
SYSTEMS JOURNAL 1

A Web of Things framework for RESTful
applications and its experimentation in a Smart City

Federica Paganelli, Member, IEEE, Stefano Turchi, and Dino Giuli, Senior Member, IEEE

Abstract—The Web of Things is as an active research field
which aims at promoting the easy access and handling of smart
things’ digital representations through the adoption of Web stan-
dards and technologies. While huge research and development
efforts have been spent on lower-level networks and software
technologies, it has been recognized that little experience exists
instead in modeling and building applications for the Web of
Things. Although several works have proposed REST-inspired
approaches for the Web of Things, a main limitation is that
poor support is provided to web developers for speeding up
the development of Web of Things applications, while taking
full advantage of REST benefits. In this work we propose a
framework which supports developers in modeling smart things
as web resources, exposing them through RESTful APIs, and
developing applications on top of them. The framework consists
of a Web Resource information model, a middleware and tools for
developing and publishing smart things’ digital representations on
the Web. We discuss main framework implementation choices and
its compliance with REST guidelines. Finally, we report on our
test activities carried out within the SmartSantander European
Project to evaluate the use and proficiency of our framework in
a smart city scenario.

Keywords—web of things, internet of things, smart city, web,
Representational State Transfer, web services, sensors, smart things.

I. INTRODUCTION

THE Web of Things is an active research area that focuses
on the specific challenge of making smart things accessi-

ble and manageable through open Web standards. This vision
is correlated with the broader Internet of Things (IoT) research
area aiming at enabling communication with and among smart
objects, leveraging Internet standards and technologies [1].

As argued by the European Expert Group on Services in
the Future Internet [2], huge research and development efforts
have focused on lower-level networks and software technolo-
gies, while “there is currently little experience with building
applications for this new, emerging ecosystem of IP-enabled
devices and objects”. As the Web facilitated both application
development and use for the traditional Internet, it is now
expected to “unleash the potential of the Internet of Things

F. Paganelli is with the National Interuniversity Consortium for Telecom-
munications, at the Research Unit of the University of Florence, 50139,
Italy (phone: +39 055 4796382; fax: +39 055 4796427; e-mail: feder-
ica.paganelli@unifi.it).

S. Turchi and D. Giuli are with the Department of Information En-
gineering, University of Florence, 50139, Italy (e-mail: stefano.turchi,
dino.giuli@unifi.it).

Manuscript received February 24, 2014. This work has been partly funded
by the European Commission through the SmartSantander FP7-ICT project.

by making it accessible and programmable by developers who
are not necessarily experts in ubiquitous computing” [2].

The Web of Things is expected to ease the access to smart
things’ capabilities and promote novel value added services
based on the combination of traditional web resources with
those representing entities from the physical world (smart
things, sensors, appliances, etc.) [3]. This has the big advantage
of allowing the integration of smart things with the impressive
amount of information resources and services already on the
Web, as well as exploiting available technologies and best
practices for web resources publishing and management.

On this perspective, the Representational State Transfer
(REST) architectural style, developed as an abstract model of
the Web architecture [4] is considered a reference paradigm
for bringing sensors, and more generally smart things, into
the Web [5]–[7]. Indeed, REST defines a set of principles for
designing distributed hypermedia application fulfilling scala-
bility, simplicity and loosely coupling requirements.

Several research works have proposed approaches for im-
plementing the Web of Things through REST principles, as
discussed in the survey by Zeng et al. [8], [9]. However, the
path to the effective realization of the Web of Things is made
difficult by the widespread misunderstanding of REST basics
[10] and, consequently, the lack of software development
frameworks that comprehensively support them [11], [12].

As a consequence, a main limitation of related work is that
poor support is provided to web developers for speeding up the
development of web applications for accessing, modifying, and
composing information resources in the Web of Things domain
[2] while taking full advantage of REST benefits.

In this work we propose an approach towards the Web
of Things based on a graph representation of web resources,
which can be accessed and modified at the desired and mean-
ingful level of granularity through a REST-compliant uniform
interface. According to our approach, a smart thing can be
modeled as a graph of individually addressable web resources
whose edges represent simple structural aggregation (i.e. con-
tainment) and reference relations. Graph-based representation
of smart things can be interlinked with other types of infor-
mation nodes to build a growing graph of globally-addressable
information resources that can be navigated, queried, and
composed through a uniform REST interface.

The proposed framework consists of: i) a Web Resource
information model for representing smart things as web-
accessible resources, ii) a middleware for handling and ex-
posing these resources through a uniform API, and iii) a set
of tools for easing the creation and handling of Web Resources
as well as their web-oriented programming and publishing.

By leveraging presented Web Resource model, middleware

paganelli
Font monospazio

paganelli
Font monospazio
This is the author's version of an article that has been published in IEEE Systems Journal. Changes were made to this version by the publisher prior to publication. The final version of record is available at http://dx.doi.org/ 10.1109/JSYST.2014.2354835

paganelli
Font monospazio

paganelli
Casella di testo
© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

SYSTEMS JOURNAL 2

and tools users can easily create and modify digital represen-
tations of smart things, interconnect them with simple links
and publish them on the Web as RESTful resources.

Finally, we report on the use of the framework in a Smart
City scenario within the SmartSantander European Project. The
experiment consisted in the development of a web application
for accessing sensors deployed in the city of Santander, Spain,
as well as creating new virtual sensors. We also evaluated end-
users acceptance of provided tools.

The remainder of this paper is organized as follows. In Sec-
tion II we present related work and motivate our contribution.
Section III introduces the main principles of our approach
and describes our framework. In Section IV we describe the
experiment carried out within the SmartSantander European
Project to evaluate the proposed approach. Section V concludes
the paper with insights on future work.

II. RELATED WORK

In this section we briefly introduce the main principles of
the REST architectural style. Then, to motivate our work,
we analyze state of the art solutions for middleware and
application frameworks for the Web of Things.

