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Abstract: Reliance upon multi-criteria decision methods, like ELECTRE III, has increased many folds in 

the past few years. However, ELECTRE III has not yet been applied in ranking universities. League 

tables are important because they may have an impact on the number and quality of the students. 

The tables serve an indication of prestige. This paper describes a three-tier Web-system, which 

produces a customised ranking of British Universities with ELECTRE III reflecting personal 

preferences, where information is uncertain and vague. Using this case study, the benefits of 

ELECTRE III in the ranking process are illustrated. 
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1. Introduction 

Professor William Cooper is particularly known through his work on DEA (Data Envelopment 

Analysis)[26]. His paper [17] has been elected as one of the most influential papers published in the 

European Journal of Operational Research. Professor Cooper has applied DEA widely to the 

performance analysis in the public and private sectors, especially in education. He was the first 

(founding) Dean at Carnegie Mellon University’s School of Urban and Public Affairs (now the H.J. 
Heinz III School of Public Policy and Management, USA) and a founding member of the Graduate 

School of Industrial Administration at Carnegie Mellon. He always strives for the improvement of the 

quality in education as it can be seen in his papers [3; 5; 10; 15; 18; 19].  

 

The evaluation of education with ranking lists of universities has become, over the past few years, 

increasingly popular. Some examples in United Kingdom are the Times Higher Education, The 

Complete University Guide, The Guardian University Guide and the Sunday Times University Guide all 

of which produce leagues tables based on statistical data from the Higher Education Statistical 

Agency (HESA) and the National Student Survey (NSS). These rankings have a sizeable impact on 

universities as they may have some indication of prestige and a direct influence on the number and 
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quality of applicants. However the ranking of universities does not use rigorous methodologies like 

ones used in Professor Cooper’s work. The methodology used to rank universities is a simple 

weighted sum, which has several limitations. First, the weights are predetermined with very little, if 

any, justification of their value. Therefore, it is assumed that the criteria have the same importance 

(i.e. weight) for everybody. This is clearly not true as each person is different and has different 

preferences. Moreover, commercial league tables use a simple aggregation, which is compensatory 

and does not differentiate between universities having strengths in different areas.  

 

This paper has been prepared to celebrate the 95
th

 birthday of Professor Cooper and his motivation 

to evaluate education with new methods. We have thus developed a new interactive online way to 

rank universities with the multi-criteria decision method ELECTRE III [42] 

(http://www.pbs.port.ac.uk/IshizakaA/). As ELECTRE III may be complicated for new users, a simple 

and an advanced version has been developed. These two versions are user-friendly, free, Web 

accessible and have tailored functionalities, which is not the case for the old commercial off-the-

shelf software supporting the ELECTRE III (http://www.lamsade.dauphine.fr/english/software.html). 

However, the commercial software was used to validate the results of our Web decision support 

tool. 

 

Hereinafter, we will review methods used for rankings universities. In section three, the ELECTRE III 

algorithm is described. Section four describes the design and implementation of the decision 

support tool, and section five evaluates the implemented system. Finally, the concluding section 

summarises the main points arising from this project. 

 

 

2. Rankings systems 

2.1 Commercial rankings 

Several commercial universities ranking schemes are annually published. Alongside, criticisms of 

these rankings have also increased [13; 34; 37; 51; 53; 55]. These leagues tables are based on a 

weighted sum of performances, which has some methodological problems. As each criterion is 

measured in a different unit, they need to be transformed to commensurate units in order to be 

summed together. The problem is that numerous ways of standardising exist (commercial rankings 

generally uses z-transformation) and they often lead to a different final ranking. An example can be 

found in [39], where the authors emphases that “prior normalization of data is not a neutral 
operation, and the final result of aggregation may well depend on the normalization method used”. 
The same normalisation problem is also observed in the Analytic Hierarchy Process (AHP), where 

different normalisations may lead to a rank reversal [7; 30]. Moreover, AHP is difficult to use with a 

large volume of data, due to the high number of pairwise comparisons required [29]. 

