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A Web-Based Distributed Virtual
Educational Laboratory

Luigino Benetazzo, Matteo Bertocco, Franco Ferraris, Alessandro Ferrero, Fellow, IEEE, Carlo Offelli, Marco Parvis,
and Vincenzo Piuri, Senior Member, IEEE

Abstract—Evolution and cost of measurement equipment, con-

tinuous training, and distance learning make it difficult to provide
a complete set of updated workbenches to every student. For a pre-

liminary familiarization and experimentation with instrumenta-
tion and measurement procedures, the use of virtual equipment

is often considered more than sufficient from the didactic point
of view, while the hands-on approach with real instrumentation

and measurement systems still remains necessary to complete and
refine the student’s practical expertise. Creation and distribution

of workbenches in networked computer laboratories therefore be-
comes attractive and convenient. This paper describes specification

and design of a geographically distributed system based on com-
mercially standard components.

Index Terms—Distributed measurement systems, educational
laboratory, remote measurement, virtual systems.

I. INTRODUCTION AND MOTIVATIONS

R
ECENT developments in virtual instrument technologies,

remote measurement, distributed systems, and interactive

educational environments [1], [2] greatly changed the tradi-

tional approach to teaching and practical experimentation at
any educational level, from technical high schools and under-

graduate academic courses through master’s and Ph.D. studies

to continuous education and training in the industry. Practical

experimentation has a great and even increasing importance

in education to understand better the use of new complex

technologies through trial-and-error methods, especially when
it is difficult to capture and formalize system behavior in a

simple mathematical description.

The interest in virtual instruments is mainly due to the cost

of experimental laboratories both at educational sites with a

large number of students and in industry where instrumenta-
tion is used for development or production. Simulators are not

expected to replace the real instruments but can be a powerful

auxiliary didactic tool for the students in order to help them to

become acquainted with the instrument and its controls and op-

erations both in the class and remotely. This helps in reducing
training costs by restricting the tutored activities only to sub-

stantial matters.
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Remote access to educational resources is attracting an

increasing interest to realize distance learning. Continuous

training is in fact a key factor to maintain the leading edge and

improve the quality of production, products, and personnel in
many small and medium-size enterprises. Distance learning

allows one to limit the costs for continuous training both by

providing in-house educational facilities that can be used with a

flexible and adaptable schedule and by reducing the time spent

in an educational laboratory outside of the company.

Real measurements of physical phenomena are relevant

to more accurate training and to providing a better feeling

to students about measurement procedures and measurement

system design. The access to remote instrument-equipped sites

connected through a computer network becomes an interesting

solution to limit training costs without constraining educational
opportunities. Also in this case, further direct experimentation

on real systems can be considered after the preliminary remote

practice, but limited to a better understanding of the course

topics. This will reduce the cost and time for student mobility,

while preserving most of the learning opportunities on real
phenomena. The limitation consists in the possible restrictions

in real-time measurement and control of complex systems due

to bandwidth constraints and shared use of the measurement

system.

Last, the use of local acquisition boards allows for an even

more detailed experimentation without possible delays, time
inconsistencies, or operation constraints due to the networked

interconnections. This approach is, however, more expensive

than the previous solutions since the acquisition boards must

be acquired locally. However, since the virtual system is pro-

grammable, it can be used for several applications and, conse-
quently, will be cheaper than dedicated instrumentation.

The wide spectrum of data acquisition and treatment

solutions described above provides different degrees of perfor-

mance and accuracy, at correspondingly increasing costs, to

match better the evolving needs of students without wasting
precious resources. Capitalization and sharing of authors’

previous experiences led to creation of a unique educational

environment for training and experimenting in electrical and

electronic measurements. In particular, the authors merged

the system created for Web-based interaction to create and

download virtual benches [3] and the system created for remote
measurement [4]–[6]. This paper presents the system features

and architecture of a distributed educational environment based

on Web technologies and remote measurement. Such an envi-

ronment can be used to acquaint students to the measurement

procedures and laboratories, as a preliminary phase that does

0018-9456/00$10.00 © 2000 IEEE
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not replace practical activities on real instrumentation and

systems but reduces tutored activities and related costs. The

flexibility of the environment allows for supporting different
kind of didactic activities, while the teacher will be responsible

of selecting the most suited approach to be used according to

the specific needs of the students and the desired curricula.