A. REpresentational State Transfer architectural style

REST (REpresentational State Transfer) was proposed by
Fielding [13] in his doctoral dissertation as an architectural
style for building large-scale distributed hypermedia systems.
By the REST vision, data sets and objects handled by client-
server application logic are modeled as resources. REST key
principles are fivefold [13]:

1) URIs as resource identifiers. Resources are exposed by
servers through URIs. Since URIs belong to a global
addressing space, resources identified with URIs have
a global scope;

2) Uniform interface. The interaction with the resource is
fully expressed with four primitives, i.e., create, read,
update and delete; These operations can be mapped onto
HTTP methods: GET reads the resource state; PUT
updates the resource state; DELETE deletes a resource;
POST extends a resource by creating a child resource;

3) Self-descriptive messages. Each message contains the
information required for its management;

4) Stateless interactions. Each request from client to server
must contain the information required to fully under-
stand it, independently of any previous request;

5) Hypermedia As the Engine Of Application State (HA-
TEOAS). A hypermedia system is characterized by
participants transferring resource representations that
contain links; the client can progress to the next step in
the interaction by choosing one of these links [14].

Historically, two styles opposed in the Web services field:
SOA and ROA (Service Oriented Architecture and Resource
Oriented Architecture, respectively), i.e. WS-* and REST.
Pautasso et al. [15] compare RESTful and WSDL/SOAP based
Web services, using architectural principles and decisions.
The authors conclude that RESTful services are more suited

for tactical, ad hoc integration over the Web (à la Mashup).
Adamczyk et al. [12] evaluated some key questions regarding
the real and perceived distinctions between the two styles,
and carried out a thorough analysis of Web services exposed
by four repositories: 1) xmethods.net; 2) webservicex.net; 3)
webservicelist.com; 4) programmableweb.com reporting a very
fast-pace growth of REST popularity. Moreover, in a study led
in 2012 by Guinard et al. [7] involving 69 novice developers
in implementing IoT client applications exploiting WS-* and
REST approaches, results reported that REST is statistically
significantly easier and faster to learn than WS-*. In addition,
a considerable number of volunteers agreed that REST was
more suited for Web applications requiring to integrate Web
content: “[for] Web Mashups, REST services compose easily”.

Although RESTful APIs are deemed to be relatively simple,
developing RESTful systems is difficult and existing frame-
works fail to support developers in conforming to REST
constraints [11], [12]. The analysis provided by Zuzak and
Shreier [11] highlights some weaknesses of existing general-
purpose REST frameworks, such as the lack of structural and
behavioral model for resource types, poor support of flexible
mapping between resource representations and stored data
entities, lack of support for scripting functions for read-write
access to the application state at client-side. Adamczyc et
al. [12] argue that current frameworks do not support well
the “hypermedia constraint” or Hypermedia as the Engine Of
Application State (HATEOAS) principle, and most of them
does not fully support HTTP caching.

B. Middleware and frameworks for the Web of Things

Zeng et al. provide a survey on research works in the
WoT domain [8], where they highlight two main analysis
criteria: the approach for integrating the physical things to the
Web (i.e., direct and indirect integration) and the provision of
composable services for enabling physical-virtual mashups.

Guinard et al. [16] provide a pioneering work contribution
by specifying and implementing a set of REST services that
expose functionalities of sensor nodes as web resources and
link them together hierarchically. In a later work, this approach
is applied in the AutoWoT project [17], a toolkit that facilitates
the rapid integration of smart devices into the Web by offering
a general way of modeling web resources and a mechanism for
building web server components that expose the functionality
of these devices. If the user modifies the Web resource at a later
time, AutoWoT can semi-automatically regenerate the software
for the Web exposure of the device.

Also other works adopted the REST principles for imple-
menting WoT-oriented systems. WebPlug [18] is a framework
for the Web of Things that allows users to manage web
resources representing sensors’ data and compose personal
services based on physical objects. The representation of a
web resource is enhanced using MetaURLs, i.e. textual labels
that can be appended to the URL of the base resource to access
some related information (e.g., collection of historic values).

Christophe et al. [19] present a prototype framework allow-
ing the creation and handling of virtual objects. To validate
their framework, they also introduce a web application that

SYSTEMS JOURNAL 3

allows end-users to access the virtual objects and compose
them according to basic event-based rules.

Uberdust [20] is a service-oriented platform that provides
storage, sharing and discovery of real-time and historical data
from smart objects and sensor networks through the Web.
These data can be accessed using REST and WebSocket APIs.

Significant efforts are ongoing to develop a Semantic Sensor
Web [21] and integrate it with the growing body of knowledge
available as Linked Open Data [22].

SemSense [23] is a system that collects data from physical
sensors and publishes these data enriched with semantic anno-
tations on the Web. SPITFIRE [24] is a service infrastructure
that offers semi-automatic generation of semantic sensor de-
scriptions and efficient search for sensors and things based on
their current states. Applications can issue search requests to
SPITFIRE and then directly invoke retrieved services.

C. Motivation of our work

While most works focusing on semantic descriptions of
smart things [21], [23], [24] aim at providing efficient search
and discovery capabilities, the scope of our work is to provide
users with tools for accessing and programming the Web of
Things, in compliance with REST guidelines.

Towards this objective, some previously mentioned works
[17]–[20] provide tools for speeding up the exposure of REST
APIs for accessing smart things capabilities.

The original contribution of our work with respect to the
ones mentioned above [18]–[20] is twofold: 1) the proposal
of an information model representing web resources and their
mutual relations; 2) the provision of tools supporting users
in composing, publishing and sharing the web representation
of smart devices, that can be accessed through common
web browsers. In the context of this study, we consider two
different target users: i) developers of the WoT (from now
on, developers) and ii) tech-savvy users with rudiments of
web technologies (from now on, users). In subsection III-C
we will discuss tools created for both categories. Finally, the
term end-user will refer to people without particular domain
competences, e.g. ordinary “Web surfers”.

