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ABSTRACT Sleep monitoring is vital as sleep plays an important role in recovering physical and mental
health. To have a sound sleep, one has to avoid bad sleep positions associated with personal health conditions.
However, most of the existing sleep trackers merely show quantitative information about sleep patterns and
duration at each sleep stage, overlooking the importance of sleep positions upon sleep quality. To accurately
keep track of sleep positions, we propose a wearable sleep position tracking system consisting of two
wristbands and one chest-band. We suggest a two-level classifier specialized for sleep motion based on
Dynamic State Transition (DST)-framework. The DST-framework is designed to process the spatio-temporal
sleep motion data collected via accelerometer/gyro sensing and classify twelve sleep position (SP) motions
from four sleep positions. Our experimental results demonstrate that the proposed system effectively and
accurately classify twelve SP motions for tracking sleep positions, and hence, serves as a key building block
for comprehensive sleep care applications related to sleep positions.

INDEX TERMS Sleep position, sleep quality, sleep monitoring, wearable devices.

I. INTRODUCTION

Sleep is one of the major activities of daily living and
occupies one-third of our life. Sound sleep is essential
for us since it plays a vital role in recovering physi-
cal and mental health [1]. Polysomnography (PSG) is a
well-known standard sleep diagnosis tool that figures out
sleep disorders by using a number of physiological sensors
including electroencephalogram (EEG), electrooculogram
(EOG), electromyogram (EMG), electrocardiogram (ECG),
and pulse oximetry [2]. However, PSGmay not be practically
useful because sleeping with many sensors is inconvenient
and undergoing sleep experiments in the dedicated sleep
facility may not precisely reflect real sleep problems.
Recent advances in sensing, wireless communications, and

data analytics have opened up new possibilities for using
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wearable devices like fitness trackers to analyze sleep dis-
orders, i.e., a portable PSG. Besides, smart beds/mattresses,
and external bedside monitors such as camera, light, noise,
temperature optimize the sleep environment for sound sleep.
These devices are ultimately aimed at enhancing sleep by
measuring sleep quantity and quality.

The National Sleep Foundation (NSF) addressed sleep
quantity recommendations across the lifespan, e.g., 10 to
13 hours for teenagers and 7 to 9 hours for adults [3]. Also,
sleep variables such as sleep latency, number of awaken-
ings>6 minutes, wake after sleep onset and sleep efficiency
are used as indicators of sleep quality [4].

Sleep disorders regularly interfere with sleep, causing frag-
mented sleep and excessive daytime sleepiness, which even-
tually leads to poor quality of life. There are many types
of sleep disorders: insomnia, sleep-related breathing disor-
ders, central disorders of hypersomnolence, circadian rhythm
sleep-wake disorders, sleep-related movement disorders, and
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parasomnias [5]. The first step in overcoming sleep disorders
is to identify and track sleep patterns. Self-help remedies,
such as a sleep diary and lifestyle adjustments, can help.
However, severe sleep disorders require medical treatments
such as sleeping pills and surgery by a sleep specialist.
Most sleep gadgets are designed to monitor and regulate

24-hour sleep-wake cycles, a.k.a., circadian rhythms, lack-
ing a function of tracking sleep positions. However, sleep
positions are directly related to some sleep disorders. For
example, a supine position causes unfavorable airway geom-
etry and reduces lung volume, often leading to obstructive
sleep apnea syndrome (OSAS) [6]. In contrast, infants placed
supine is recommended because prone and side positions
are vulnerable to sudden infant death syndrome (SIDS) [7].
Pregnant women are advised to sleep on their side, especially
on the left side for maximum blood flow. Besides, a pressure
ulcer means a skin wound due to prolonged pressure on the
skin. Patients with pressure ulcer can relieve the constant
pressure on the same areas of the body by repositioning
regularly [8].
Clearly, the specific sleep position depending on sleep

disorders has a negative influence on one’s health, thus should
be avoided. As a simple and effective means of therapy,
positional therapy (PT) is given to mild OSAS or snoring
patients [9]. PT uses a pajama with a tennis ball on the
back, making a patient uncomfortable to sleep in a supine
position. However, a sleep tracking system is still needed to
effectively manage sleep positions by monitoring changes in
sleep positions during the night.
For a practical and accurate solution of tracking sleep

positions, it is important to address the following motion
characteristics to deal with the reality associated with sleep
behavior. First, sleep motions show discontinuity character-
istics. Sleep habits such as scratching body and hand stretch-
ing are observed discontinuously during sleep, and these
motions exacerbate the background noise. Second, typical
sleep motions have uncertainty characteristics in motion pat-
terns due to unconsciousness. General activity recognition
approaches are not appropriate to deal with unconscious
sleep motions. Finally, sleep motions have time-variability
characteristics in the sense that the duration of sleep motions
can vary in a wide range. In short, classification of spatio-
temporal Sleep Position (SP) motion is challenging since
unconscious sleep motion includes much noise such as sleep
habits before and after changes in sleep positions.
The key idea to overcome these challenges is to develop

a spatio-temporal state transition model that fits well with a
sequence of sleep motions by exploiting the fact that there
exists a limited range of hand and body movement directions.
Based on this idea, we propose a wearable Sleep POsition
Tracking System (wSPOTS) that utilizes wearable devices to
analyze the sleep motion data of both hands and a chest in
real-time and infers instantaneous sleep position changes.
In particular, wSPOTS: 1) collects directional features

from wearable devices consisting of two wristbands and one
chest-band, 2) aggregates these directional features over time,

and 3) determines/tracks final sleep positions by systemati-
cally processing the spatio-temporal sleep motion informa-
tion via a hybrid learning algorithm, called Dynamic State
Transition (DST)-framework. DST-framework is specially
designed to distinguish sleep positions using noisy sleep data
effectively. DST-framework divides the sleep motion data
into three consecutive states and considers both inter- and
intra-state directions for the spatio-temporal classification.

