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Abstract. With a surge in online medical advising remote monitor-
ing of patient vitals is required. This can be facilitated with the Remote
Photoplethysmography (rPPG) techniques that compute vital signs from
facial videos. It involves processing video frames to obtain skin pixels,
extracting the cardiac data from it and applying signal processing filters
to extract the Blood Volume Pulse (BVP) signal. Different algorithms
are applied to the BVP signal to estimate the various vital signs. We
implemented a web application framework to measure a person’s Heart
Rate (HR), Heart Rate Variability (HRV), Oxygen Saturation (SpO2),
Respiration Rate (RR), Blood Pressure (BP), and stress from the face
video. The rPPG technique is highly sensitive to illumination and mo-
tion variation. The web application guides the users to reduce the noise
due to these variations and thereby yield a cleaner BVP signal. The ac-
curacy and robustness of the framework was validated with the help of
volunteers.

Keywords: remote photoplethysmography · deep learning · vital signs
measurement · computer vision

1 Introduction

Measurement of vital signs like the HR, HRV, SpO2, BP, stress and temperature
are important to understand a patient’s health status [24]. Presently, monitor-
ing these vitals requires patients to either visit a clinical facility, or buy multiple
devices such as the BP monitor, oximeter, and thermometer which they must
learn to use. Wearable sensor devices like smart watches are also available but
patients must buy the reliable devices approved by Health Canada. Therefore,
an alternative mode of remote vital signs monitoring with a single device (smart-
phone or web camera) will be beneficial as the users can measure their vitals at
the comfort of being at home and without buying additional devices or receiving
prior training on device usage.

In the 1930s, Hertzman proposed the principle of Photoplethysmography
(PPG) [8]. In PPG method, the skin is illuminated with light and in propor-
tion to the volume of blood flowing through the tissues, a part of the light is
absorbed by the tissues and the rest is reflected. From the reflected light, the
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BVP signal is extracted, which is processed further to compute the HR [31]. The
first commercial oximeter based on PPG was introduced in 1983 [14]. Oxime-
ters contain a photodiode sensor which measures the intensity of reflected light.
Based on this technique, many commercial devices are available today and are
widely used to measure the HR and SpO2 [9]. Researchers have used PPG sig-
nals obtained from contact PPG sensor devices and analyzed them using machine
learning algorithms to calculate HR and BP [10,27]. With the popularity and
wide use of camera based smartphones, researchers have used videos of fingertip
and monitored changes in skin color over a period of time to extract the BVP
signal [20]. In recent years, the remote Photoplethysmography (rPPG) methods
for measuring vital signs based on the principle of PPG have gained momentum,
which are referred to as rPPG methods [28]. These methods employ a contact-
less camera to capture face video for vital signs measurement under laboratory
environment [17,19] with controlled lighting conditions and no subject move-
ments. These good quality videos without real life environmental noises result
in clean BVP signals and provide good measurement accuracy. However, many
users are hesitant in using online systems to record their face videos. Therefore,
the technology needs to be enhanced with privacy measures to work in real world
use case scenario and validated using a large sample population having different
physical traits and health conditions before it can be deployed in clinical care in
Canada.

In this paper, (1) we present a web application framework with a back-end
server as shown in Fig. 1 for remote web-based measurement of vitals signs
namely HR, HRV, SpO2, RR, BP and stress in near real-time using a privacy
preserving face video captured with a device camera. (2) We validate the rPPG
technology using our web application in the real world environment with different
sources of light, varying camera resolutions, multiple browsers, several devices,
and networks. (3) Extensive research was done to explore existing rPPG meth-
ods [23] and improve the BVP signal by diminishing motion and light noises
encountered in real world environment and giving the user appropriate messages
to capture a good quality video. In this version of the application, scalability

Fig. 1. Overview of the framework. It comprises of three subsystems: (a) front-end
HTML application, (b) back-end processing python module and (c) SQLite database.
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and load balancing was not addressed. Instead, we focused mainly on validating
the accuracy of the framework in the real world.

The rest of the paper is organized as follows. Background and related work are
presented in Section 2. The web application framework is explained in Section
3 and its experimental validation is described in Section 4. Finally, Section 5
concludes the paper with an outline of future work directions.

2 Background and Related Work

A web application is a software built using client-server architecture with the
client side made accessible on the web to communicate with the users and obtain
information that is transferred to the back end server for processing. The results
can be reported back to the user. It can allow ubiquitous access to a wide range
of users, and therefore, is ideal to validate the rPPG technology using a large
number of volunteers. In this section we present some required concepts and
literature review of the different methodologies we applied to implement a robust
rPPG framework.