Our work shows more similarities with AutoWoT [17] since
both adopt a Web Resource model and provide services sup-
porting the exposure of smart devices as web resources. How-
ever, a significant difference exists in the modeling approach.
The AutoWoT resource model relies solely on a hierarchical
relation among resources, consequently a physical thing is
represented as a hierarchical collection of web resources. We
argue that a mere hierarchical relation is not fully compliant
with the REST hypermedia constraint (i.e. reference links
among resources drive the application state evolution and shall
be advertised by the server at each interaction step). Since,
as argued by Vinoski [9], “relationships between resources
and how the server makes those relationships available to
applications are at least as important to REST developers
as resource naming”, our approach relies on a graph-based
model that includes two main types of relations among web
resources (i.e., aggregation, and reference). Purposely, these
relations recall how, in fact, web resources are organized and

can be navigated in traditional web sites. In addition, IDN
is natively capable of handling sets of resources, and this
has the following implications: i) through the Web Resource
REST resource exposed by IDN API is possible to perform
aggregated operations on graphs. This means that it is possible
to retrieve, create or update more vertexes at the same time.
ii) The Web Resource model describes sets of Nodes (at
the limit, made of one element only) and is particularly
suited for hosting properties which are strongly affected by
information aggregation practices, such as privacy. Moreover,
unlike AutoWOT, the IDN model offers a scriptable Node,
called Activity Node (see section III-A), which is able to
perform processing operations on other Nodes’ contents and
output the computation result. This scenario seems to be very
promising for devices virtualization. Leveraging this model, we
propose a set of capabilities supporting developers and users
in representing smart things as Web Resources and composing
them with existing web resources, to build novel applications.

III. WEB OF THINGS RESTFUL FRAMEWORK

Our work aims at leveraging Web principles for making a
Web of Things easy to access and program. Our framework
provides tools for easing both exposure and handling of smart
devices (and related information) as web resources. These web
resources can be composed with “traditional” ones to facilitate
the creation of web applications and services. This objective
requires a dedicated adaptation layer mediating the interaction
with sensor and actuator implementation technologies that have
not been designed with the Web exposure requirement in mind.

It is widely accepted that REST is the architectural style for
the Web, and our approach for web resources exposure is based
on its principles. Since the mere adoption of mainstream REST
frameworks do not guarantee the compliance with all REST
guidelines [11], [12], our work aims at helping developers in
taking such constraints into account. More specifically, our
framework provides support to:

• Resource types definition and design. We propose a
graph-based information model for representing web
resources, called Web Resource model.

• General-purpose software for exposing and handling
operations on web resources. Our system includes a
set of middleware services for exposing web resources
through a REST uniform interface.

• Mapping between web resource representation and
legacy data-sources. The middleware is based on a
layered architecture that distinguishes the web exposure
layer (dealing with web resource model and represen-
tation, content negotiation, RESTful uniform interface
exposure) and the layer dealing with storage of data
entities and/or the retrieval from external sources.

• Programming and Web Publishing tools. These consist
of Java and JavaScript libraries for easing the devel-
opment of web applications for the Web of Things, a
web application allowing users to graphically access,
modify and create new web resources according to our
model, and a plugin for their rendering and visualization
in ordinary web browsers.

SYSTEMS JOURNAL 4

As detailed in section III-A2, our information model repre-
sents web resources as nodes (containing data and metadata)
interconnected through links, to create a browsable graph of in-
formation. Our model has two types of structural links: aggre-
gation (i.e. containment) and reference relations. Leveraging
the modeling capabilities and programming tools made avail-
able by our framework, a smart thing is modeled as a graph
of individually addressable web resources handled through a
REST interface, at the desired level of granularity. This graph-
based representation allows to easily represent smart things
as sets of nodes that can be interlinked and connected with
other resources (e.g. information resources of the “traditional”
Web of Documents) to build a growing graph of globally-
addressable information that can be navigated, queried, reused
and composed through a uniform REST interface. Hereinafter,
we will consider sensors as smart things reference examples.

A. Web Resource Model

In the following, few definitions are given before introducing
the Web Resource concept.

Definition 1. A Node is a tuple N = (C,P), where C is the
set of content elements (i.e., data) and P is the set of properties
(i.e., metadata) that characterize the content. A nice URI [13]
associated to every node is used as a unique identifier.

Definition 2. An Aggregation link is a directed link between
two Nodes that represents a container-content relation. The
conveyed meaning is: the originating node aggregates, there-
fore contains, the destination node.

Aggregation is a transitive relation: given two nodes n0 and
n1 connected via an Aggregation link departing from n0 and
pointing to n1 (n0 → n1), we are implicitly stating that n0

contains n1. As a consequence, given a third node n2 so that
n1 → n2 we can say that n0 contains n2.

Definition 3. A Reference link is a directed link between
two Nodes that represents a pointer towards a referred
resource (i.e. the destination node). No further meanings are
associated with Reference links. To better understand the
Reference link role, it could be somehow compared with the
HTML href attribute.

1) Node Data Model: The Node data model is made of four
elements, as shown in Fig. 1: ApplicationData, Application-
Metadata, StructuralMetadata and ManagementMetadata.

The ApplicationData is the section entitled to host con-
tents, i.e. the information to be consumed or produced by
applications. This section includes Content, ContentSchema,
ContentEncoding, and ContentType sub-sections which wrap
the content itself, the location hosting the related content
schema (if available), the encoding algorithm (e.g., base64),
and the content type expressed in MIME type notation [25],
respectively. These subsections are crucial for supporting con-
tent reuse. Indeed, our paradigm is conceived to encourage
information reuse and when a client (e.g., an application)
retrieves a Web Resource it should be able to handle its
contents by choosing proper decoding and parsing algorithms.

The information contained in the ApplicationMetadata sec-
tion can be used for tracing applications’ modifications. When

a client modifies a Web Resource, the Information History
module (see subsection III-B) runs a versioning procedure
to persist that Web Resource latest version. These metadata
provide information about the author of the modification such
as the related time-stamp, the identifier of the application
responsible for the creation and the author of the resource.

The StructuralMetadata section contains references to Link
elements originating from the Node and, because of this,
it takes part in the graph’s structure. For every link type,
additional information is provided such as a local name,
description metadata, allowed operations to support the HA-
TEOAS paradigm and, of course, the referred URI.