2.2 DEA 

Data Envelopment Analysis (DEA) is an often used ranking technique [2; 33; 44; 46; 47], which does 

not require any normalisation. The global score of each Decision Making Unit (DMU) is defined as 

the ratio of the sum of its weighted output levels to the sum of its weighted input levels. The analogy 

with multi-criteria methods is striking if we replace the name “DMU” with “alternatives”, “outputs” 

with “criteria to be maximised” and “inputs” with “criteria to be minimised”. The particularity of this 

method is that weights are not allocated by users or experts; moreover it does not employ a 

common set of weights for all alternatives. Instead, for each alternative a different set of weights is 

calculated with a linear optimisation procedure. The aim of the optimisation is to select weights in 

order to highlight their particular strength. Some constraints are added in order to ensure that when 

these weights are applied to all other candidates, none of the scores exceed 100%, the perfect 

efficiency. DEA has been widely used to rank universities or schools [1; 4; 5; 6; 9; 10; 11; 14; 16; 18; 
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23; 25; 31; 32] and in many other sectors as compiled in [24]. However, there are some limitations to 

DEA, which are highlighted below: 

 “DEA is not designed to select a single winner” [21; 52]. DEA identifies all alternatives that are 

located on the efficient frontier as the best alternatives without distinction. When the list of 

alternatives is large, the number of efficient alternatives may also be large. Further analysis must 

then be applied to select the best alternative. We know that multiplier restriction method (e.g., 

cone ratio) has been developed to reduce the number of efficient DMUs. It is possible to identify 

a single best alternative, using DEA [26]. See also [46, 47]. 

 “The ranking of inefficient alternatives depends upon which DEA model is used for performance 

evaluation” [12; 45]. See [48]. 

 “A conventional use of DEA does not consider the weakness of some candidates”[45; 52]. Any 

alternative which has the highest score on one criterion is often regarded as efficient, 

irrespectively of how low it scores on all other criteria. This issue is due to the flexibility in 

allocating weights in its conventional use, which allows DEA to focus on a few criteria, not putting 

importance on the others. Note that a new type of DEA [46, 47] does not have such a problem. 

See also [48]. 

  “DEA becomes less discriminating as more information is provided”[52]. This problem derives 

from the critic above. The likelihood that one alternative scores well on one criterion increases 

with the number of criteria. Thus, unlikely other decision supports methods, the more criteria 

you have, the less discriminating the method becomes. 

 Alternatives that are not on the efficient frontier are not considered as candidates for the final 

selection [12]. The conventional use of DEA does not recognise optimal non supported 

alternatives as efficient. See Figure 1.   

 

 

 

 

                               

   

 

 

 

Figure 1: Non-Dominance in Interpretation of DEA Radial Models 

Note: Alternatives a1 and a3 are supported optimal solutions; a2 is an optimal non supported solution, 

the DEA does not consider a2 as an efficient solution because it is not on the efficient frontier. 

This type of problem occurs only in DEA radial models. Non-radial DEA models do not have such 

a problem.  Therefore, a1  becomes efficient in the non-radial DEA models.  

 

 All alternatives on the efficient frontier serve as a ranking basis for all other alternatives even if 

some non-efficient alternatives may be more attractive than efficient alternatives [12]. See Figure 

2.  
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Figure 2: Importance among Alternatives in DEA  

Note: Alternatives a1, a2 and a3 are on the efficient frontier serve a ranking basis for a4  in the DEA 

radial model with the assumption of convexity on efficiency frontier.  The assumption excludes 

the alternative a4. The alternative is on a higher linear or convex indifference utility curve. The 

type of problem does not occur in DEA non-radial models. It is true that DEA needs to incorporate 

information for consensus building among decision makers. 

 

There is an extensive literature which describes techniques to improve the DEA. They generally 

require more information from the user. The most used techniques use value judgements to 

constrain weight (multiplier) flexibility [54]. However the exercise of bounding the weights is not 

trivial as restrictions are subjective and depends on the measurement units of the different inputs 

and outputs [45]. In order to help the user, visual methods have been developed [8; 23]. These 

methods are time-consuming and difficult to use with a large amount of inputs and outputs. Of 

course, this study is fully aware of the recent study [48] that restricts weight (multiplier) by strong 

complementary slackness condition. Hence, the approach does need any subjective information for 

weight restriction.   

 

2.3 Ranking with pseudo-criteria 

The multi-criteria ranking methods described above, alongside the shortcomings described, are not 

adapted for uncertain, indeterminate and imprecise data, as explained below:  

 Imprecise criteria, because of the difficulty of determining them: students evaluate some criteria 

(e.g. “Student satisfaction”, “Graduate prospects”) for the university, where they are studying but 

judgements are made without a common reference with the other universities [13]. 