II. SYSTEM SPECIFICATIONS AND FEATURES

The goals and features of a distributed virtual laboratory for

measurement technologies and applications follow.

A. Educational Goals

1) Initial Approach to Instruments, Measurement Proce-

dures, and Applications: The system must support students

in familiarizing themselves with measurement problems and

technologies through the use of simulators of real instrumen-

tation, measurement devices, and systems. Although desirable

for specialists, the large majority of students do not necessarily

need to learn creation of new instrumentation and measurement
procedures.

2) Student Typologies: Different kinds of students with dif-

ferent needs must be supported. The system must take into ac-

count undergraduate, graduate, and doctoral students, as well

as practitioners from industry. Beginners who want to use in-
struments and measurement methodologies need tools to under-

stand and operate in their specific application field. More oppor-

tunities are required for students working on metrology issues.

Advanced students in metrology areas will be interested in the

details of procedures, devices, components, and systems: cre-
ating their own instruments and experimenting with their own

measurement procedures is interesting but requires the access to

suited development systems. Since these last tasks are for spe-

cialists and have high costs, we do not consider this opportunity

in the present system version.

3) Adaptability to User Needs and Scalability to User

Level: The system must adapt operations and support to

specific users. Students with different backgrounds and needs

must be allowed for defining the resource view (i.e., devices,

components, instruments, generators, data acquisition sys-

tems), without being overwhelmed by too much information.
The system must scale transparently features and resource

view according to the level of competence, experience, and

confidence of the students.

4) Tutoring Aids: The educational system must support dif-

ferent types of interactions between students and educators. Tu-
tors in laboratories and computer classrooms can provide as-

sistance to students during classes. When the student alone is

using the simulation environment, educational supports will be

appreciated. On-line help for using the simulation environment

and the individual measurement resources can be introduced by

using standard programming techniques available in the user
interface. Multimedia pages are attached to each object of the

workbench front panel to explain meaning, theory, features, and

use of the selected component. Possible links can also be placed

to more extensive descriptions on Web sites. Multimedia and

hypertext technologies through web or CD-ROM distribution

allow for realizing an electronic book on measurement method-

ologies and instruments that can be used by students during

training. This book refers on-line to the distributed measurement
educational environment and remote sensing resources to pro-

vide examples of theory and measurement methodologies. The

student can thus experiment immediately in the virtual simula-

tion environment.

B. User Accessibility

1) User Friendliness: User’s activities must be performed

in a way that is simple and easy to understand, even for people

who are not experts in information technologies.

2) Simplicity of Accessing the Laboratory Resources: The

system features must be accessible easily and homogeneously
within the university hosting the servers, from other universities,

from companies, and by students at home. Access and operation

transparency guarantees effective and efficient use.

3) Different Accessing Typologies: The educational system

can be accessed by using personal computers connected to the

international computer network in different locations and with
different kinds of connection. Instrument-equipped computers

(i.e., computers with acquisition boards) may be anywhere, pro-

vided that they are connected to the educational server through

Internet and to the system or the plant to be measured. They can

be in the same institution hosting the educational servers, or in
another institution or company, or even at a student’s home. For

simulated or remote measurement, client computers may be lo-

cated in any computer classroom, university office, institution,

or company, when suited network connections and access autho-

rization are provided to the network of the required educational

servers. For remote use, computers must be connected to the In-
ternet via transport control protocol/Internet protocol (TCP/IP).