The ManagementMetadata section may contain properties
that further characterize the Node in terms of licensing, pri-
vacy, provenance, time and versioning. More specifically, the
LicensePolicy element may be used to declare the licensing
policy in force for the Node. The PrivacyPolicy element
basically states whether the Node contains identifying and
sensitive information. The ProvenanceManagement element
contains information concerning the enforced provenance strat-
egy [26], [27]. The TimePolicy element specifies whether the
node should be destroyed or invalidated after (or before) a cer-
tain date. Finally, VersioningPolicy specifies which versioning
policy should be applied to the Node.

The Activity section is dedicated to the specification of a
script for dynamically generating contents. A scripted Node
is called Activity Node and presents special outgoing edges
(Active Links) defining dependencies pointing to Nodes
containing inputs required for the script computation. When
a request is issued for an Activity Node, its dependencies
are resolved before executing the script. The output of the
script constitutes the content information for the current Node
to be included in the ApplicationData section. In authors’
experience, Activity Nodes are very handy to represent
Web Resources whose content depends on contents of other
Web Resources. A significant example is the Virtual Sensor,
which is a non-physical sensor whose output is a function of
other feeding sensors’ outputs. This is particularly useful to
increase the coverage of existing sensors or to define derived
measurements, such as the Heat Index [28] which combines
temperature and humidity.

2) Web Resource Exposure: The Web Resource is the REST
resource exposed by the IDN and is defined as a directed graph
R(N,LAggr) where N is the set of Nodes (with |N | ≥ 1) and
LAggr is the set of Aggregation Links. A Web Resource has
a single Root Node nR, i.e. a Node with no incoming Ag-
gregation Links. A Web Resource representation can contain
a different number of Nodes, determined by dedicated URI
parameters. Nodes are served by resolution levels, taking as
reference the geodesic distance [29] from nR.

A URI for a Web Resource has the following syntax:

http://auth/node name/$p{inner path}/-
$c{content path}/$v{version}/$r{res depth}?keys=vals.

The auth fragment defines the authority as defined
in the URI specifications [30], node_name is a path

SYSTEMS JOURNAL 5

Fig. 1. The first level elements hierarchy of the Node data model. Vertical
texts specify whether these elements are used to implement contents or
properties.

TABLE I. WEB RESOURCE URI SYNTAX

Fragment Regex Semantics

node name [ˆ\][/\w]*[ˆ\] The name of the Node.

inner path

[ˆ\][/\w]*[ˆ\], iff the
character sequence
identifies a valid node’s
section.

The name of the inner section of the
Node.

content path
a valid (reduced) XPath
expression

The specification to reach parts of
structured contents.

version [ˆ.][.\d]*[ˆ.] The version of the Node.

res depth [\d]
The number of edges to explore start-
ing form the Root Node, determining
the retrieved Nodes.

determining the name of the current Node, inner_path is
an optional filter selector specifying which part of the Node
is required (e.g. the ApplicationData or StructuralMetadata
explained in subsection III-A1), content_path is an
optional XPath [31] expression targeting specific elements
in structured contents, version is an optional parameter
specifying which version of the Node is requested and
finally, res_depth is an optional parameter specifying the
resolution depth as the number of hops from the current
Node. The content_path parameter requires an additional
explanation: a Node can contain either structured (e.g. XML
or JSON) or unstructured (e.g. plain text) data. In the first
case, is possible to exploit the underlying structure to offer
additional filtering capabilities based on content elements (for
example, if the Node contains a book store, is possible to
filter authors, provided they are represented in the book store
structure). Since it is not possible to make any assumption
on the adopted content format, content_path must use
a generic syntax. To this end, we used a reduced set of the
XPath syntax excluding XML peculiarities (e.g. attributes and
namespaces). Tab. I summarizes the fragments’ meaning.

A Web Resource is exposed to external clients through a
uniform CRUD interface, made of a fixed set of operations:
create, read, update, delete. These operations can be mapped
onto HTTP methods: GET reads the resource state; PUT
updates the resource state if the resource already exists
and creates it otherwise; DELETE deletes a resource. In

order to keep interaction with resources flexible, easy and
comprehensive, much effort has been put in making it fully
RESTful. Specifically, three aspects have to be highlighted:
first, content negotiation is available for Nodes. The current
implementation allows a client to request XML, JSON and
HTML representations. As explained in subsection III-C4,
HTML representations are produced by a JQuery plugin which
requests (via AJAX) and processes a JSON representation,
generating a human oriented version of it. Such strategy
is motivated by the fact that a set of Nodes could have a
meaningful visual arrangement that disregards the strictness
of the graph structure. This can be seen as an application of
the code on demand style [13]. Second, in order to avoid
conflicts while updating resources ETags [32] are used to
represent their status. Third, as stated above, HATEOAS [13]
is supported by including in the Node representation links to
the next related resources (whether Reference or Aggregation
Links) as well as instructions on how to interact with them.

3) Examples: By the Web Resource model, a smart thing
can be represented as a graph of structured information pieces.

Fig. 2 shows a simplified example of a sensor modeled
as a graph of Nodes (depicted as circles). These Nodes
contain the granular information (black pins) and are con-
nected by arrows representing relations. The sensor/{id}
labeled vertex carries the content describing sensor’s char-
acteristics, i.e. descriptive information (producer, serial num-
ber), capabilities such as type of sensor (e.g., temperature
sensor) and dynamic information such as battery load per-
centage. This vertex has two children (/location and

/data_production). The location Node is used to identify
the sensor’s geographical position in terms of longitude and
latitude, while the sub-tree having data_production as
root represents the sensor’s observations. In particular, the
data_production vertex contains information on last mea-
surement date time, and its direct children identified with
physical_quantity (i.e., temperature, light, noise, and
CO index), contain actual measurement values. Please note
that common sensors and Virtual Sensors are represented by
the same model, with a minimal modification. In the case
of a Virtual Sensor, the physical_quantity Node is an
Activity Node and edges to physical_quantity Nodes
belonging to other sensors are Active Links.

Tab. II provides an example of the uniform interface con-
straint applied to the a sensor Node. The API semantics applies
identically to every Node belonging to the sensor or virtual
sensor Web Resource graph.