 Indeterminate criteria, because the method for evaluating the criteria is selected relatively 

arbitrarily between several possible definitions. For example, does the “Staff/student ratio” 

incorporate part-time lecturers and part-time students? How is spending divided between the 

criteria “Academic Service Spend” and “Facilities Spend”? 

 Uncertain criteria, because the measured values refer only to a point in time and some values 

vary over time. For example: the “Employability” of a university’s graduates depends on the 

economic situation. The “Investments in facilities” may not be uniformly distributed over time. 

 

The ELECTRE III allows imprecise, indeterminate and uncertain criteria inherent to complex human 

decision processes by relying on the use of pseudo-criteria and indifference and preference 

thresholds. See Section 3. Furthermore, very bad performance on one criterion may not be 
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compensated by good scores on the other criteria, depending on the veto threshold. ELECTRE III has 

been widely used in ranking problems, for instance in ranking the stocks for investment selection 

[28], for choosing a sustainable demolition waste management strategy [41], for the selection of 

energy systems [38], for ranking urban stormwater drainage [35] or for housing evaluation [36] but it 

has not yet been applied for ranking universities. 

 

 

3. ELECTRE III 

3.1 Introduction 

ELECTRE III relies upon the construction and the exploitation of the outranking relations. The two 

distinct phases are depicted in Figure 3: 

a) Construction of the outranking relation: Alternatives are pairwise compared (A,B). Each pairwise 

comparison is characterised by an outranking relation. To say that “alternative A outranks 

alternative B” means that “A is at least as good as B”.  Therefore three outranking relations exists: 

A is “indifferent”, “weakly preferred” or “strictly preferred” to B depending on the difference 

between the performance of the alternatives and the thresholds given by the user. See Section 

3.2.  

b) Exploitation of the outranking relation: Two pre-rankings are then constructed with two 

antagonist procedures (ascending and descending distillation). The combination of the two pre-

ranking gives the final ranking. See Section 3.3. 

 

                                             
                                                    Figure 3: ELECTRE III process flow 

 

3.2 Building the outranking relations 

3.2.1 Pseudo-criteria 

True criteria, which are the simplest and traditional form of criterion, do not have thresholds. Only 

the difference between the scores on the criteria is used to determine which option is preferred. In 

order to take into account imprecision, uncertainty and indetermination in complex decision 

problems, pseudo-criteria are used. The indifference q and preference p thresholds allow the 

construction of a pseudo-criterion. Thus, three relations between alternatives A and B can be 

considered:  
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a) A and B are indifferent if the difference between the performance of the two alternatives is 

below the indifference threshold: 

 

 A I B ↔ z(A) – z(B) ≤ q  (1) 

 

 where z(X): performance of the alternative X 

  q:  indifference threshold  

 

b)  A is weakly preferred to B if the difference between the performance of the two alternatives is in 

between the indifference and the preference threshold: 

 

 A Q B ↔ q < z(A) – z(B) ≤ p (2) 

 

 where z(X): performance of the alternative X 

  q:  indifference threshold  

  p:  preference threshold of the alternative 

 

 c)  A is strictly preferred to B if the difference between the performance of the two alternatives is 

higher than the preference threshold:  

 

 A P B ↔ z(A) – z(B) ≥ p (3) 

 

 where z(X): performance of the alternative X 

  p:  preference threshold of the alternative 

 

3.2.2 Concordance index 

The concordance index (4) indicates the truthfulness of the assertion “A outranks B” (A S B)
1
. C = 1 

indicates the full truthfulness of the assertion and C = 0 indicates that the assertion is false. The 

graphical representation is given in Figure 4. 