The major contributions of this paper are as follows:
• We propose a system, called wSPOTS, for tracking sleep
positions in real-time by classifying sleep motions.

• We design twelve Sleep Position (SP) motion models
from four sleep positions, and develop aDST-framework
for the spatio-temporal motion classification.

• We propose a two-level classifier based on
DST-framework which is a core part of wSPOTS.
Depending on Sleep Position Change (SPC) group and
NonSPC group at the first level, detailed SPmotions are
classified in each group at the second level. This two-
level classifier is designed to improve the classification
performance.

• Comprehensive evaluation results in both pilot and
onsite experiments show that DST-framework is practi-
cal and effective in classifying SP motions. In addition,
we compare the performance of various combinations of
wearable devices.

We envision that wSPOTS will be used as a supplement
to existing sleep diagnosis solutions such as PSG, serving as
a cost-effective 24/7 monitoring tool for sleep disorders and
other sleep applications.

The rest of the paper is organized as follows. Section II
reviews the related work. Section III presents the proposed
system, called wSPOTS. Section IV evaluates wSPOTS.
Section V discusses the limitations and future work. Finally,
the paper concludes with Section VI.

II. RELATED WORK

Many types of devices have been developed for tracking sleep
positions to help sleep. Research on sleep position tracking
mainly uses three device types: smart bed, camera, and wear-
able device.

First, most of the studies have used smart bed-type devices
in the form of sensors installed on or near the mattress:
a dense array of the pressure sensor, Inertial Measurement
Unit (IMU) sensor, and wireless sensors (WiFi and RFID).

A high-resolution pressuremap using Force Sensing Resis-
tor (FSR) sensors was used for classifying three sleep posi-
tions such as supine, left lying, and right lying [10]. Three
positions except for a prone position were further classified
into a total of six postures [11], or four main sleep positions
were estimated with Deep Neural Network (DNN) using
the pressure map [12]. For specific application use, infant
postures (such as prone, supine and seated) were estimated
by using a modular pressure-sensitive mat [13]. In the appli-
cation of pressure ulcers, Pouyan et al. classified eight in-bed
postures with a binary pattern matching technique [14] and
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FIGURE 1. Overview of wearable sleep position tracking system (wSPOTS).

three sleep positions with deep learning [15]. Besides, three
sleep positions were recognized by using FSR sensor array in
the form of a pillow [16].
IMU sensor installed on the mattress is used to analyze

sleep motion patterns. Hoque et al. proposed a sleep moni-
toring system based on Wireless Identification and Sensing
Platform (WISP) equipped with accelerometers [17]. The
system distinguished four sleep positions by using the y-axis
accelerometer readings. MediSense [18] did not directly esti-
mate sleep positions, but inferred patient’s motion activities
(stay still, arm wave, body rotate, and body shake) from noisy
bed motions by using z-axis gyroscope readings.
Wi-Sleep [19] classified a person’s respiration, six sleep

positions, and rollovers by leveragingWiFi signals, i.e., chan-
nel state information (CSI), from a pair of TX-RX.
TagSheet [20] used RFID tags on a bedsheet. By using the
backscattered radio frequency signals from the bed sheet to
an RFID reader, TagSheet identified six sleep positions and
estimated respiration rate.
Second, infrared and depth cameras are used to extract

high-resolution image data of body posture and movement
during sleep and to track sleep positions.
RTPose [21] used an infrared camera and estimated upper

leg pose on diverse sleep positions by tracking relative loca-
tions of a head and torso on 2D images. On the other
hand, a depth camera produces more 3D images than the
infrared camera. Thus, feature extraction methods play an
important role in the classification performance. From 3D
scanned human body images, Scale-Invariant Feature Trans-
form (SIFT) [22] and frequency-based feature selection [23]
are used for estimating six sleep positions and two sleep
positions, respectively. Grimm et al. [24] extracted the Bed
Aligned Map from the depth image and classified three sleep
positions with Convolutional Neural Networks (CNN).
Lastly, wearable devices that include an IMU sensor are

useful formonitoring specific body parts by directly detecting
body movements. A straightforward way to monitor sleep
positions is to use a chest-band since sleep positions are

determined by body posture. Sleep positions were easily
classified by setting a simple threshold [25], [26], i.e., the
angle range of chest-band. In addition to studies using chest-
band, there were also studies using smartwatch-type devices.
SleepMonitor [27] was designed to estimate the respiratory
rate and four sleep positions by using accelerometer sensors
on a smartwatch. It used only static windows and discarded
windows containing body movements, and it used three
dimensional tilt angles to detect four sleep positions. Sim-
ilar to SleepMonitor, SleepGuard [28] estimated four sleep
positions when a monitoring window is static, i.e., no motion
in the window, by using both tilt sensor data and orientation
data.

However, existing approaches have the following limita-
tions. First, the accuracy of bed-installed sensors depends
heavily on installation conditions such as how many and
where the sensors are on the bed as well as on environmental
conditions such as movements of a bed partner. Second,
camera-based systems have privacy and installation concerns.
Lastly, most researches using wearable devices used only one
sensor, which limits data collection frommultiple parts of the
body.

