

note we present a counterexample, i.e., we describe a compactum X with the

properties indicated in the title.

The existence of such an X is an easy consequence of the following lemma.

Lemma. There exists a topologically complete space Y which is totally disconnected

but not countable-dimensional (not even weakly infinite-dimensional).

The existence of such a space Y follows immediately from a construction in

[R-S-W] (see also Comment A). More specifically, if one performs the construction

in Example 4.5 of [R-S-W] using, as indicated in Remark 4.4, the Hubert cube

instead of the n + 1-dimensional cube, then one obtains a compactum M and a

continuous m&pp: M —* A onto the Cantor set A such that each subset of M which

maps onto A is not weakly infinite-dimensional (see Proposition 3.4 and Remark

4.1 of [R-S-W]). It is, however, well known that in this situation there exists a

Gs-set y c M which intersects each fiberp~x(t) in exactly one point [B, p. 144,

Exercise 9a], [Ku2, Chapters IV, IX], and this is the space Y we need.
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2This follows from the fact [H-W, Chapter II, §2, F] that, given two closed disjoint sets A, B c X and

a zero-dimensional set E c X, there is a partition in X between A and B disjoint from E; cf. also [H-W,

Chapter IV, §6, A].

3For nonmetrizable compact spaces, a counterexample was recently constructed by Fedorcuk [F].
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Now, let y be as in the lemma and let X be a compactification of Y with

countable-dimensional remainder X \ Y (the existence of X, which requires only

the completeness of Y, is a well-known fact following easily from a theorem of

Kuratowski [Kul, Théorème 2]; cf. also [E, 4.15]). It is enough to check that X is

weakly infinite-dimensional. Let {(A¡, B¡): i = 0, I, ... } be as above and let

X \ Y = Uf_ i Xt with X¡ zero-dimensional. Let S¡ be a partition in X between A¡

and B¡ disjoint from X¡, i = 1, 2, . . . (see footnote 2), and let S = n,°l, Sr The

set S, being a compact subset of the totally disconnected space Y, is zero-dimen-

sional, and thus (see footnote 2) there is a partition S0 in X between A0 and 50

disjoint from S. Since D ,°10 §t = &> we are done.

Comments. A. The construction of Rubin, Schori and Walsh [R-S-W] which we

have used (in fact, a simpler variant of this construction is enough for our purpose)

is closely related to a construction of Lelek [L, Example, p. 81] which follows an

old idea going back at least to Knaster [Kn], It is our feeling that the space Y did

not appear in the literature much earlier only because it seemed that there was no

reason for such a construction (even the authors of [R-S-W] noted Y only as a

by-product of a certain much more powerful technique they developed). Probably,

the old construction of Mazurkiewicz [Ma] of totally disconnected topologically

complete spaces Mn with dim Mn = n can also be adapted to obtain Y; it also

seems quite probable that Y = A/, X M2 X . . . has the desired property.

B. The existence of X, together with some results obtained in [PI], yields the

following two statements:

(a) There is a weakly infinite-dimensional compactum S containing compact

subspaces of arbitrarily large transfinite dimension (see [H-W, Chapter IV, §6, B]

or [E] for the definition).

(b) The second question formulated by Henderson in [H, p. 168] has a positive

answer, while the first question has a negative answer even for compacta which are

countable-disjoint unions of finite polytopes.

The special construction of Y which we have applied also allows one to choose

an X which maps continuously onto the Cantor set by a map with countable-

dimensional fibers.

C. The space X shows that weak infinite-dimensionality is not a hereditary

property. An idea of Michael [Mi] can be also used to define two (noncomplete)

subspaces A, B oí X which are weakly infinite-dimensional, but their product

A X B is not weakly infinite-dimensional [P2].
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