C. Cost Limitation and Hardware Resources Sharing

1) Limitation of Laboratory Costs: Virtual instrument tech-

nologies, possibly with a limited number of local physical re-

sources, must be used to minimize the costs of laboratory setup
and maintenance. In fact, run-time licenses of the simulation

software must be purchased to run simulations and not only

during development. This greatly affects system cost. Acqui-

sition of licenses cannot be delegated to students for cost and

political reasons, even if student licenses begin to appear on
the market at highly reduced costs. Conversely, the cost for all

students cannot be placed on the university budget due to fund

limits. Few licenses must be therefore bought by the universities

and provided temporarily to students as floating licenses valid

during the system use only.
2) Differentiation of the Hardware Supports:

Experimentation on purely virtual measurement systems

is useful as first experience. A better understanding of the

involved phenomena and measurement problems (e.g., delays,

sampling frequency, accuracy, and calibration) may need real

data. Students with knowledge and practical skills derived from
the virtual environment perform this advanced training phase

more quickly, thus using expensive and sophisticated physical

measurement resources for a shorter time. A smaller amount

of these resources are sufficient to satisfy the students’ needs,

leading to a reduced laboratory cost. Moreover, the limited cost
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and the restricted installations allow for improving resource

updating, thus maintaining the leading edge of educational

sites and the adequacy for industrial applications. Hands-on
experimentation for simple and relatively cheap acquisition

systems and application plants are obtained by using dedicated

components available in specific laboratories or individual

computers. Remote sensing, acquisition, and actuation on

centralized sites become attractive to limit the laboratory costs
for expensive components, systems, and plants.

3) High Availability and Sharing of Complex and Expensive

Measurement Resources: Networking expensive resources for

measurement and application allows for better exploitation of

resources and for sharing costs. High-quality training environ-

ments and up-to-date technologies are achieved at a cheaper cost
per student.

4) Shared-Resource Networking: Resources must be easily

and directly accessible by students, even remotely through the

computer network as they were local in the laboratory or even

in the computers on which students are working. Transparency
of resource networking is relevant to guarantee easy usage in-

dependently from the location.

D. Software Cost and Sharing

1) Limitation of Efforts and Time to Build Simulators: The

software developing tools based on graphic, object-oriented pro-
gramming methods make this job easier and feasible to a wider

population, even with limited experience in computer program-

ming. Development and maintenance costs are reduced.

2) Standard Components and Technologies for Simulators:

Standard virtual environments for simulation and simulator

development make creating and testing new environments
simpler and cheaper. This approach should be preferred instead

of building the whole instrumentation with programming lan-

guages and graphic tools since it reduces realization time and

cost, increasing quality, correctness, portability, adaptability,

and extendibility.
3) Engineering the Simulator Components: High quality,

accuracy, and correctness of simulation environments can be

achieved by using software engineering.

4) Reuse of Simulator’s Components: Availability of a com-

ponent library and use of standard design techniques allow for
reusing and enhancing development and costs.

E. Real-Time Operation

1) Real-Time Operation and Constraints: If the system to be

measured or controlled is connected to the student’s computer

directly through suited acquisition boards, real-time operation

of the virtual measurement system is possible. When signal gen-
erators are simulated, the real-time behavior is related only to

the characteristics of the simulation environment.

Some researchers and companies claim that real-time op-

eration in virtual instruments and environments with remote

sensing is always feasible and correct under any operating and

environmental condition, including geographical computer

networks. This is exactly correct only under some restrictive

conditions. Sampling of all quantities used by the measurement

workbench is not guaranteed to be obtained exactly at the same

time when acquired by different systems that cannot share the

same sampling clock.

Data analysis for monitoring and control must therefore con-

sider explicitly the time at which samples were taken. Tradi-

tional control algorithms need a consistent picture of the inputs,

sampled contemporaneously. Practically, analysis and control
are still correct even if sampling is not performed contempo-

raneously on all input signals, but in a time period short enough

to allow for considering the input values invariant within this pe-

riod. This occurs when system dynamics are slow enough with

respect to the period. Conversely, when input signals varies at
very high frequencies, the above approximation is not correct

and remote sensing should not be used for monitoring or control.