Most related to our approach, SleepMonitor and Sleep-
Guard captured the direction of arm posture according to
sleep positions by using one smartwatch. Although we also
use similar observations of the fixed sleeping direction of the
chest and wrists, we focus on the area of activity, i.e., motion-
based recognition. Different from the previous approaches,
our wSPOTS aims to classify twelve motions associated
with sleep positions from noisy motion data while other
approaches aim to estimate sleep positions in static areas.
In addition, we compare the performance depending on the
combinations of three wearable devices.

III. PROPOSED SYSTEM

wSPOTS is designed to track four sleep positions for enhanc-
ing sleep quality. wSPOTS uses wearable devices consist-
ing of three sensors (two wrists and one chest sensors)
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FIGURE 2. Spatio-temporal SP motion classification based on Dynamic State Transition (DST)-framework.

to sense sleep motions, classifies the motions based on
DST-framework, and then tracks sleep positions as shown
in Fig. 1. In this paper, we propose a DST-framework-based
classifier specialized for twelve SPmotions. We also evaluate
the classification performance for a total of seven combina-
tions of the three sensors to determine the suitability of the
combination.

A. BACKGROUND

Spatio-temporal data refers to data having spatial and tempo-
ral information. For the spatio-temporal pattern classification,
Hidden Markov Model (HMM) has been widely used [29]
and has demonstrated its effectiveness in applications such
as speech [30], DNA sequencing [31], and handwritten
digits [32].

ST-SVM algorithm was proposed for video-based identifi-
cation of human behavior [33]–[35]. While traditional HMM
requires the recognition target to be precisely described by the
observation sequences, ST-SVM is flexible enough to trace
the likelihood of sequential states via Support VectorMachine
(SVM). Another strength of ST-SVM is to allow a smooth
state transition via Markov Random Field (MRF), resulting
in much simpler system design yet high performance of
classification. ST-SVM basically adopts a left-to-right model
so that a state index does not decrease as time goes on.

In this work, we have modified the network parameters
(state probability and state transition probability) and the
network model of ST-SVM to be suitable for motion data
and to improve classification performance. We propose two
frameworks, i.e., ST-framework and DST-framework, that
differ from ST-SVM.

For ST-framework, we modify network parameters to fit
IMU motion data. In more detail, we add a new Random
Forest (RF) algorithm to state probability estimation. Also,
we use the historical features of the IMU data instead of
the localized contour sequence (LCS) features, an image
feature, to calculate the state transition probability using the

IMU data. The network model of ST-framework follows the
network model of ST-SVM, i.e., a left-to-right model.

In DST-framework, we extend the network model in
ST-framework to effectively classify actual sleep motions.
The network model plays a vital role in calculating an
accumulated probability across the network by using network
parameters. As shown in Fig. 2(a), we propose a conditioned
fully-connected model, and this model is used as a network
model in DST-framework. While a fully-connected model
enters any other states, the conditioned fully-connected
model can reach pre-determined states depending on the
conditions of the activity periods. For example, this network
model enters only the initial state in a stationary period
and can reach any other states (same to the fully-connected
model) during a non-stationary period. And then, it arrives
the end state in a stationary period.

The conditioned fully-connected of DST-framework has
two advantages. First, a fully-connected model during the
non-stationary period can collect all possible directional fea-
tures from all states of a SP motion. Actual sleep motions
containing sleep habits can be easily transitioned between
adjacent states, which makes the fully-connected model more
effective than the left-to-right model. Second, a network
design with the fixed state during the non-stationary period
not only makes a natural flow of the SP motion consisting
of three states but also reduces confusion between similar
SP motions, e.g., Up-to-Left and Left-to-Up. The directional
features of the two SP motions are similar, but the start and
end feature are distinctly different.

In our previous work, SleePS [36] tracks sleep posi-
tions using deep learning approach (data-driven method)
except for Down sleep position. We extend this work with a
Machine learning approach (model-driven method) to design
a sophisticated sleep position tracking algorithm, called DST-
framework. Note that the previous work does not consider
Down sleep position and has limitations such as difficulty in
tracking all sleep positions.
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FIGURE 3. Twelve SP motion models.

B. DYNAMIC STATE TRANSITION FRAMEWORK

We define twelve SP motion models from four sleep posi-
tions, as shown in Fig 3. To classify the twelve SP motions,
DST-framework models belonging to SPC and NonSPC
groups are generated according to the decision of the
SPC and the NonSPC groups, respectively. Then, the final
SP motion is determined by comparing the accumulated
probabilities across the DST-framework models of the deter-
mined group. DST-framework consists of three primary com-
ponents: Machine Learning (ML)-based state probability,
Markov Random Field (MRF)-based transition probability,
and Viterbi detection.
To illustrate DST-framework more clearly, we introduce

a system diagram of DST-framework. Three components of
DST-framework are used for calculating the probability of SP
motion as shown in Fig. 2(b). Before calculating the probabil-
ity of SPmotion, we extract the state transition probability A.
After that, given input motion features, the state probability
B is estimated. The probability of SP motion is calculated
by considering two network parameters (A and B) on the
network model, and the optimal path q is determined by
Viterbi algorithm.

1) ML-BASED STATE PROBABILITY

For spatial state classification, we employ two well-known
ML algorithms, i.e., SVM and RF, for the state probability.
The posterior probability from the ML algorithms is used as
the state probability of the DST-framework. There are four
classes in each state, and the posterior probability of the
selected class in each SP motion is used in DST-framework.
Let c and x denote a state class of DST-framework and

3-axis Gravity Vector (GV), respectively. GV represents
the directional features from 9-axis Inertial Measurement
Unit (IMU) data. Also let m denote a binary label where
m = 1 indicates a desired state while m = −1 means other
states. With input frames T and states N in Non-Stationary

period, a state probability is specified by a T × N matrix
where each element is given by Pr(c|x). In this work, N is
designed as three.