2.1 Remote Photoplethysmography (rPPG)

rPPG models estimate user vital signs from face videos using signal processing
techniques and machine learning models [24]. The complete method consists of
the following steps.

1. Detect Region of Interest (RoI)s: Identify face landmarks such as eyes, nose,
lips, forehead, cheeks, and segment RoIs in the video frames to obtain the
raw signal;

2. Noise reduction: Improve the video quality to reduce the noise due to light
and motion and thereby, improve the quality of the raw signal;

3. Signal extraction: From the RoIs of the improved video, BVP signals are
extracted based on change in pixel colors representing the periodicity of
blood flow under the skin;

4. Vital signs computation: On the BVP signal, different computational pipelines
are applied to calculate HR, HRV, SpO2, RR, BP and stress.

2.2 Literature Review

RoI Detection: The face is detected and suitable RoIs are segmented to extract
a periodic BVP signal. This signal is often dampened by motion artifacts owing
to involuntary facial movement like blinking, twitching, smiling, and frowning
[31,19]. Therefore, it becomes necessary to choose a RoI that includes the least
noise and the most cardiac information. Two methods are commonly used for
extracting the RoIs on the face [31,19]. The first method uses a face detector to
segment the face with a bounding box. The second method predicts the coordi-
nates of the facial landmarks, which can then aid in segmenting the RoIs.
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Noise Reduction: Two major sources of noise that result in poor quality BVP
signal are, (a) inconsistent illumination and (b) movement [24].

Illumination Noise: In low light environment the skin cardiac data is not
clearly visible, which affects the extracted PPG features [19]. Guo et al. [12]
applied Histogram Equalization (HE) to the videos and found that the enhanced
videos gave larger RoIs than the original ones and also improved the quality of
the signal. Qiao et al [24] used HE to improve the lighting in the video when the
background light was low.

Motion Noise: Rahman et al. [25] and Qiao et al. [23] used detrending filter
and moving average filter to remove the stationary components and motion ar-
tifacts from the signal, respectively. Detrending helps attenuate the background
intensity noise from the signal. Moving average filter computes the average of
the datapoints between the video frames, thereby reducing the random noise yet
retaining a sharp step response. The denoise filter helps in removing the jumps
and steps in the signal caused by head movements such as rotation or shaking.

Signal Extraction: The individual face video frames are monitored over a
period of time to track the changes in pixel color intensity to generate the BVP
signal. All the three-color channels namely red (R), green (G) and blue (B),
contain pulsatile data. Wang et al. [32] utilized the data from the green channel
while Poh et al. [22] used all the three-color channels.

Vital Signs Computation: The different methods are briefly described below.
HR: The interval between the peaks of the time-domain BVP signal indicates

the HR but this method is very sensitive to noise. The BVP signal can be
transformed into the frequency domain using Fast Fourier Transform [19]. The
highest peak in the frequency spectrum is the fundamental frequency fHR. Qiao
et al [24] calculated HR as fHR * 60.

HRV: Inter Beat Interval (IBI) is the time period between the heartbeats.
HRV can be computed by calculating the time interval between two successive
peaks in the BVP signal [26]. Qiao et al. [24,23] calculated IBI = tn − t(n−1)

where tn is the time of the n th detected peak. They calculated HRV according
to Eq. 1, where N is the number of IBIs in the sequence.

HRV =

√

√

√

√

1

N − 1

N−1
∑

i=1

(IBIi − IBIi+1)2 (1)

SpO2: Based on the principle that the absorbance of Red (R) light and In-
frared (IR) light by the pulsatile blood changes with the degree of oxygenation
[15], SpO2 is calculated from the BVP signal. The extracted BVP signal ob-
tained from the reflected light is divided into two parts: the Alternating Current
(AC) component resulting from the arterial blood and the Direct Current (DC)
component resulting from the underlying tissues, venous blood, and constant
part of arterial blood flow. The SpO2 level in the blood can be calculated using
Eq. 2.
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SpO2 = A−B ×

ACR/DCR

ACIR/DCIR

(2)

where parameters A and B can be calibrated by using a pulse oximeter. Qiao et
al [24] set 1 and 0.04 as the calibration parameters A and B respectively.

RR: Due to its non-stationary nature, estimating RR from PPG is challeng-
ing. Park et al. [21] extracted the dominant frequency from the BVP signal, used
an infinite impulse response filter to eliminate cardiac component, and then used
adaptive lattice notch filter to estimate RR. In this project, we estimated RR
by using a bandpass filter to retain frequencies in the range of 0.15 - 0.35 Hz,
and the peak in the resultant signal times 60 was taken as the RR.