 

  𝐶 𝐴, 𝐵 =
1𝑊  𝑤𝑖𝑐𝑖𝑛𝑖=1  𝐴, 𝐵  (4) 

 where  𝑊 =  𝑤𝑖𝑛𝑖=1  

 

𝑐𝑖 𝐴, 𝐵 =  1                       𝑖𝑓 𝑧𝑖 𝐵 − 𝑧𝑖 𝐴 ≤ 𝑞𝑖𝑝 𝑖 𝑧𝑖 𝐴  +𝑧𝑖 𝐴 −𝑧𝑖 𝐵 𝑝 𝑖(𝑧𝑖 𝐴 )− 𝑞𝑖(𝑧𝑖 𝐴 )
 𝑖𝑓 𝑞𝑖 < 𝑧𝑖 𝐵 − 𝑧𝑖 𝐴 < 𝑝𝑖

0                       𝑖𝑓 𝑧𝑖 𝐵 − 𝑧𝑖 𝐴 ≥ 𝑝𝑖
  (5) 

Here, 

 wi:  weight of the criterion i 

 n:  number of criteria 

 zi(X):  performance of the alternative X as regards to the criterion i 

 qi:  indifference threshold for the criterion i 

 pi:  preference threshold of the alternative on the criterion i 

 

                                                             
1
 S is the abbreviation of the French word « Surclasse », as defined in [42].  
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Zone 1

C=1

Zone 2

linear

Zone 3

C=0

zi(A)+pi zi(B)

Ci(A,B)

1

zi(A)+qi  
                         Figure 4: Concordance Index between alternatives A and B  

 

Note: 

Zone 1: zi(B)-zi(A)≤qi, the alternatives A and B are indifferent, which means a concordance on the assertion “A 

outranks B” 

Zone 2: qi<zi(B)-zi(A)<pi, the alternative B is weakly preferred to A,  which means a partial concordance on the 

assertion “A outranks B” 

Zone 3: zi(B)-zi(A)pi, the alternative B is strictly preferred to A, which means a null-concordance on the 

assertion “A outranks B” 

  

Discordance index: If the difference of performances between the alternative A and B, on a criterion 

i, is higher than the veto threshold vi, it is cautious to refuse the assertion “A 

outranks B”. The discordance index for each criterion i is given in (6). Figure 5 

shows the graphical representation. 

 

 𝐷𝑖 𝐴, 𝐵 =  0                         𝑖𝑓 𝑧𝑖 𝐵 − 𝑧𝑖 𝐴 ≤ 𝑝𝑖𝑧𝑖 𝐵 −[𝑧𝑖 𝐴 +𝑝 𝑖]𝑣𝑖−𝑝 𝑖  𝑖𝑓 𝑝𝑖 < 𝑧𝑖 𝐵 − 𝑧𝑖 𝐴 
1                        𝑖𝑓 𝑧𝑖 𝐵 − 𝑧𝑖 𝐴 ≥ 𝑣𝑖

 ≤ 𝑣𝑖  (6) 

 

Here,       zi(X): performance of the alternative X as regards to the criterion i 

  pi:  preference threshold of the alternative on the criterion i 

 vi:  veto threshold for the criterion i  
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Zone 1

d=0

Zone 2

linear

Zone 3

d=1

1

Di(A,B)

zi(A)+pi zi(A)+vi zi(B)
 

 

                                          Figure 5: Discordance Index between alternatives A and B 

 

Note: 

Zone 1: zi(B)-zi(A)≤pi, the alternatives B is weakly preferred to A, which means no-discordance on the assertion 

“A outranks B” 

Zone 2: pi<zi(B)-zi(A)<vi, the alternative B is strictly preferred to A, which means a weak discordance on the 

assertion “A outranks B” 

Zone 3: zi(B)-zi(A)pi, the difference between A and B exceed the veto threshold, which means a total 

discordance on the assertion “A outranks B” 

 

3.2.3 Degree of credibility 

Considering the concordance (4) and discordance indices (6), the degree of credibility (7) indicates if 

the outranking hypothesis is true or not. If the concordance index (4) is higher or equal to the 

discordance index of all criteria (6), then the degree of credibility (7) is equal to the concordance 

index (4). If the concordance index (4) is strictly below the discordance index (6), then the degree of 

credibility (7) is equal to the concordance index (4) lowered in direct relation to the importance of 

those discordances.  

 

  𝑆 𝐴, 𝐵 =  𝐶 𝐴, 𝐵                                            𝑖𝑓 𝐷𝑖 𝐴, 𝐵 ≤ 𝐶 𝐴, 𝐵  ∀𝑖𝐶 𝐴, 𝐵 ∙   1−𝐷𝑖 𝐴,𝐵   1−𝐶 𝐴,𝐵                              𝑖𝜖𝐽  𝐴,𝐵  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (7) 

 

where 𝐽(𝐴, 𝐵) is the set of criteria for which 𝐷𝑖 𝐴, 𝐵 > 𝐶(𝐴, 𝐵). 