DST-framework uses a conditioned fully-connected
model. The first and the end state data of SP motion in the
non-stationary period are appended at the initial and the end-
ing stationary periods, respectively, using a padding method.
This design makes a natural flow between the three states
even it has a fully-connected model in the middle network.
DST-framework focuses on figuring out SP motions where
motion occurs, i.e., Non-Stationary period. Thus, we set
the padding size P to 10% of an input frame size T . State
probability with (P+T +P)×N matrix is generated in DST-
framework. To make the state probability using a posterior
probability from ML, we use two ML algorithms: SVM and
RF. We briefly discuss the two ML algorithms as follows.

We use 2-class SVM to calculate a posterior probability.
SVM calculates the state probabilities from incoming feature
data by comparing how similar each sleep motion feature is
to the trained model [37]. That is, SVM calculates the state
probability using a ratio, R of the distance between x and a
hyperplane to the marginal distance as follows:

R(x) = βx + b (1)

where β and b are SVM parameters to specify the decision
boundary. The posterior probability of SVM given observa-
tion x for desired state class c is calculated by converting R
into a value between 0 and+1 through the following sigmoid
function:

Pr(cm=+1|x) =
1

1+ e−R(xt )
(2)

As one of the highly accurate classifiers, RF is an ensemble
classifier consisting of many decision trees. RF compensates
the overfitting problem in a decision tree algorithm by a
random sampling method called bagging [38]. To implement
RF, we use the TreeBagger function in MATLAB and set the
number of trees to 200.

Pr(c|x) =
1

∑E
e=1 wI (e ∈ S)

E∑

e=1

wP̂e(c|x)I (e ∈ S) (3)

where w, e, and E denote the tree weight, tree, and the set
of indices in the selected tree that make up the prediction,
respectively. I (e ∈ S) is 1 if e is in the set S, and 0 otherwise.
P̂e(c|x) is the estimated posterior probability of class c given
observation x. We calculate the posterior probability of RF by
the weighted average of the class posterior probabilities over
the selected trees, as shown in Eq. 3.

2) MRF-BASED STATE TRANSITION PROBABILITY

The state-transition probability quantifies how adjacent
motion features belonging to the same state differ from those
belonging to other states. When a motion is composed of
several consecutive states, it is required that state transitions
naturally take place among adjacent states. To meet this
requirement for a smooth state transition, we use Markov
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Random Field (MRF) to compute the state-transition prob-
abilities such that adjacent and close states have higher state
transition probability than faraway states.
In order to consider this smooth flow between the three

states, we extract the state transition probability using the his-
togram H of directional features in each state. The histogram
H is extracted in each device according to a total of seven
combinations of three wearable devices. For example, a his-
togram feature H = [HLeft ,HRight ,HChest ] in a combination
consisting of three devices has three histogram features.

MRF-based state-transition probability, aij (for the transi-
tion from state i to j) measures the similarity between two
states for randomly selected pairs of Hi and Hj, which are
made of the same number of GV in each state. Hence, aij is
computed as:

αij =
1

Z

∏

Hi∈i,Hj∈j

ϕ(XHiHj ) (4)

where

Z =
∑

j

∏

Hi∈i,Hj∈j

ϕ(XHiHj ) (5)

and
∑

j αij = 1. Also, a potential function ϕ(XHiHj ) is
defined by ϕ(XHiHj ) = e−D(Hi,Hj) where D(Hi,Hj) denotes
the absolute difference between two histogram features. The
3 × 3 matrix of state-transition probabilities is generated in
our framework by applying Eq. 5 on the training data.

3) VITERBI DETECTION

DST-framework applies the Viterbi algorithm to find an
optimal path within the state diagram shown in Fig. 2. Ini-
tial probability in state i is given by 5 = [5i ] where
5i = Pr(qi|t = 1) and a path qi starts from state 1.
Given an input motion feature sequence I , a path q, and
DST-framework parameters {A, B, 5}, a normalized accu-
mulated probability along the optimal path is defined by
Eq. 6. In Eq. 6, A and B indicate the state transition and state
probabilities, respectively.

arg max
∀ path q

{−
log(Pr(I , q|A,B, 5))

T
} (6)

where a joint probability Pr(I , q|A,B, 5) is as follows:

Pr(I , q|A,B, 5) = Pr(I |A,B, 5) · Pr(q|A,B, 5) (7)

Each DST-framework model calculates the probability of
maximum likelihood path from the incoming sleep motion
data.
The final decision of SP motion models is determined by

selecting one of DST-framework models with the highest
accumulated probability as shown in Eq. 8.

output = arg max
η
{DSTη} (8)

where η is the class of SP motion models.

FIGURE 4. System setup: (a) Sensor set (b) A participant wearing sensor
sets (c) Sleep experimental room.

C. WEARABLE SLEEP POSITION TRACKING SYSTEM

In this section, we describe the configuration of wSPOTS,
pre-processing, and a two-level classifier. The two-level clas-
sifier consists of the first classifier (C1) and the second
classifier (C2).

1) SYSTEM SETUP

Fig. 4 shows the system setup. The hardware of wSPOTS
consists of three wearable devices, i.e., two for wrists and one
for chest, as shown in Fig. 4(a). The two wrist-bands and one
chest-band use the same 9-axis IMU sensor containing 3-axis
accelerometer, 3-axis gyroscope and 3-axis magnetometer
sensors for collecting sleep data. The IMU sensor in our sys-
tem is an AHRS EBIMU24GV module with a sampling rate
of 100Hz from E2BOX Company in Korea, an accelerometer
sensor range of 2g, and a gyroscope range of 2000dps. The
sensed data from IMU sensors are sent to a Laptop through
2.4GHz wireless communication.