BP: Non-linear regression models have shown good accuracy in estimating
the BP [16] proving that BP and PPG have a non-linear correlation. Shimazaki
et al. [27] used autoencoders to extract the complex features that could be used
as input to a four layer neural network. Viejo et al. [29] fed the amplitude and
frequency of detected peaks to a regression model comprising a two layer feed
forward network. Huang et al. [13] used the results from transfer learning on
MIMIC II dataset with k-nearest neighbours for BP prediction from face videos.
Qiao et al. used a deep neural network with ResNet blocks and employed transfer
learning by first training the network with finger PPG data and then with face
video rPPG data.

Stress: HR is an indicator of stress level. In this project, we calibrate the
stress as follows: relaxed when HR < 67 bpm, normal when 67-75 bpm, low
when 75-83 bpm, medium when 84-91 bpm, high when 92-100 bpm, very high
when 101-109 bpm and extreme when HR > 109 bpm.

An overview of the commercially available applications for estimating vital
signs from face videos is illustrated in Table 1. These applications offer the
solution to measure multiple vital signs with a single device which is why we
implemented the same approach with improved noise reduction techniques.

3 Web Application Framework

The proposed web application framework version 1.0 is a python web framework
having a client-server architecture which is composed of three subsystems as
shown in Fig. 1. The server hosts the front-end application, manages resources,

Table 1. Overview of existing commercial applications for remote measurement of
vital signs.

App Technology Face Finger SDK Free
Vitals Measured

HR HRV RR SpO2 BP Stress

Anura [1] TOI X X X X X

Happitech [5] PPG X X X X

Binah.ai [2] PPG, rPPG X X X X X X X X X

Veyetals [6] PPG, rPPG X X X X X X X X X X
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and delivers the back-end functionality including data processing, storage, and
running the computational models for estimating and returning the vital signs
namely HR, HRV, RR, SpO2, BP, and stress from face videos. We specifically
focused on the computational models in this version, which will be demonstrated
and evaluated through experiments. Load balancing and scalability will be ad-
dressed in future work.

We used the Flask framework 1, which is a popular lightweight Python mi-
croframework with a built-in development server and support for unit testing.
The framework also has a strong community support and excellent documenta-
tion which made it our choice for this application.

Fig. 2. Front-end web interface

3.1 Subsystem 1: Front-end Web Interface

The front-end web interface shown in Fig. 2 can be accessed on the browser via
a public web URL2. It is built using HTML5, CSS, jQuery and Bootstrap. The
front-end application requests camera access and upon receiving access, it starts
capturing user’s video. It anonymizes the user video by face masking, monitors
the user position, sends the video to the back-end for computing vitals, displays
the vitals on the user interface, and collects optional user data such as age, skin

1 https://flask.palletsprojects.com/en/2.0.x/
2 https://vital-signs-bamlab.tk/

https://flask.palletsprojects.com/en/2.0.x/
https://vital-signs-bamlab.tk/
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color, and other relevant information to enable further analysis as explained
below.

1. Face Detection and Masking: To protect user privacy, we apply face
masking by detecting face landmarks such as eyes, lips, jawline, and nose,
and covering them with another object called the face mask. Three APIs
namely Haar-cascade classifier [30], face-api.js [3], and MediaPipe Face Mesh
framework JavaScript API [7] were tested for face and facial landmark detec-
tion. We used the MediaPipe Face Mesh API as it made real-time predictions
and gave superior user experience. We apply a simple mask by covering the
mouth and eyes with black strips, and drawing black contour lines on the
nose area, eyebrows, and face edges. A button on the user interface allows
the user to turn face mask on or off.

2. Record Face Video and Ensure Video Quality: The device camera
records the user’s face video in MP4 format using the MediaRecorder3 inter-
face of the MediaStream Recording API. A bounding box around the face is
computed to determine the face area. User distance from the camera is com-
puted as the ratio of the face area to the video frame area. Tracking of the
face landmarks throughout the video allows the system to detect too much
movement (beyond 15 units of displacement of the bounding box) and stop
the recording. If the user is too far from the camera or moving too much,
the User Interface (UI) displays a message to guide the user to reposition or
stay steady to obtain a good quality video.

3. Collect Additional User Data: To validate the accuracy of the measure-
ments for different parameters, some data is collected from the user using a
form on the UI as listed below.

(a) Ground truth data measurements of HR, SpO2, stress and BP taken
by the user or the researcher using Health Canada approved medical
devices. The HRV and RR measurements are sensitive measurements
which are typically measured at a clinical facility. In this study we did
not record the HRV and RR ground truth values (future study) and used
a benchmark dataset containing these values.