 

Then, the degrees of credibility are gathered in a credibility matrix. 

 

Example 1:  In order to illustrate the ranking process of ELECTRE III, we will use in following example 

with six universities and five criteria. See Table 1. 
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Table 1: Performance Matrix of Universities (U1-U6) 

Alternatives 

Academic 

Services 

Spend 

Completion 
Entry 

Standards 

Facilities 

Spend 

Good 

Honours 

U1 947 79 400 228 69.7 

U2 1406 64 350 204 47.6 

U3 677 90 300 349 61.8 

U4 561 65 247 188 52.3 

U5 1006 88 352 437 65.8 

U6 765 77 280 198 55.6 

 

For each criterion of Table 1, thresholds and criteria weights are determined by the user. See Table 

2. 

Table 2: Thresholds and criteria weights defined by the user 

Criterion Academic 

Services 

Spend 

Completion Entry 

Standards 

Facilities 

Spend 

Good 

Honours 

Indifference (q) 0.1 0.1 0.1 0.1 0.05 

Preference (p) 0.2 0.2 0.2 0.2 0.2 

Veto (v) 0.4 0.5 0.4 0.3 0.4 

Weight (w) 0.1 0.3 0.3 0.2 0.1 

 

After calculation of the concordance and discordance indexes, the degrees of credibility are 

constructed and gathered in the credibility matrix. See Table 3. It can be seen that the two degrees 

of credibility, attached at each pair of alternatives (one in each way) does not produce a symmetric 

credibility matrix. The next step is to exploit this matrix. See Section 3.3. 

 

Table 3: Credibility matrix 

 U1 U2 U3 U4 U5 U6 

U1 1 0 0 1 0 1 

U2 0 1 0 0.97 0 0.62 

U3 0.0053 0 1 1 0 0.97 

U4 0 0 0 1 0 0.22 

U5 0.88 0.11 1 1 1 1 

U6 0 0 0 1 0 1 

 

3.3 Distillation procedures 

From the credibility matrix, a graph can be drawn. Each alternative is linked with each other 

alternative with two arrows, one each way, indicating the credibility index. For a large number of 

alternatives, the graph is highly complex. An automated procedure, named distillation, must be used 

to rank the alternatives. The name distillation has been chosen for the analogy with alchemists, who 

distil mixtures of liquid to extract a magic ingredient. The algorithm for ranking all alternatives yields 

two pre-orders.  

 

The first pre-order is obtained with a descending distillation, selecting the best-rated alternatives 

initially and finishing with the worst. The best alternatives are extracted from the whole set by 

applying very stringent rules (8). In this sub-set, the best alternatives are selected by applying less 

restrictive rules (10) (same previously used rules would not bring a different result). The procedure 
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continues with incrementally lesser restrictive rules and incrementally smaller sub-sets of 

alternatives. The procedure terminates when only one alternative remains or a group of alternatives 

that cannot be separated. The second distillation uses the same process but on the original set of 

alternatives amputated from the best alternative(s) resulting from the first distillation. Thus, a new 

sub-set is obtained at each distillation, which contains the best alternative(s) of the remaining set. At 

each distillation, the extracted alternative(s) will be ranked on a lower position. 

 

As each alternative is linked with each other by two arrows, one each way, but not necessarily with a 

symmetric credibility index, a second pre-order is constructed with an ascending distillation. In this 

case, the worst rated alternatives are selected first and the distillation terminates with the 

assignment of the best alternative(s). 

 

For the distillation, the condition needed to state that an alternative A is preferred to B is defined as 

follow: an alternative A is preferred to B if the degree of credibility of “A outranks B” is higher than a 

threshold λ2 and significantly higher than the degree of credibility “B outranks A” (8). 