A participant wears three IMU sensors that are placed
according to a pre-defined orientation such that a y-axis in the
sensor coordinate system points to the fingertip while z-axis
points the downward direction in the back of a hand. The
chest sensor is also aligned such that its y- and z-axis points
to legs and the downward of the chest, respectively, as shown
in Fig. 4(b)(c). With these wearable devices, we evaluate the
performance of wSPOTS by analyzing datasets from both
pilot and onsite experiments.

The pilot experiment is an experiment that repeats pre-
classified SPmotions with a fixed interval time in a controlled
environment. We recruited five participants and asked them
to perform the pre-classified SPmotion slightly differently at
a fixed time interval about 100 times.

The onsite experiment is an actual night sleep experiment.
We have built a sleep test-bed in our lab and collected night-
time sleep data for a total of eleven participants. All partici-
pants were composed of young men in their 20s. An infrared
camera sensor (Kinect) was installed on top of the sleep test-
bed for ground-truth labeling as shown in Fig. 4(c), and all
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SP motions in the onsite experiments were categorized by
manually identifying the sleep position change in the video
recording of the infrared camera sensor. Note that sleep exper-
iments of the participants were approved by the Institutional
Review Board (IRB) at DGIST.

2) PRE-PROCESSING

In this section, we will explain how to handle pre-processing
procedures: motion detection, motion grouping, and genera-
tion of directional features.
First, motion detection is used to find activity periods

to analyze human activities. The activity periods are use-
ful to eliminate cumulative errors using a method called
a zero velocity update in navigation and tracking applica-
tions [39]. To consider both the acceleration and the angular
rate in human motion, we consider the magnitude of both the
accelerometer and the gyroscope sensor. Also, we apply a
high pass filter to the accelerometer sensor Ahpf to consider
only the change of the accelerometer sensor without a gravity
component. The magnitude of two sensors, mA and mG, are
defined with Eq. 9 and Eq. 10.

mA = (Ahpf
x )2 + (Ahpf

y )2 + (Ahpf
z )2 (9)

mG = (Gx)
2 + (Gy)

2 + (Gz)
2 (10)

Thereafter, we normalize the two magnitude values and
define the sum of the two normalized values asVi with Eq. 11.
We define the value ofVi at an instance i as a stationary if it is
smaller than a heuristic threshold γ , and as a non-stationary
otherwise. For the heuristic threshold γ , we extract a SP log
from three wearable sensors by changing the threshold. And
then, we select an optimal threshold that the SP log from the
wearable sensors and a SP log from Kinect camera (ground
truth) are the most consistent.

Vi =
mA(i)

max(mA)
+

mG(i)

max(mG)
(11)

By using the timestamps of the non-stationary period,
we confirm when and where the motion has occurred. The
motion detection uses all three devices to compare and
analyze the performance of the proposed algorithm, i.e.,
DST-framework. Note that SP tracking performance would
be decreased in the case of fewer than three devices due to
missing of detecting sleep motions.

Second, we use a motion grouping. It is designed to con-
sider adjacent motions that they are scattered but correlated
to the sleep position change. The motion grouping connects
adjacent motions as one motion within a pre-defined time
by observing timestamps. Adjacent motions are grouped into
one motion if the motions occur within the pre-defined time
ϕ between them as shown in Alg. 1, where we set ϕ to one
minute.

Lastly, directional features, i.e., GV, are extracted using
orientation of the IMU sensor. We generate the orienta-
tion, quaternion q, by an accelerometer/gyro sensor fusion
algorithm, i.e., Madgwick AHRS algorithm [40]. Thereafter,

Algorithm 1Motion Grouping
Result: Filtered motion timestamps in a queue Q
τ, η, ϕ← Timestamp, temp variable, and threshold
Qstart ,Qend ← queues for start timestamp, and end
timestamp
ϕ = 1 minute // Initialization process
ηstart = τstart (m1)
ηend = τend (m1)
Qstart = EnQueue(ηstart )
while Incoming new Motion mi do

ζ = τstart (mi)− ηend
if ζ < ϕ then

ηend = τend (mi)
else

Qend = EnQueue(ηend )
ηstart = τstart (mi)
Qstart = EnQueue(ηstart )

end

end

directional features are calculated by quaternion rotation
mathematics.

According to [41], the current IMU sensor orientation,
quaternion q, is defined by three imaginary numbers and one
real number as

q = q0 + q1i+ q2j+ q3k (12)

The GV is calculated by applying to the current IMU
orientation q by tacking the conjugation of r by q

r ′ = q · r · q∗ (13)

where r is a unit vector [0, 0, 1] representing the global z-axis,
and r ′ representing GV is a rotated vector in the global axes.
The rotated vector r ′ lies on a unit sphere. We compute GV
for every sensor reading, and then apply to the next process.

The direction of sleep motions is influenced by the ori-
entation of bed, and sometimes one sleeps in an arbitrary
direction different from the bed direction owing to sleeping
habits. This causes the direction of sleep motion feature to
deviate from the predefined one. To address this challenge,
we transform the quaternion data into a GV that represents
a z-axis (gravity force) component of the sensor to extract
an orientation-invariant sleep motion feature while losing
horizontal (i.e., x- and y-axes) information of the sensors.
GV is used as directional features in our system. Note that
gravity pulls everything towards the center of the earth and is
captured by 3-axis accelerometer sensors with 1g gravity in
a static condition.