(b) Environmental data such as the brightness of the place (bright/dark),
type of ambient lighting (warm white/ cool white/ daylight) causing
illumination noise, and subject activity (relaxed/post exercise) causing
motion noise, which affect the measurement accuracy.

(c) User Profile such as name, age, sex, skin tone (white, yellow, brown,
dark), and ethnicity (Asian, South-Asian, White Caucasian, African
American, Hispanic) can be optionally provided by the user.

4. Transmit Video, Save, and Report Vital Signs: Once the noise is ac-
ceptable, the recording is transmitted to Subsystem 2 for further processing
and calculation of vital signs. Calculated measurements are displayed on the
UI in near real time. A Save button allows all information to be saved on
Subsystem 3, which can be accessed later for further studies.

3 https://developer.mozilla.org/en-US/docs/Web/API/MediaRecorder

https://developer.mozilla.org/en-US/docs/Web/API/MediaRecorder
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3.2 Subsystem 2: Back-end Data Processing

The back-end hosts a Python 3.8 application on the server. The videos received
from Subsystem 1 are saved on the server, processed and analyzed to extract the
raw PPG signals and reduce noises due to changes in light intensity and motion
to obtain a robust BVP signal for higher accuracy of vital signs. We used the
state-of-the-art methods from Qiao et al [24] for vital sign estimation as explained
briefly in Section 2.2 and improve the noise filtering techniques (selecting the
best RoI, guiding user by UI messaging) while validating the framework in real
life environment.

3.3 Subsystem 3: SQLite Database

Due to the ease of installation, usage, and portability, we used the SQLite4

database version 3.12.2 as the repository on the back-end server to store the ex-
perimental data. It consists of a single relational table which saves time stamped
data for each user session including the video file name, the vitals calculated by
Subsystem 2, and the measured vitals entered by the user in Subsystem 1 along
with the additional user and environmental details collected thruough the UI.

3.4 Application Deployment

To host the framework on a public server accessible by a URL, a Nginx web server
and Gunicorn HTTP server is used, as the built-in Flask web server cannot be
used for production. Nginx5 is a powerful open source web server that can handle
reverse proxy, load balancing, security, scalability and HTTP caching. Gunicorn6

is a Python Web Server Gateway Interface (WSGI) HTTP server for UNIX.

4 Experiments and Results

To demonstrate the usability and performance of the framework, participants
were asked to use the application in real life environment. The vitals were mea-
sured simultaneously using medical devices Omron HEM-FL31 BP monitor and
LOOKEE LK50D1A pulse oximeter. We used the Mean Absolute Error (MAE),
System Response Time (SRTime), and Back-end Processing Time (BPTime) as
the metric for evaluating the experimental results. The difference between the
ground truth vital sign reading measured with a medical device and the vital
sign value estimated by the framework, is the error. Average error value com-
puted from multiple measurement sessions is called the Mean Absolute Error
(MAE). The SRTime is the total time taken by the application to collect the
video and report the results. The BPTime is the time taken by the back-end
system to process the videos and report the results. We conducted experiments
to validate the framework’s:
4 https://www.sqlite.org/index.html
5 https://www.nginx.com/
6 https://gunicorn.org/

https://www.sqlite.org/index.html
https://www.nginx.com/
https://gunicorn.org/
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1. Accuracy: Five volunteers in the age group of 13-40 years used the appli-
cation at different times of the day and in different physical states on the
Google Chrome browser of an Acer Aspire A315-55G laptop, with a Log-
itech UltraHD 4K webcam. The ground truth vital signs readings were in
the range of 72-108 bpm, 97-100%, 94-114 mmHg, and 58-76 mmHg for HR,
SpO2, SBP, and DBP respectively. The results of this experiment are shown
in Table 2.

2. Robustness and Performance: One volunteer used the application for
5 days with multiple sources of light and camera resolutions, and different
internet networks, devices and browsers. The application was used three
times in a day at 10:00, 13:00, and 16:00 hrs. The experimental results are
shown in Table 3 and 4.

3. Workload Capacity: The maximum number of users the application can
support was tested using Google Chrome browser on different devices start-
ing with 9 participants.

Discussion: From Table 2, it is clear that the system performance improves
with face masking because the eyes and mouth movement is completely obscured
which avoids the noise due to movement. With the other experiment, we observed
that the MAE was the lowest with natural daylight, thereby indicating that the
light sources are adding artifacts to the video resulting in noise in the raw signal.
Although the performance of the system is comparable on both the networks,
the BPTime is similar but the SRTime varies for different devices and browsers.
SRTime depends on data processing time plus the network data transmission
time. The computational complexity, device configuration, and video streaming
capability of the device camera affect the data processing time. The frame rate
of the camera in a browser depends on video resolution, device memory, and
available bandwidth [18]. For example, a camera might capture at 60 fps at 720p
resolution but it might only capture 30 fps at 1080p.