 

                                     S(A,B) > λ2  AND  S(A,B) - S(B,A)> s(λ0) (8) 

where  λ2 is the largest credibility index, which is just below the cut-off level λ1 as follows: 

 

                        λ2 = max 𝑆 𝐴 ,𝐵 ≤𝜆1 𝑆 𝐴, 𝐵      ∀ 𝐴, 𝐵 𝜖𝐺     (9) 

where  G is the set of alternatives. λ1 is the following cut-off level: 

 

                                        λ1 = λ0 – s(λ0) (10) 

where  λ0 is the highest degree of credibility in the following credibility matrix: 

 

                               λ0= max𝐴 ,𝐵𝜖𝐺 𝑆 𝐴, 𝐵  (11) 

and s(λ0) is the following discrimination threshold: 

 

                                      s(λ0)= α + β· λ0 (12) 

 

We use α = 0.3  and β =-0.15 because the two values are recommended values from [43]. 

 

With successive distillations, the cut-off level λ1 is progressively reduced, which makes the condition 

weaker and it is much easier for A to be preferred than B. However the discrimination threshold 

contains some arbitrariness as the recommended values α and β are empirical values [50]. Other 

values could be used, which may slightly change the ranking. 

 

3.4 Extraction 

When A outranks B, A is given the score +1 (strength) and B is given -1 (weakness). For each 

alternative, the individual strengths and weakness are added together to give the final qualification 

score. Within the descending distillation, the alternative with the highest qualification score is 

assigned to a rank and removed from the credibility matrix. The process is repeated with the 

remaining alternatives until all alternatives are ranked.  

 

In the case of several alternatives with the same qualification score, the process is repeated within 

this subset until either an alternative has a higher qualification score or the highest degree of 

credibility λ0 is equal to 0, which means that it is not possible to decide between the remaining 

options in the subset and therefore they are declared indifferent.  
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The ascending distillation procedure works in a similar way to the descending distillation with the 

exception that the procedure assigns the alternative having the lowest qualification score. 

 

Example 2: From the credibility matrix (table 3), the highest credibility degree is λ0 = 1 and we can 

calculate λ1 = 1-(0.3-0.15·1) = 0.85 and therefore λ2 = 0.66. The first qualified university is U5. See 

Table 4. 

Table 4: First round of the qualification 

 U1 U2 U3 U4 U5 U6 

Outranks U4, U6 U4 U4, U6  - U1, U3, U6 U4 

Strength 2 1 2  0 3  1 

Weakness 1 0 1  4 0  3 

Qualification 1 1 1 -4 3 -2 

 

The distillation is repeated with the five remaining universities. Then, the same process is applied for 

the ascending distillation. See Figure 6. 

 

Descending pre-order Ascending pre-order 

  
                   Figure 6: Descending and ascending distillation pre-orders of 6 Universities (U1-U6) 

 

3.5 Final ranking 

The final ranking is obtained through the combination of the two pre-orders. See Section 3.4. The 

results from the partial pre-orders are aggregated into the ranking matrix. We have four possible 

cases: 

i. A is higher ranked than B in both distillations or A is better than B in one distillation and has 

the same ranking in the other distillation 

then A is better than B: A P+ B 

ii. A is higher ranked than B in one distillation but B is better ranked than A the other 

distillation 

then A is incomparable to B: A R B 

iii. A has the same ranking than B in both distillations 

then A is indifferent to B: A I B 

iv. A is lower ranked than B in both distillations or A is lower ranked than B in one distillation 

and has the same rank in the other distillation 

then A is worst than B: A P - B 
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The final ranking is obtained by adding the number of P+. In case of tie, the comparison between the 

two alternatives with the same score decides between an indifferent or incomparable relation See 

Example 3. 

Example 3: If we consider the two pre-orders of Figure 6, the resulting ranking matrix is given in 

Table 5: 

Table 5: Ranking Matrix 

 U1 U2 U3 U4 U5 U6 Sum P
+
 

U1 - R I P
+ 

P
 - 

P
+ 

2 

U2 R - R P
+
 P

-
 P

+
 2 

U3 I R - P
+
 P

-
 P

+
 2 

U4 P
-
 P

-
 P

-
 - P

-
 P

-
 0 

U5 P
+
 P

+
 P

+
 P

+
 - P

+
 5 

U6 P
-
 P

-
 P

-
 P

+
 P

-
 - 1 

 

The final ranking is given in Figure 7, where it can be seen that U1, U2 and U3 have the same scores 

but U1 and U3 are indifferent and U2 is incomparable to the two other alternatives. 