3) FIRST CLASSIFIER

The directional features ofUp sleep position occupymost of a
unit sphere due to the high degree of freedom. By considering
this unevenly distributed feature characteristic, we divide all
SP motions into two groups (SPC group and NonSPC group)
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TABLE 1. Feature design for the first classifier C1.

TABLE 2. DST-framework model components in SPC group.

and classify SP motions separately in each group. For exam-
ple, Up-to-Up motion in SPC group tends to have a higher
accumulated probability than Up-to-Left motion in NonSPC
group due to the feature distribution.

The first classifier C1 plays the role of classifying SPC
group and NonSPC group. The two groups also show imbal-
anced datasets since raw sleep datasets are imbalanced.
We adopt a Random Under Sampling Boost (RUSBoost)
algorithm since it is one of the effective ML algorithms for
classification of imbalanced datasets [42], [43]. The logic
behind the RUSBoost algorithm is undersampling by taking
the minimum sample number N in every class and taking
an optimal subset of data with N in each class through an
adaptive boosting.

For feature extraction, we use a 3-axis GV and generate
a total of 66 features in the time-domain and frequency-
domain as shown in Tab. 1. These features are used for
human physical activity recognition [44], [45]. Performance
analysis for this first classifier C1 will be covered in detail in
Section IV-C.1. Note that all programming and analysis were
done by using MATLAB.

4) SECOND CLASSIFIER

After classifying SPC andNonSPC group, wSPOTS performs
detailed SP motion classification in a second classifier C2

according to the group. Eight SPmotions are in the SPC group
while four SP motions are in the NonSPC group.

For classification of twelve SP motions, wSPOTS gener-
ates DST-framework models belonging to each group (SPC
or NonSPC) by using components for each state as shown
in Table 2 and Table 3. For example, Up to Left motion
model is made by a combination of features corresponding
to Up in State 1, Up → Left||Left → Up in State 2, and
Left in State 3. The Up → Left and Left → Up are con-
sidered as the same directional features since they have the
same directional features, i.e., GV, when considering only the
directional components. Detailed state transition probability,
state probability, and the final decision for DST-framework
are described in Section III-B above.

We use SVM and RF as conventional ML algorithms in
the second classifier C2. 66 features in the first classifier

TABLE 3. DST-framework model components in NonSPC group.

C1 are used equally for the two algorithms as input features
in the second classifier C2. Besides, we also evaluate ST-
framework that uses a left-to-right model. The ST-framework
is also a newly proposed algorithm, but DST-framework is
a more enhanced framework tailored SP motions by using
conditioned fully connected model.

IV. EVALUATION

In this section, we describe the datasets that we collected for
system performance evaluation of wSPOTS. We first evalu-
ate two classifiers of wSPOTS separately in the algorithm-
level evaluation. In addition, we evaluate the performance
of wSPOTS considering the two classifiers together for the
system-level evaluation.

A. EVALUATION DATASETS

We evaluate the system performance of wSPOTS through two
experiments: Pilot and Onsite experiment.

The pilot experiment means to perform specific SPmotion
in a controlled environment. Through this experiment, we can
make each SP motion models based on DST-framework and
evaluate the classification performance experimentally. Par-
ticipants are required to move randomly about a hundred
times in each SP motion to obtain data under the controlled
conditions.We recruited five participants and collected a total
of 6,256 balanced datasets.

The onsite experiment refers to actual overnight sleep data.
This experiment is designed to confirm the classification
performance of the proposed algorithm in SP motions of
actual sleep. We recruited eleven participants, and a total
of 516 imbalanced datasets were collected. At this time,
the ground truth label for each SPmotion is labeled manually
by observing the video record of an infrared camera (Kinect
sensor). A detailed description of collected datasets for the
two experiments is shown in Table 4.

B. EVALUATION METRICS

For classification performance evaluation, a confusion matrix
is widely used. The confusion matrix sorts all cases results
from the classification model into categories by determining
whether the predicted value matches the actual value. In the
confusion matrix, we can compute basic metrics such as True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN). In our system, we use two performance
metrics by using the confusion matrix and basic metrics:
overall Accuracy and average F1-score.
Overall Accuracy is a good performance metric for over-

all classification performance when the entire data set is
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TABLE 4. Datasets description in Pilot experiment and Onsite experiment.

nearly balanced. This metric is calculated as the total number
of correctly classified items divided by the total number of
test items in a confusion matrixM as shown in Eq. 15. How-
ever, actual sleep motion data shows imbalanced datasets,
so it is not enough to evaluate the classification performance
with only the overall Accuracy.
Therefore, we also use another performance metric,

i.e., F1-score, which is an effective metric for the imbalanced
datasets [46]. F1-score is a harmonic average of precision
and recall with Eq. 17. Precision and Recall have different
purposes in system performance evaluation. Precision with
Eq. 15 seeks to reduce FP while Recall with Eq. 16 tries to
reduce FN. We calculate F1-score for every class and use
the average overall classes, i.e., average F1-score, as the
performance metric with Eq. 18, where c and m denote class
and the number of class, respectively.

Overall Accuracy =

∑
Mi,j(x|i == j)∑

Mi,j(x)
(14)

Precision =
TP

TP+ FP
(15)

Recall =
TP

TP+ FN
(16)

F1score = 2
Precision · Recall

Precision+ Recall
(17)

Average F1score =
1

m

m∑

c=1

F1score(c) (18)

C. ALGORITHM-LEVEL EVALUATION

In this section, we evaluate the classification performance
of two classifiers at each level according to both pilot and
onsite experiments. In addition, we evaluate the performance
by considering combinations of three wearable devices.