In control, improper use of remote sensing may lead to system

instability and safety problems.

An alternative approach could be envisioned by running the

whole monitoring and control algorithm on the remote site. In
this case, the interaction with the remote server should be lim-

ited to setting up and starting the experiment and, then, to re-

trieve the results. However, this requires transfer of the control

algorithm from the client to the server. This is usually not ac-

ceptable for safety reasons of the plant connected to the remote
server.

F. Distributed System Engineering

1) Modularity: It is relevant for the simulation system and

the component library. Modularity allows for combining indi-

vidual components easily to create the workbench or new com-

ponents, without any need of software development or adapta-
tion.

2) Expandability: The component library must be easily

expandable. New components should be directly added and

made usable to students without any need for library rebuilding

or restructuring. Local integration of components allows for
distributed libraries with possible specific adaptation to local

needs.

3) System Portability: The simulation environment and the

component libraries should be portable on different hardware

platforms and operating systems. When the system is built by

using programming languages, portability is achieved with an
absolutely portable language (e.g., nowadays, Java). We can ac-

cept a reduction of portability in exchange of a higher simplicity

in creating components and measurement systems. In most edu-

cational and industrial laboratories, sufficient portability is pro-

vided by commercially standard virtual environments for mea-
surements and by limiting the use of object-oriented program-

ming (C++ used in a standard and portable way).

4) Interoperability: Hardware and operating-system in-

dependence of the simulation environment also provides

interoperability, i.e., the ability of running some activities on
different computers, connecting to different servers for remote

measurement services, using different measurement servers

written on different machines with different languages, and

downloading components from different servers. All these

features are provided transparently and homogeneously to the

users.
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G. Cooperative Development, Management, and Maintenance

1) Sharing Resources and Experiences Among Universities,

Institutions, and Companies: The global communication net-

work and high-level languages allow for allocating simulation

and remote acquisition programs on different servers. Universi-

ties, measurement institutions, and companies may join the re-
source developing teams so that the burden of simulator devel-

opment and maintenance can be distributed on all participating

bodies with mutual benefit. The adoption of de facto standards

and widely used development and simulation environments for

virtual instrumentation (e.g., LabView by National Instruments)

maximizes the opportunities for mutual exchanges of compo-
nents and experiences.

2) Specialization and Quality: Partitioning of design, im-

plementation, and maintenance of the measurement components

and plants among several partners allows for assigning tasks to

the most suited experts. Specialization leads to a higher quality
of the individual components, measurement resources, and ser-

vices.

3) Centralization for Standardization: Centralizing design,

implementation, and maintenance of resources and servers al-

lows for better control and coordination of the whole system.
Centralization must not necessarily be complete: Some excel-

lence centers can be selected to manage specific tasks as well

as realize and maintain specific resources and components, in a

coordinate way. Centralization favors educational tool standard-

ization and adherence to commercial and formal standards.

4) Multiserver System: For system decentralization as well
as for centralization and cooperation in creating and maintaining

the measurement resources and components, the system must be

realized on a multihost platform. Each host computer runs part

of the system features and resources, in cooperation and coor-

dination with the other servers. To enhance the system perfor-
mance and fault tolerance, mirrored sites are adopted to repli-

cate services and resources in different locations. Users access

the nearest server available on the network at that time. Suited

policies and strategies must be envisioned for automatic align-

ment and system consistency. Other considerations on multi-
server systems are found in [4] and [5].

H. Security

1) Preservation of Intellectual Rights: The use of simula-

tion environment licenses must be guaranteed and protected

from unauthorized accesses. Similarly, protection must be
assured also to the distribution of the virtual instrumentation

developed for training purposes.