 

Final ranking 

 
Figure 7: Final ranking 

 

4. Overview of the decision support system 

4.1 Introduction 

The system architecture is three-tier as shown in Figure 8. It divides the functionality into 

independent logical layers, each one responsible for different operations of the application and 

opaque to the other layers.  

 Layers Functionality Technology 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Three-tier architecture 
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The first layer runs on standard Web browsers. In this tier, the users enter their weighted criteria 

and related thresholds for the ranking of universities and receive back a personalised ranking. The 

middle tier contains the Web server, where the ELECTRE III method runs as described in Section 3. Its 

implementation uses an oriented object design with C#. This layer is independent from the other 

and therefore can be reusable or upgradable for other decision problems. The bottom layer stores 

the performance of the universities, which are those used by The Complete University Guide. See 

Table 6. The Times Higher Education uses the same criteria with the exception that it merges the 

criteria “Academic Services Spend” and “Facilities Spend” in one criterion: “Services & Facilities 
Spend”. The selection of these criteria may be considered controversial. They have been retained in 

our study because it allows a comparative evaluation of our system with the existing ones (Section 

5). However, users are not obliged to select all criteria. In the next section, we discuss the user 

interface.  

Table 6: Criteria used for the ranking of universities [49] 

Criterion Description 

Student Satisfaction Evaluation of students on the teaching quality 

Research Assessment Average quality of the research undertaken 

Entry Standards Average UCAS tariff score of new students under the age of 21 

Staff/Student Ratio Average staffing level 

Academic Services Spend Expenditures per student in all academic services 

Facilities Spend Expenditures per student on staff and student facilities 

Good Honours Percentage of graduates achieving a first or upper second class 

honours degree 

Graduate Prospects Employability of a university’s graduates 

Completion Completion rate of those studying at the university 

 

4.2 User interface 

4.2.1 Introduction 

The user interface is very important, as it is the link between a person and the system. Because users 

of this support decision system are unlikely to know ELECTRE III, we have implemented a simple 

version for them and an advanced version for more experienced users. The goal is to attract users 

with the simple version and then upgrade them to the advance version. Both versions are based on a 

wizard style with five steps easily to follow (start page, criteria selection, weights settings, threshold 

settings and ranking display). The algorithm used is the same for the two versions (see Section 3), 

only the user interface and the required values differs.  

 

4.2.2 Simple version 

The simple version is created for unfamiliar users of the ELECTRE III method or for users wishing to 

see the universities rankings quickly. As a verbal scale is intuitively appealing, user-friendly and more 

common in our everyday lives, it has been preferred in this version for the criteria weights and 

thresholds. The drawback of the user-friendliness is that some arbitrary choice must be made, in this 

case how the verbal scale is converted to numbers. Table 7 shows the conversion for the weights 

(scale 2-10) and the indifference thresholds (multiplicative factor 0.2-1). 
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Table 7: Conversion verbal to numerical scale 

Verbal scale Weights Indifference thresholds 

very low   2 0.2  

low   4 0.4  

medium   6 0.6  

high   8 0.8  

very high 10 1           

 

In order to minimise the number of inputs required, we have used the double threshold model, 

where only the indifference threshold is required. The value of the veto preference threshold is the 

double of the value of the preference threshold, which is the double of the value of the indifference 

threshold. See Figure 9. It is an arbitrary choice used in other applications [40], which allows a gain 

of time and an increase of the usability. 

 

 

Figure 9: Simple version with verbal inputs 

 

4.2.3 Advanced version 

The advanced version is aimed at users who are or who become familiar with the ELECTRE III. In 

contrast with the simple version, where there is no fixed scale nor for weights neither for thresholds. 

Users can enter weights on the numerical scale of their choice (e.g. 1-10 or 1-100). The thresholds 

are defined with a multiplicative parameter a and an additive parameter b. See Figure 10. For 

example, suppose that the user select b=15 and a= 0.1 and the performance of alternative X is 100. 

All alternatives with a performance 100±25 (25=15+100·0.1) are indifferent to the alternative X.  
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Figure 10: Advanced version with numerical inputs 

 

4.2.4 Final ranking 

The commercial software for ELECTRE III uses a graph for representing the results. It allows the 

distinction between indifferent and incomparable. However, this representation is not possible with 

a large number of alternatives, as it is very difficult to read the results. Our solution uses a table to 

display the ranking of the 113 universities. It can seen that rankings depend highly from the criteria 

and weights selected by the user. See Figures 11 and 12. The distinction between indifferent and 

incomparable universities is made with colours. See Table 8. 