1) FIRST CLASSIFIER EVALUATION

The first process of wSPOTS is to classify motion groups:
SPC and NonSPC. This is called a first classifier C1. We use
RUSBoost algorithm for C1. Note that RUSBoost algorithm
is selected as a simple filter. Comparing with other algorithms
is beyond the scope of this work. We focus on the second
classifier C2 based on DST-framework.

TABLE 5. First classifier (C1) evaluation by using RUSBoost algorithm.

We have labeled datasets for SPC group and NonSPC

group as shown in Tab. 4. By using these labeled datasets,
we conduct 5-fold cross validation in each experiment.
Table 5 shows the classification performance of SPC and
NonSPC according to a total of seven combinations of three
devices in a pilot experiment and an onsite experiment.

In the pilot experiment, all combinations show good perfor-
mance with higher than overall Accuracy of 0.86 and aver-
age F1-score of 0.84. Combinations using only wristbands
such as L-band, R-band, and LR-band show relatively low
performance compared with other combinations. There is no
significant difference when comparing overall Accuracy and
average F1-score since the datasets of the pilot experiment
are balanced datasets.

In the onsite experiment, classification performance shows
a tendency similar to the pilot experiment, but the over-
all performance is slightly decreased due to sensing noise
caused by sleep habits. Although the overall Accuracy rep-
resents the overall classification performance, the average
F1-score ismore effective performancemetric for imbalanced
datasets [46]. Combinations including a chest-band such as
C-band, LC-band, RC-band, and LRC-band, show good per-
formance with higher than overall Accuracy of 0.95 and
average F1-score of 0.92.

Experimental results of the first classifier C1 demonstrate
that four combinations including a chest-band achieve high
performance in both pilot and onsite experiments. A com-
bination using only a chest-band, i.e., C-band, shows the
best performance in the first classifier C1. It is because
many features from multiple sensors may not be effective
in RUSBoost. However, the C-band shows relatively low
performance than the other combinations in a second clas-
sifier C2. We will discuss a detailed performance evaluation
for the second classifier C2 in the next section.

2) SECOND CLASSIFIER EVALUATION

Second classifier C2 performs detailed SP motion classifica-
tion depending on SPC and NonSPC. To evaluate the second
classifier C2, we use six algorithms: SVM, RF, ST-SVM,
ST-RF, DST-SVM, and DST-RF. To train and test SP motion
models with multiple algorithms, we conduct 5-fold cross-
validation in the pilot experiment. To evaluate the second
classifier C2 using onsite datasets, we use the datasets
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TABLE 6. Algorithm-level evaluation: Overall Accuracy of second classifier (C2) considering multi-level approach.

TABLE 7. Algorithm-level evaluation: Average F1-score of second classifier (C2) considering multi-level approach.

collected in the pilot experiment as a training dataset to train
each SPmotion, and use the datasets of the onsite experiment
as a test dataset.
Table 6 and Table 7 show detailed classification perfor-

mance evaluation of the six algorithms in the two exper-
iments. In this evaluation, we take three key aspects into
consideration: a design of two-level classifier, both pilot
and onsite experiments, and combinations of three wearable
devices.
First, the evaluation results demonstrate that two-level clas-

sifier as designed achieves better classification performance
than one-level classifier. The one-level classifier directly
classifies twelve SP motions without a filtering process for
SPC and NonSPC. All algorithms in both pilot and onsite
experiments show consistent results, demonstrating that our
design of two-level classifier is effective in classification
performance.

Second, we compare the performance of six algorithms in
the two experiments. The proposed algorithms based on the
DST-framework in the pilot experiment show acceptable per-
formance, but conventional ML algorithms such as SVM and
RF show slightly better performance. The pilot experiment
collects SPmotions in a controlledmotion patternwith a fixed
time interval, which generates regularized static patterns.

The ML algorithms effectively classify these static patterns.
However, the ML algorithms show significant performance
degradation in the onsite experiment. The actual sleep data
include many sensing noises caused by sleep habits and time-
varying data, resulting in motion patterns different from those
of the pilot experiment. The proposed algorithms show more
robust and accurate performance in classifying actual sleep
motions.

Lastly, we evaluate the combinations of wearable devices.
Obviously, with more sensors, the classification performance
improves. In order to achieve high classification performance,
using only one chest-band is acceptable but it shows low
performance compared to combinations of one chest-band
and at least one wristband.

Fig. 5 shows a summary plot of the experimental results.
Experimental results demonstrate that algorithms based on
DST-framework performs well in the pilot experiment and
outperforms the other algorithms in the onsite experiment.
Specifically, DST-RF algorithm provides the most robust
and accurate classification performance when considering
two experiments and seven combinations of three wearable
devices. In the evaluation of actual sleep data, we confirm
that RF is better than SVM, ST-framework is better than RF,
and DST-framework is slightly better than ST-framework.
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The results indicate that conventional ML algorithms (SVM
and RF) perform effectively in the proposed frameworks, and
we achieve even further performance improvement by modi-
fying the network model, i.e., DST-framework. We select the
DST-RF algorithm for C2 in wSPOTS.