2) Security: The access through the Internet must preserve

the integrity of data and systems.

3) Safety and Security of Measurement and Application Re-

sources: Access and use of remote physical resources as well as

instrument-equipped systems and plants must be allowed only to

authorized users, according to the agreements for training pro-

grams and cost sharing and by taking into account suited secu-

rity and safety operating conditions for the instrument-equipped
system or plant.

Fig. 1. Distributed system architecture.

III. SYSTEM ARCHITECTURE

The system design and experimentation took into account all

characteristics and features discussed in Section II. A homoge-

neous distributed framework was created for workbench con-
struction, storing, and distributing as well as for remote sensing

to support different educational activities.

The client–server distributed environment composed by a

multiserver architecture is shown in Fig. 1. The distribution

servers store the basic components of the virtual instruments
and generators that can be used by the students to build their

own workbench. The instrument-equipped servers are directly

connected to instruments in order to measure physical quanti-

ties in the field for remote sensing applications. Servers can be

located everywhere on the network, but physical connections
and access authorizations are given to every user.

Clients allow students to connect to servers for creating the

virtual workbenches, which encompass stand-alone generators,

virtual instruments fed by virtual generators, virtual instruments

connected to real acquisition boards installed in the client, vir-
tual instruments fed by remote sensors through the network, and

virtual generators providing control signals to either local or re-

mote actuators. Clients can be connected to servers on the same

local-area network (LAN) of the laboratory or the campus as

well as remotely in other LAN’s or even through ISDN or di-
alup connections through the Internet.

For all connections, international commercial standard pro-

tocols are adopted for the widest access, namely, TCP/IP, file

transfer protocol, hypertext transfer protocol, and secure hyper-

text transfer protocol (SHTTP) [3], [4]. This allows any user
of the simulation environment for virtual laboratories to simply

plug his client computer to the international network and ob-

tain the simulation environment and the instrumentation com-

ponents directly from the server without any preliminary acqui-

sition of specific software, except the suited access authoriza-
tion.
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Fig. 2. Client software architecture.

To protect the server, an approach based on access restriction

through user validation was adopted [3], [4]. User operations

are controlled through verification of password and IP address

of either the client or the gateway through which the client con-

nects to the server.
In the experimental setup, the authors installed a distribu-

tion server in the Como Campus of Politecnico di Milano

(Hewlett-Packard 9000 715/50, HP-UX 9.0, Hughes Tech-

nologies’ mSQL, NCSA’s HTTPD WWW server) and an

instrument-equipped server at the Universita’ di Padova
(Hewlett-Packard Kayak XU, Windows/NT 4.0, connected

to HP 33120A arbitrary waveform generator, HP 34401A

digital multimeter, HP 54615B digital storage oscilloscope,

HP 35660A digital signal analyzer, and HP 8591EM EMC

analyzer).

Students use IBM-compatible personal computers, with
MS-DOS and MS-Windows 3.11, MS-Windows95, or

MS-Windows/NT, Netscape Navigator 3.0 or MS-Explorer

3.0, or subsequent versions. They can access both servers from

the Instrumentation and Measurement Laboratories of these

two universities located in Milano and in Padova, as well as
from a classroom in the Como Campus. Students with ISDN

or dialup connections access from their home either through

Internet service providers or two sets of modems of Politecnico

di Milano.

A workbench is composed by the simulation engine and by

instrument and generator components (see Fig. 2). For interac-
tion with remote boards, a system process (the remote connec-

tion manager) is introduced to manage all interactions with the

remote instrument-equipped server.

Different types of virtual components are available to support

different approaches to measurement experiments:

• instruments;

• stand-alone generators, which can be used to simulate
the external environment by computing the desired signal

function;

• generators connected to real acquisition boards installed

in the client;

• generators fed by remote sensors through the network;
• actuators, which can provide control signals to local

boards;

• actuators, which can generate controls for remote boards;

• samplers and timers, which are used to provide, when nec-

essary, the suited timing and synchronization among all

Fig. 3. Software architecture of the distribution server.

input channels for realistic observation in the virtual in-

strument.