 

Table 8: Status of ranked universities 

Status Colour Description 

Normal No colour One university per rank 

   

Indifferent 
grey 

Two or more universities have the same rank and are 

indifferent 

   

Incomparable 
yellow 

Two or more universities have the same rank and are 

incomparable 
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Figure 11: Final customised ranking 

Note:  In this case, the universities of York, Bath, Bristol, Manchester and Dundee are all ranked 10. 

The first four are indifferent (in grey) and the last one is incomparable (in yellow) 
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   Figure 12: Additional Comparison in Final customised ranking 

              Note: Compared with Figure 11, other criteria and weights can lead to a very different ranking 

 

5. Evaluation 

There were two types of evaluation that were conducted: a questionnaire and an observation of 

users. We sent a questionnaire by email to 800 students of our university, as the application has 

been conceived mainly to help students in the selection of a university. They were asked to visit the 

Web-system and answer an anonymous questionnaire. This approach was selected in order that 

students can complete the questionnaire where, when and only if they want it. The disadvantage of 

this unpressured voluntary exercise is a low participation: 20 participants (2.5% response rate). 

However, the collected data gives us some significant indications. 

 

80% of the respondents claimed that the university ranking was of interest to them but only 55% 

have already visited a Website providing this type of ranking. This observation is in line with past 

researches [22; 27] indicating that students do not rely on commercial rankings in choosing their 

university in UK. Only one participant knew ELECTRE III before. 50% of the participants used only the 

simple version, 20% of the participants used only the advanced version and 30% used both versions. 

Users, even those unfamiliar with ELECTRE III, were able to understand and appreciate the working 

of the system. When they were asked to assess the Web-system (Figures 13 and 14), the results 

clearly indicate that the system was helpful and better than the other current solutions.  

 

For the second evaluation, a group of 10 masters’ students were observed. All students first used the 

simple version, which is easier and selected by default on the welcome page. At the beginning, some 

students asked the purpose of the thresholds. Then after, they found the system easy and 

straightforward to use. All students rated the system far superior to the current commercial rankings 

as the user can select the criteria, their allocated weight and it returns more information (e.g. 
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indifferent and incomparable universities). Finally, they encouraged the developers to implement a 

similar system ranking universities by specialities (like business schools or engineering faculties). 

 

 
Figure 13: Bar chart evaluating the tool 

 

 
Figure 14: Bar chart of comparison with other Websites 

 

6. Conclusion 

Professor Cooper was one of the first researchers to evaluate the performance of education 

institutions, especially with DEA. Acknowledging his contribution in performance evaluation, we 

have seen that DEA has a problem when used as a ranking method [45].  It has even been called 

“Multiattribute for lazy decision maker” [20] as no input is required from the user. Today, several 

commercial rankings of Universities are periodically published. These ranking have been severely 

criticised and may not be as useful as students do not rely on them for selecting their university. 

Oswald [37] concludes that “Britain needs a wider range of rankings” in order to help students. Our 

web-system respond to this need as it provides a personalised ranking of the 113 official British 

Universities. It cannot be ascertained that a university is always better than another as the ranking 

depends on the criteria and weights selected by the user. Ranking universities rely on imprecise, 
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indeterminate and uncertain criteria; therefore ELECTRE III with its pseudo-criteria was appropriate 

for this problem. Furthermore it allows: 

 to bypass the problem of the full aggregation of incommensurate performances, 

 to reveal any disastrous criterion with the veto threshold, 

 to distinguish between indifferent and incomparable alternatives, and 

 to compare a very large number of universities (the limitation is given by the physical storage of 

data and not from ELECTRE III). 

 

However, ELECTRE III suffers from some issues in the exploitation process of the outranking 

relations. As the graph of the relations may be complicated, especially for a large number of 

alternatives, an automatic process must be used to generate the final ranking. For this purpose, the 

distillation has been developed. The drawback of the distillation is that an arbitrary threshold has to 

be selected, which may have an impact on the final ranking. In our future research, we will 

investigate the impact of this threshold on the final ranking. We will also research other methods to 

exploit the outranking relations. 
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