B. Middleware

The framework includes a middleware, called InterDataNet
(IDN), that offers capabilities for handling web resources
compliant with our model (i.e. Web Resources, see III-A2),
exposed through a RESTful uniform interface.

The core of the IDN middleware is the result of previous
works [33], [34] and it was applied to the development of
RESTful web services in different domains such as healthcare
[35] and management of RFID-related events [34].

SYSTEMS JOURNAL 6

Fig. 2. A Web Resource representing a generic sensor (Virtual Sensors
have Active links to other sensors while normal sensors have not). Since the
Web Resource is defined as a graph of Nodes, operations on sets of Nodes are
enabled. In this regard, the boxed sub-graph shows the Web Resource retrieved
when a user requests a complete sensor resolution: not only the sensor Node,
but also all its contents (i.e. all the aggregated Nodes) are returned. Please
note that a complete resolution is triggered by issuing a GET request on the
sensor’s URI followed the ending “/” character.

TABLE II. INTERDATANET REST APIS FOR A SENSOR WEB

RESOURCE

HTTP

Verb
URI Semantics

GET .../sensor/{id}
To retrieve the single node identified by
the URI.

GET .../sensor/{id}/
To retrieve all the nodes aggregated by the
node identified by the URI.

GET .../sensor/{id}$rn
To retrieve all the aggregated nodes being
distant n hops from the node identified by
the URI.

PUT .../sensor/{id}
To create the node identified by the URI,
or modify it (if it already exists).

DELETE .../sensor/{id} To delete the node identified by the URI.

For the purpose of this work, the middleware core has been
extended in order to: 1) cope with external information sources
(e.g. sensors, gateways, etc.) interoperability requirements,
and 2) improving both developer and user support in smart
things’ digital representation design and handling, through
programming APIs or web browsers.

The IDN implementation adopts a modular pattern enforcing
the separation of concern principle. Core modules are Virtual
Resource, Information History and Storage Interface.

Virtual Resource is in charge of managing and exposing
Web Resources. In fact, it exposes REST uniform APIs for
accessing and managing smart things’ web representations.
These REST services can be accessed by end-users through
web browsers (enhanced with appropriate REST-enabling plu-
gins) or by other web applications. As shown in Fig. 3,
different Virtual Resource instances dialog as peers to realize
a distributed graph of interconnected Nodes. In this way, it is
possible to reach Web Resources spanning different domains
from a single access point.

Information History provides versioning capabilities for
Nodes. This is useful for tracking the history of a resource,

Fig. 3. The overall view of the InterDataNet architecture.

supporting cooperation by allowing branching and merging,
and enforcing provenance by allowing thorough inspection of
previous states. This service is not mandatory and can be dis-
abled according to specific application/publisher requirements.

Storage Interface provides data and metadata persistence
capabilities. IDN-specific metadata (e.g. the ones described in
section III-A) are always persisted in the Storage Interface
domain, while data can be either native or external. Native
data are created directly in IDN and are managed by the
Storage Interface persistence service. Conversely, external data
are owned by other sources and are never replicated on the IDN
side by default. In order to cope with external data, IDN stores
their references (more precisely, IDN stores the references
of interchange resources exposed by the Adapter which, in
turn, keeps the mapping towards the external data-source).
External data require the Adapter mediation to be managed
as native resources. Storing references is a good strategy to
avoid bottlenecks while dealing with frequently changing data
(e.g. sensors’ outputs). IDN applies this strategy also to treat
historical data, whether they are provided by an external data-
source or a custom ad hoc service.

Virtual Resource, Information History (which is in an ongo-
ing stage of implementation) and Storage Interface have been
developed as Java 7 Web Applications running on Apache
Tomcat Application Server. They have been implemented
leveraging the Spring framework [36] and Hibernate [37],
JAXB [38] and JSP [39] technologies.

The core middleware includes also a Search Service, based
on Apache Solr [40], offering search capabilities for retriev-
ing indexed Web Resources. The Search Service exposes a
REST-based search interface for submitting queries based on
keywords, time and/or location parameters. Semantic search
and discovery is currently under development.

The Adapter is the component that support the interworking
of the IDN middleware with external data-sources. Thus, an
adapter component contains ad-hoc intermediation logic for

SYSTEMS JOURNAL 7

exposing data and services provided by legacy systems and
devices according to our graph-based Web Resource model.
In this way, properties enabled by the IDN resource model
can be applied to information originating from outer sources.

The Adapter is also designed with a modular approach,
and includes four components: 1) a Notification Manager
which manages the Adapter subscription to the data-source,
enabling a push/pull notification service; 2) a Transformer
module which refines data served by the outer source (e.g.,
de-multiplexing the information to achieve a more granular
representation); 3) a Web Resource Manager which assembles
the outer information in a graph structure compliant with
the Web Resource model; 4) a Translator which translates
requests coming from the IDN Service Architecture interface
in a communication format supported by the data-source (e.g.,
a PUT request to IDN Service Architecture could map to a
POST request to the data-source).

Basically, the Adapter is thought to be connected to services
exposed on the Web such as WS-*, REST, RDF, and so
on. However, there are no theoretical problems to connect it
with different data-sources. Indeed, the Adapter is an intrinsic
customizable component and different configurations can be
supported by different Adapter instances. The Adapter can
be semi-automatically configured in terms of communication
interface towards the data-source (e.g. by exploiting interface
descriptions such as WSDL) and Web Resource modeling of
external data (e.g. by exploiting relational database schemas
to build the graph model).

C. Programming and Web Publishing tools

To fully exploit the features provided by IDN, we also
developed a set of tools for easing the use of the Web Resource
model and REST APIs as well as the development of web
applications on top of them. To this end, we provided four
tools: i) a Java library for server-side programming, called IDN
Java Library; ii) IDN.js, a client-side JavaScript programming
library; iii) a web application providing a graphical interface
for designing and managing Web Resources, called IDN-
Studio; and iv) IDN-Viewer, a highly customizable jQuery
plugin that automatically renders HTML views from Web
Resources returned by the InterDataNet middleware.