Different generator, instrument, and actuator variants with the
same appearance can be created, according to the source (i.e.,

simulated, acquired from a local board, or remote) of the signal

to be delivered to the other components in the workbench.

Simulation engine, sampler, and virtual components are cre-

ated in LabView, a widely used virtual environment for mea-

surement areas produced by National Instruments. The versions
supported are 4.x and 5.01.

The engine is an executable program that contains the

run-time support of LabView and interprets the selected

components’ definition to realize the virtual workbench [3],

possibly with connections to the local acquisition boards or
the remote instrumentation. It contains also some checkpoints

to verify continuously the user floating license by interacting

with the distribution server. Operation of the simulation engine

is described in detail in [3]. The simulation engine and remote

connection manager are downloaded only once when the client
is configured and installed with a self-decompressing and

self-installing procedure. The Web browser configuration is

automatically updated for direct recognition, management, and

execution of workbenches and virtual components.

The sampler is a standard connection component provided

with the simulation engine for input/output signal synchronized
sampling on the channels when synchronization is relevant for

proper system operation.

Definitions of components are created off-line by experts in

instrumentation and measurement procedures by using the vi-

sual editor of LabView. These definitions (which are not yet exe-
cutable) are stored in files in the component data base of the dis-

tribution server. They are in a format that can be read and inter-

preted by the LabView run-time support. Interpretation and use

of Web technologies allow for portability and interoperability.

The components and the engine as well as the run-time au-

thorization checking are stored, held, and managed in the distri-
bution server. The software structure of this server is shown in

Fig. 3. To distribute the engine and the components as well as to

create the workbench while protecting the intellectual property,

a Web-based interface was adopted [3]. This provides a very

user-friendly interface, with high portability and independence
from the client computer. To create a workbench, the student

must connect to the distribution server by using the suited au-

thorization code. Then, he can select from among the predefined

components representing instruments or generators, contained

in the component database. To simplify dynamic linking of the
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Fig. 4. Software architecture of the instrument-equipped server.

selected components, a standard bench framework is provided

with space for a predefined maximum number of instruments
and generators. The configured workbench is downloaded and

run on the client automatically. Since components are not able

to run without the simulation engine and cannot be stored on the

client separately, run-time verification of the user authorization

performed by the authorization manager allows for saving their
intellectual property.

The remote connection manager in the client is an executable

program running in parallel to the simulation engine [4], [6].
It maintains and manages the operations with the instrument-

equipped server over Internet. When a client needs a set of sam-

ples, a request message with the suited parameters is sent by the

virtual component representing the generator to the connection

manager.

The software structure of the instrument-equipped server

is shown in Fig. 4. The request manager in the instru-

ment-equipped server verifies the client’s authorization,
acquires the desired samples through the acquisition manager

of the desired board, and sends them back to the remote

connection manager on the client. In turn, this manager in the

client delivers the remote sampled data to the virtual generator

so that it can provide them to the other components as they were
obtained either from a local board or simulation. Actuators

operate similarly.

Detailed help pages can be added to relevant graphic Labview
elements of each component (e.g., indicators, buttons, counters,

and graphs) to support self-training. Explanatory Web pages can

provide enhanced on-line tutoring to students, to answer indi-

rectly most of their questions on the real instruments and on the

simulation environment arising during the use of the simulator
and the virtual systems. For components created with Labview

5.0, these pages are linked as properties of the related elements

and can be activated simply by clicking with the right button

of the mouse on the corresponding element. For Labview 4.0

components, a similar feature is obtained by defining a sensible
area enclosing each relevant element and by associating the Web

page to such an area.