We configured the Gunicorn service with 5 worker processes as the official
documentation of the service provider mentions that 4-12 worker processes can
handle thousands of requests per second [4]. The recommendation is to use
(2 ∗ #num_cores) + 1 as the number of workers. Gunicorn relies on the op-
erating system for load balancing. The Nginx server has efficient load balancing
techniques that must be configured. The workload capacity of the framework
can be enhanced by appropriate configurations, which is outside the scope of
this work.

5 Conclusion and Future Work

With the global transition of business processes to online cloud technologies,
the medical domain has seen a digital transformation in offering online services
to patients. In this regard, the rPPG technology which facilitates measurement
of vitals signs remotely from face videos can greatly benefit the online medical
consultations. Existing research in rPPG [17,19,20] has shown promising re-
sults when used in controlled laboratory conditions. However, their performance
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Table 2. Validating the framework accuracy.

Time State Vital Mask (MAE) No Mask(MAE)

Morning Rest

HR 9.4 bpm 7 bpm
SpO2 2.7% 3%
SBP 8.1 mmHg 10.3 mmHg
DBP 5.7 mmHg 8.4 mmHg

Morning Post Exercise

HR 6.3 bpm 9.7 bpm
SpO2 2.3% 2.3%
SBP 9 mmHg 7.3 mmHg
DBP 3.6 mmHg 3.3 mmHg

Evening Rest

HR 5.25 bpm 8.25 bpm
SpO2 2.7% 2.7%
SBP 11.75 mmHg 15 mmHg
DBP 1.5 mmHg 4 mmHg

Evening Post Exercise

HR 6.3 bpm 6.6 bpm
SpO2 2.3% 2.3%
SBP 9 mmHg 10.6 mmHg
DBP 4.3 mmHg 4 mmHg

Mean

HR 6.8 bpm 7.9 bpm
SpO2 2.5% 2.5%
SBP 9.4 mmHg 10.8 mmHg
DBP 3.8 mmHg 4.9 mmHg

Table 3. Validating robustness of the framework with different light sources and cam-
era resolutions.

Light(MAE) Camera Resolution(MAE)

Daylight Warm Tone Cool Tone 0.3MP 2MP 8MP

HR 2.1 bpm 7 bpm 6.2 bpm 13.8 bpm 6.1 bpm 8.2 bpm

SpO2 3% 3% 3% 3% 3% 3%

SBP 5.9 mmHg 9.8 mmHg 5 mmHg 2.1 mmHg 2 mmHg 3.4 mmHg

DBP 4.2 mmHg 6.1 mmHg 5.8 mmHg 6.1 mmHg 1.4 mmHg 3 mmHg

Table 4. Validating the performance of the framework for different networks, devices
and browsers.

Back-end processing time System response time

Network
Wifi Network 47.9 secs 84.5 secs
Mobile Network 50.1 secs 86.0 secs

Devices

Acer laptop 50 secs 114 secs
Alienware laptop 46.5 secs 104.5 secs
Samsung phone 48.7 secs 107.5 secs
Redmi phone 47.9 secs 116.7 secs
iPhone 48.3 secs 111.2 secs
iPad 43 secs 198 secs

Browser

Google Chrome 48 secs 84.4 secs
Mozilla Firefox 46.5 secs 104.55 secs
Microsoft Edge 50.9 secs 93.47 secs
Safari 46 secs 91.2 secs
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degrades when movement or illumination changes affect the videos. Moreover,
researchers have usually focussed on one or two vitals in validating their experi-
ments [11,29]. We propose a web-based, publicly accessible ubiquitous framework
for estimating six vitals namely, Heart Rate (HR), Heart Rate Variability (HRV),
Respiration Rate (RR), Oxygen Saturation (SpO2), Blood Pressure (BP), and
stress, which handles movement and illumination artifacts prevalent in real life.
We validate the accuracy, robustness, usability and functionality of the rPPG
models in estimating the vitals from face videos.

As future work, ways to enhance the video quality need to be explored so
that low resolution camera devices can be used over weak networks at remote
locations. Better camera control can be used to optimize the frame rate for
video capture. Videos can be live streamed using WebRTC technology to reduce
processing delay instead of recording and uploading to the back end server.
Further noise reduction due to facial movements can be explored in the future
along with a study design to be executed at the hospital for a wider patient
sample having varying vital sign measurements, which can help build a robust
technology to deploy at a healthcare setting.
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