While our Java and JavaScript libraries are thought for
developers and provide APIs for easing the interaction with
the middleware as well as Web Resource instances handling,
IDN-Studio and IDN-Viewer are conceived to lower the effort
required by users for creating, modifying and publishing new
resources to be shared with other users and end-users.

1) IDN Java Library: The IDN-Java Library provides fea-
tures for easing the server-side programming of web applica-
tions that handle Web Resources exposed by the InterDataNet
middleware. Its main components are the following:

• the it.unifi.idn.webresource package provid-
ing a java-based internal representation of the Web
Resource model;

• the it.unifi.idn.IdnElement class that exposes
methods for manipulating the Node;

Fig. 4. Mockup of the IDN-Studio application.

• an InterDataNet client implementation in charge of
interacting with the InterDataNet middleware for
performing CRUD operations on Web Resources.

2) IDN JavaScript Library: This library provides a set of
functions for client-side programming easing the interaction
with the middleware and the handling of the returned Web
Resource representations.

The it.unifi.IDNjs.Manager class defined in
this library handles the RESTful invocations to the
InterDataNet middleware to retrieve, delete and write
single Node- or multiple Nodes- Web Resources, while the
it.unifi.IDNjs.Node class represents the Node and
exposes methods for internally managing the content, links
and metadata. The offered APIs are not significantly different
than the ones discussed for the Java Library, and therefore
won’t be detailed here. The library has been implemented by
leveraging JQuery [41] as a helper library, JSON-js [42] for
(un)marshalling document resources and an AJAX [43] client.

3) IDN-Studio: IDN-Studio is a JavaScript web application
for the visual management of Web Resources, providing the
user with a full control over the graph structure and data. IDN-
Studio interacts with the middleware through the REST APIs
exposed by the Virtual Resource and allows users to create new
Web Resources, and delete or modify existing Web Resources
by adding or removing Nodes, contents and properties. A
search form is also available for querying the IDN Search
Service in order to retrieve indexed Nodes.

Fig. 4 shows a mockup of the IDN-Studio GUI that
emphasizes the main operations available (e.g. a search form,
buttons for reading, writing and loading Web Resources
and editing tools displaced on the dashboard). A running
instance is available at http://idn.dinfo.unifi.it:20282/idnstudio.

4) IDN-Viewer: While IDN-Studio provides a human ori-
ented representation of Web Resources conceived for easing
their management, IDN-Viewer addresses the problem of their
rendering on a web browser. Its main task consists in parsing
the resources returned by the middleware and, depending on

http://idn.dinfo.unifi.it:20282/idnstudio

SYSTEMS JOURNAL 8

their structure, generating rich HTML web pages.
IDN-Viewer is able to choose the proper visualization

for different types of content by inspecting the ContentType
section of the ApplicationData and selecting the appropriate
widget. For example, structured contents such as JSON or
XML are rendered as tables, images (jpeg, png, etc.) are
rendered as clickable thumbnails, plain text is rendered as is.

More specifically, for each resource to be displayed, the
plugin takes its URI as a key parameter and performs an AJAX
request to retrieve it from the middleware. Then, the returned
representation is parsed and proper transformation rules are
applied. Moving from the Root Node, an algorithm is run to
analyze the graph of interlinked Nodes. Resources referred
by Reference links are organized as menus. The algorithm
interprets Aggregation relations differently, depending on the
geodesic distance dj , i.e. the length of a shortest path evaluated
on Aggregation edges between the Root Node nR and the
Node nj . We define a configurable threshold D. Nodes for
which dj < D, are organized in container elements (e.g.,
<div> HTML elements) and shown on the canvas. If there
exists at least one node nj such that dj ≥ D, a “show more”
button is included in the layout. As the button is pressed
a (configurable) amount of remaining Nodes are loaded and
displayed on the canvas. This strategy helps in keeping the Web
Resource’s HTML representation clean, supporting human-
friendly inspection by incrementally filling the canvas space.

IDN-Viewer has been implemented as a plugin for the popu-
lar JQuery [41] JavaScript framework. It is highly customizable
and configurable and is not coupled with any CSS framework.

Fig. 5 shows the rationale behind the HTML rendering of
a Web Resource representing the “Universidad de Cantabria”
Point of Interest (PoI)(Fig. 5.a). Nodes constituting the Web
Resource are inspected to generate a widget that better presents
their contents (Fig. 5.b). Finally, elements and widgets are
arranged on the canvas to produce meaningful representation
of the original Web Resource (Fig. 5.c).

IV. EVALUATION

In this section we describe the experiment carried out in the
context of the SmartSantander EU Project. This experiment,
previously introduced in [44], aimed at evaluating how our
proposed approach supports developers and users in taking
advantage of Web of Things resources, and more specifically,
in designing and developing web applications that mediate the
end-user interaction with these resources.

The main objective of the SmartSantander project [45],
[46] was to create a primary European test facility for the
research and experimentation of architectures, services and
applications for the IoT [46]. It consists of a real-world smart
city deployment in Santander (Spain) that offers a large variety
of sensors (e.g., temperature, CO, noise, light intensity and
parking occupancy). Thanks to the SmartSantander facility, our
experiment exploited real-world sensor data.

The experiment description is structured as follows. First,
we introduce MySmartCity, a web application we developed
exploiting our Java and JavaScript libraries. It served as a
demonstration of a rich web application that can be imple-
mented by developers on top of our middleware. Second, we

show how IDN-Studio and IDN-Viewer enable a user to create,
handle, compose and extend Web Resources that represent
Santander’s sensors facility. Then, we describe the testing
activities aimed at evaluating user acceptance of implemented
features. Finally, we report on further testing activities for
evaluating the performance of IDN.

As an experiment prerequisite, we developed an Adapter
for interacting with the push/pull HTTP-based APIs exposed
by the Santander facility. The Adapter can execute an ini-
tialization routine that i) queries Santander APIs for sensor-
related information and parses it, ii) for each sensor, generates
a graph of Nodes (i.e. a Web Resource), and iii) commits
it the middleware. These Nodes are stored in the system as
metadata specifying their characteristics and relations along
with a reference to the actual real-time measurement provided
by Santander APIs. Once the initialization phase is over,
sensors’ data are exposed as a set of URI-addressable Nodes,
accessible through REST APIs (called InterDataNet Santander
APIs). In the normal operating phase, the Adapter retrieves
up-to-date measurement values from the Santander facility
when required by the Virtual Resource/Storage layer (upon
a request). The Adapter also handles notifications sent by the
Santander facility as some events of interest occur (e.g., a new
measurement value, a new registered sensor).