Hypertext and multimedia technologies allow also for cre-

ating navigation paths through the material available on the Web

site. A hypertext book can be created to guide and support the

students with advanced self-training approaches, a complemen-
tary tool for traditional teaching. Experiments can be set up to

test immediately the acquired knowledge and verify the com-

prehension degree on the field. The multimedia technologies are

in this case instrumental to enhance the readability and under-

standability of the book by reconstructing as much as possible

the real working environment through images, graphics, short

movies, sounds, and so on.

IV. EXPERIMENTAL USE AND CONCLUSIONS

The distributed multiserver system was realized in a dis-
tributed environment encompassing the University of Padova,

Politecnico di Torino, and Politecnico di Milano. The system

specifications, which have been described in the previous sec-

tions, have been fully implemented to test the different modes

of use. The participating universities contributed to create the
initial database of virtual instruments and generators as well as

to set up some experimental remote measurement sites.

The system has been tested by individual students for classes

in electrical measurements in different connection and operating

conditions. Students were allowed to use the components, but
only tutors, Ph.D. students, and some selected students in ad-

vanced measurement courses were allowed to contribute in the

creation of the components. The whole Labview development

environment is in fact required to develop new components as

well as to modify the existing ones. Since the cost of this envi-

ronment does not allow for buying and installing as many copies
as the computer in the laboratories and classrooms, only a lim-

ited number of advanced students can benefit from virtual in-

strument creation.

On the other side, creating virtual environments in a suited vi-
sual programming language, even if feasible, means building the

whole system. This is often too complex and time-consuming

when the goal of the experimental classes is focused on the

use of instruments rather than on building the instruments and

the measurement procedures themselves. The first case occurs

for a large number of students, especially when they must only
learn how to use instruments and measurement procedures. The

second case is usually of interest to a restricted number of spe-

cialized students, and, as a consequence, different policies may

be adopted (e.g., acquisition of development licenses).

During classes, students were required to create some simple
workbenches (e.g., some waveform generators with an oscil-

loscope, a monitoring system for observing electrical quanti-

ties measured remotely, a simple control system to stabilize

the room temperature) by using the components available in

the system library. Simulated, local, and remote measurements
have been performed to observe the differences between the the-

oretical model of the simulated generator and the real cases.

Real-time operation has been analyzed by observing the differ-

ences among the acquired waveforms in the case of remote and

local acquisition configuration. Students were asked to perform
other experiments by using different generators and remotely

monitored quantities as homework after regular classes at their

convenience: they were required to report results after ten days.

Students performing these experiments during classes were lo-

cated in laboratories at Politecnico di Torino, at the Universita’

di Padova, and at both the Milano and the Como Campuses
of Politecnico di Milano. They connected to the servers also

from homes located in different towns and villages in Lombardy,

Piemonte, and Veneto. Last, some practitioners from industry

in Milano and Torino experimented with the remote connection

from their company offices.
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Experiments have shown that the proposed environment is

effective for the two main goals: cost reduction and students’

satisfaction. As tutoring costs are concerned, we were able to
reduce the number of hours of tutored activities—and the re-

lated tutors’ cost—in the real laboratory to about 40%. On the

other hand, students have shown their appreciation for the vir-

tual environment since they were allowed to perform experi-

ments more freely, even by exploiting additional hours when it
was more convenient for them. This allowed them to organize

and personalize their schedule to better match their educational

needs and extracurricular activities. They did not suffer from

the lack of tutor support in laboratory classes. After a brief in-

troduction to the distributed environment and the preliminary

individual practice with the virtual environment, tutors refined
the practical expertise acquired by students both with additional

classes on the theoretical aspects and with guided practice on

real instruments and systems.

The multiserver system therefore has been proved a viable,

effective, and cost-effective aid to the educational activities both
for classes and for continuous education.

Further experimentation will involve the use of the whole dis-

tributed multiserver system during classes. Further development

will afford the realization of a wide library of components as

well as the creation of a more extensive Web-based tutoring en-
vironment directed to electrical instrumentation and measure-

ment courses.
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