D. SYSTEM-LEVEL EVALUATION

wSPOTS is a two-level classifier consisting of a first classifier
C1 and a second classifier C2 at each level for classifying
twelve SPmotions. According to the decision of the first clas-
sifier C1, the second classifier C2 based on DST-framework
performs detailed SP motion classification. In the algorithm-
level evaluation, two classifiers are evaluated independently,
and the optimal algorithm in each classifier is selected. On the
other hand, the system-level evaluation implies that two clas-
sifiers are considered together. That is, the prediction results
from the first classifier C1 influences on the second classifier
C2. We use RUSBoost for the first classifier C1 and DST-RF
for the second classifier C2, and the results of the system-
level evaluation are shown in Table 8.
In the pilot experiment, classification performance results

show performance degradation about 0∼9% and 0∼10% in
overall Accuracy and average F1-score, respectively, due to
false prediction results from the first classifier C1. There
is no big difference between two performance metrics and
show high performance over 0.88 in overall Accuracy and
0.87 in average F1-score, except for combinations that only
use wristbands.
On the other hand, the onsite experiment shows even

worse performance degradation than the pilot experiment,
decreasing about 3∼10% and 0∼18% in overall Accuracy
and average F1-score, respectively. As discussed earlier,
the datasets of the onsite experiment are imbalanced datasets.
The datasets cause significant performance degradation if
the second classifierC2 leads to false prediction in the minor-
ity class. Combinations having one chest-band and at least
one wristband show acceptable performance over 0.94 in
overall Accuracy and 0.79 in average F1-score.
The evaluation results indicate that for practical and accu-

rate monitoring applications, one chest-band is possible, but
combinations consisting of one chest-band and at least one
wristband are more desired.

V. DISCUSSION

wSPOTS aims to classify SP motions from the motion noise
during sleep caused by the unconsciousness. Based on our
observations on actual sleep motions, we note there exist so
many noises such as scratching body and stretching. More-
over, mostmotions related to SP change includemotion noise.
It makes it challenging to generate regulated motion patterns
for motion recognition, which affects tracking system perfor-
mance. To address this real-realm tracking issue, we designed
DST-framework, which is more robust to sensing noise.
We demonstrate the effectiveness of the DST-framework in
the evaluation section. Further, we evaluated combinations of
wearable devices for finding the best solution in SP tracking
problem.

TABLE 8. System-level evaluation using RUSBoost (C1) and DST-RF (C2).

There are some limitations in this work. First, motion
noise can be caused by the loosening of a device during
sleep. SmartMove [47] tested the mount conditions such as
tightly mounted and loosely mounted. The loosely mounted
device showed a high variation in sensing values than that
of the tightly mounted device. We also observed that some
participants’ mount position is a little bit moved due to roll
over during sleep. This loosely wearing condition might be
one of the factors leading to poor performance in using a
single device during sleep.

Second, unfortunately, there are missing data in the
onsite experiment due to characteristics of imbalanced sleep
motions, e.g., Down-to-Down motion. Thus, there are lim-
itations verifying the classification performance of all SP
motion classes in detail. To overcome the limitation, we train
DST-framework based on a model-based approach with pilot
experiment dataset and test with onsite experiment dataset
for evaluation using actual sleep data. In this way, we can
claim the overall superiority of the proposed DST-framework
by comparing ML algorithms and device combinations.

Lastly, wSPOTS does not consider real-time issues.
Although we developed a motion-based SP motion classifi-
cation, our system gives passive feedback that displays the
user’s SP log after the user wakes up.

For future work, we plan to extend the current work in sev-
eral directions for a comprehensive sleep care system. First,
with the advance of deep learning techniques, it is possible to
studymore specialized classifier and personalization. Current
wSPOTS is based on a model-based SP classifier. We will
conduct data-driven research related to personalization based
on big data from many users. Besides, sleep characteristics
according to age, gender, and sleep disorders with deep learn-
ing will also be analyzed for the personalization study.

Second, eXplainable Artificial Intelligence (XAI) is essen-
tial in medical applications [48]. Successful AI systems are
usually applied in a black-box manner, but they should
be interpreted and verified by medical experts. In actual
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FIGURE 5. Second classifier (C2) performance evaluation depending on seven combinations of three devices: (a) Pilot experiment, (b) Onsite
experiment.
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sleep data, we observed much noise that resulted from sleep
behaviors, such as scratching body, stretching, hand moving,
arm raising, and body trembling. In addition to tracking
sleep positions, we will research the automatic classifica-
tion of these microscopic sleep behaviors for XAI in sleep
applications.
Lastly, Human-in-the-Loop Cyber-Physical Systems

(HiLCPS) considers human as a component in the loop
and gives appropriate actions [49]. Many off-the-shelf sleep
trackers just passively give sleep information to the user.
However, a system that gives active feedback to the user can
further improve sleep management. We have evaluated the
reaction of users by using chest band-based vibration feed-
back system in real-time, which is called SleepManager [50].
SleepManager uses a simple threshold to classify two sleep
positions and gives vibration feedback to the user when it
detects a supine position. We will further investigate issues
related to real-time constraints and user adaptability of feed-
back in HiLCPS.

VI. CONCLUSION

Tracking sleep positions is challenging since uncon-
scious sleep behavior is neither consistent nor predictable.
To address this challenge, we propose a two-level classifier
specialized for twelve SPmotions based on DST-framework.
The proposed wSPOTS, together with a spatio-temporal clas-
sification algorithm, i.e., DST-framework, aims to be used as
an effective tracking system in positional sleep treatment.
Experimental results demonstrate that proposed algorithms

based on DST-framework in wSPOTS show good classifica-
tion performance in a pilot experiment and outperforms other
conventionalML algorithms such as SVMandRF in an onsite
experiment. In addition, we evaluate seven combinations of
three wearable devices to check the suitability for practical
and effective sleep monitoring applications.
The results support that wSPOTS is capable of tracking

sleep positions effectively. We expect our system to be one
of the key building blocks for comprehensive sleep care.
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