A. MySmartCity application

MySmartCity is a web application that allows end-users to
browse sensors, create new Virtual Sensors (such as an Heat
Index sensor close the end-user’s home) and store them in
the system for later access. End-users can also create Web
Resources representing Points of Interest (such as the one
introduced in subsection III-C4), and enrich them with de-
scriptive information and references to sensors in geographical
proximity. Eventually, they can also share them with other
end-users. A PoI can be public (a tourism location, a public
transport station) or have meaning in a user’s personal scope
(e.g., user’s home). Both Virtual Sensors and PoIs can be made
public by the administrator, upon a request of the owner.

MySmartCity application logic runs both client side and
server side. Apart form application specific details, MyS-
martCity contacts the IDN middleware to retrieve, update and
manage Web Resources whether they are Sensors, Virtual
Sensors or Points of Interest. To this end, the tools described
in subsection III-C proved to be quite handy. Indeed, the Java
and JavaScript libraries have been used for programming the
server and client respectively, while IDN-Viewer has been
used to display a human oriented representation of Points of
Interest, enriching significantly the user experience. In this
context, IDN-Studio played also a very important role in
redesigning and adjusting Web Resources, created through the
application GUI. In fact, to modify the model used for a certain
information object (e.g. a PoI) a user can load it in IDN-
Studio and visually edit it. With few clicks, modifications are
committed to the architecture and the object is redesigned. Fig
6 provides a detailed outline of how the application interacts
with the middleware. Programming and publishing tools are
also represented.

SYSTEMS JOURNAL 9

Fig. 5. Mapping rules in IDN-Viewer. a) A Web Resource representing the “Universidad de Cantabria” Point of Interest, including descriptions, location related
data and near sensors. b) According to information formats, data are rendered as different types of widgets. c) Contents are finally arranged in the canvas to
meaningfully fit the available space.

B. User-centric creation of Web of Things applications

MySmartCity application allows end-users to create and
share new web contents, in a smart city scenario. However,
the type of information they can add is predetermined by the
developer who designed the Virtual Sensor and PoI information
models and the related client- and server-side logic.

Hereinafter, we describe how IDN-Studio and IDN-Viewer
tools enable a user-centric creation of a personal Web of Things

Fig. 6. The interaction of MySmartCity application with the middleware.
All the framework components are visible: the IDN middleware, Java and
Javascript libraries, IDN-Viewer and IDN-Studio. At the bottom is shown the
Adapter component interfacing with the SmartSantander facility.

application, by allowing end-users to freely modify and handle
their custom Web Resources (i.e., Virtual Sensors, PoIs and
also new resources defined by the user), publish them on the
Web and access them through an ordinary web browser.

Through IDN-Studio, a user can access the model of a given
Web Resource and browse the graph of Nodes by exploring
Aggregation and Reference links. Leveraging the features
provided by the tool, the user may modify the Web Resource’s
representation, for example by editing the ApplicationData,
creating new links or deleting existing ones. The process of
user-centric creation of Web Resources for a personal Web of
Things is completed when the “write” button in the dashboard
is clicked. This action triggers a sequence of REST operations
for committing the changes to the middleware (e.g. PUT for
modifications to an existing resource).

For instance, a user might be interested in creating a PoI
that aggregates some noise and parking sensors close to his
home. He might also create another PoI at a different location
(for instance his relatives’ home with surveillance and health
sensors), and create a third Node that aggregates these two
PoIs. The URI of this new Node can be seen as the root
page of a personal web application created to easily access
and monitor personal information. Indeed, the newly created
and modified Web Resources are now accessible from standard
web browsers and can be navigated as plain web pages that
have been automatically generated by the IDN-Viewer plugin.

C. Evaluation with users

We conducted testing activities focused on evaluating user
acceptance of implemented features. More specifically, our
objective was threefold: i) evaluate the perceived ease of use
and effectiveness of IDN-Studio and IDN-Viewer tools; ii)
analyze potential disadvantages and qualify them (e. g., major
usability problems and technical bugs); iii) gather subjective
user satisfaction evaluation and possible suggestions for future

SYSTEMS JOURNAL 10

TABLE III. EVALUATION RESULTS FOR IDN-STUDIO AND

IDN-VIEWER

Question
Definitely

Yes
Yes Neutral No

Definitely

No

Was IDN-Studio intu-
itive and easy to use?

20% 20% 60% 0% 0%

Was it easy to modify a
PoI through IDN-Studio?

0% 40% 60% 0% 0%

Did you succeed in de-
signing the target PoI?

0% 60% 40% 0% 0%

Were you satisfied by
the graphical rendering
of your personalized PoI
on the web browser?

20% 60% 20% 0% 0%

Was the content of the
PoI organized as you ex-
pected?

0% 80% 20% 0% 0%

improvements. Please note that Java and JavaScript libraries
haven’t been tested in this session, so we are interested in the
user profile (see section II-C).

The evaluation session has been organized as a half-day
workshop and was conducted with 20 users. Users were se-
lected among our colleagues in the Department of Information
Engineering at the University of Florence. The majority of
them (80%) work in the field of Radar, Remote Sensing
and Signal Processing fields and, to our purposes, can be
considered average users, while a minority of them work in
the fields of middleware and application protocols (10%) and
are also expert web developers. None of them work in the
field of IoT or WoT nor have previously used the tools under
evaluation. All users are aged within 30-44 years.

In the first part of the workshop, a member of the experiment
team presented the SmartSantander project, briefly introduced
the tools to be evaluated and explained the meaning of Virtual
sensors and Point of Interest resources.

In the second part of the workshop, the users were asked to
use the MySmartCity application and IDN-Studio to customize
an existing PoI through IDN-Studio (e.g. by enhancing its
representation with a picture and historic information) and
evaluate its rendering performed by IDN-Viewer.

User feedbacks have been collected through interviews and
a questionnaire at the end of the evaluation session. Tab III
shows feedbacks provided on the use of IDN-Studio for mod-
ifying and enriching the description of a PoI. Users succeeded
in completing the assigned tasks, and 40% considered the
application intuitive and easy to use. The majority of users
provided positive comments on the visualization of the changes
they applied to the PoI on the web browser. Some suggestions
were made to enhance the interface with help texts to guide a
first-time user in the use of the tool.

Although these evaluation activities are preliminary, results
are encouraging and provided useful suggestions for correcting
our applications. Since assessing user acceptance is considered
a key topic to be investigated towards the Future Internet
[47], a more in-depth evaluation of factors relevant to user
acceptance, as those analysed by Lizcano et al. [48], would
be worthwhile in the near future involving a wider and more
heterogeneous user group.

TABLE IV. PERFORMANCE RESULTS FOR THE INTERDATANET

MIDDLEWARE

Request Type
Web Resource

size

Response

Message

Body (KB)

Request-

response time

(ms)

Creation

1 Node 0.722 192

10 Nodes 5.6 2253

30 Nodes 15.1 5606

50 Nodes 25.2 10748

Retrieval

1 Node 0.772 73

10 Nodes 5.6 625

30 Nodes 15.1 1704

50 Nodes 25.2 2865

D. Performance Evaluation

We also carried out testing activities to analyze the perfor-
mance of the InterDataNet middleware implementation.

The test environment was deployed on two virtual machines,
both equipped with 1 GB RAM and running the Debian 6
distribution. These VMs were installed on a HP ProLiant
ML350 server with a two Intel Xeon quad-core processors, 17
GB RAM and Debian 6 OS. One VM hosted the InterDataNet
Middleware, while the second VM hosted the MySmartCity,
and IDN-Studio applications.

The objective was to assess the time required by the fol-
lowing two main operations: i) creation of a Web Resource
(HTTP PUT request), ii) retrieval of a Web Resource (HTTP
GET request). Each operation was performed on resources with
varying size (i.e. composed by 1, 10, 30 and 50 Nodes) whose
application content was stored in the InterDataNet middleware
(no requests to external information systems were required).
We iterated each test 10 times and measured the elapsing time
from request delivery to response reception at server side.

Tab. IV shows the truncated mean value of the obtained
measurements. It is worth observing that the time required
for creating or retrieving a Web Resource grows linearly with
the number of aggregated nodes. This behavior was expected
since sets of Nodes belonging to the same Web Resource
are managed sequentially by the middleware components in
the current prototype implementation. Such behavior can be
improved by implementing parallel processing tasks.

V. CONCLUSIONS

In this work, we have proposed a framework for model-
ing and turning smart things into web-addressable resources
that can be accessed and handled through a REST uniform
interface. The framework is composed of a general-purpose
model for web resources and a middleware that implements
RESTful services for handling these resources through open
Web standards.

The proposed model is based on two simple relations
(Aggregation and Reference), chosen for their relevance in the
Web domain. Through these relations, a graph of browsable in-
formation nodes can be built and extended via a REST uniform
interface. The node can contain locally stored information, data
from external sources or content dynamically generated upon
script-based processing.

SYSTEMS JOURNAL 11

We showed how through our framework digital represen-
tations of sensors, Virtual Sensors and Points of Interest can
be designed and published on the Web. We provided users
with a set of tools for creating, modifying and composing
these resources, to build a Web of interlinked “smart” objects.
Our target users are developers, who are provided with Java
and JavaScript libraries for easing server-side and client-side
programming, and non-expert users who are provided with the
IDN-Studio and IDN-Viewer plugin for creating, composing
and publishing new Web Resources for their own application
needs.

We also discussed the compliance of the current middle-
ware implementation with REST constraints, especially with
HATEOAS.

We presented the results of an experiment carried out
within the SmartSantander FP7 EU project for validating
the proposed Web of Things framework with qualitative and
quantitative evaluations. Users who tested the IDN-Studio and
IDN-Viewer tools provided good overall feedbacks. Based on
these results, some conclusive reflections have been drawn.
First, the Web Resource model has proved to be effective
in modeling, handling and combining smart things digital
representations. Nodes can be created from scratch with ease
and immediately made available by the middleware through
IDN-Studio or be generated from external sources (sensors or
sensors’ gateways) through an adapter component. Thanks to
the provided programming and Web publishing tools, these
Nodes can be managed and further refined, by drawing ag-
gregation and reference links with other Nodes, thus updating
the corresponding Web Resource representation served by the
middleware.

In the future, we are planning to take into account users’
suggestions to improve the ease of use and intuitiveness of
IDN-Studio. It will be also worth extending the IDN-Viewer
JQuery plugin for supporting additional rendering models.
Subsequently, a more comprehensive and in-depth assessment
will be performed with a wider user base.

Another direction for future work would comprise the ex-
tension of our middleware with adapter components capable of
interacting with existing semantic sensor web implementations
[21] and the extension of our model to support semantic an-
notations specifications, e.g., Semantic Annotations for WSDL
and XML Schema (SAWSDL) [49] and Semantic Annotations
for REST [50]). These extensions are required to enable lifting
and lowering mechanisms, opening up our resources graph to
advanced reasoning, discovery and search services.

To conclude, it is worth noticing that our services will
be kept running for at least three years after the completion
of the SmartSantander project. Thus, programmatic access to
the REST APIs and web-based access to the applications for
accessing the existing Santander Smart City resources and
creating new Smart City applications will be made available
upon registration.

ACKNOWLEDGMENT

The authors would like to thank Mr. Andrea Failli and Mr.
Luca Capannesi for their technical support.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[2] F. E. Group, “Services in the future internet,” http://cordis.europa.eu/
fp7/ict/ssai/docs/softwareconsultationreportfeb2011.pdf, february 2011,
online resource.

[3] E. Wilde, E. C. Kansa, and R. Yee, “Web services for recovery. gov,”
School of Information, 2009.

[4] R. T. Fielding and R. N. Taylor, “Principled design of the modern web
architecture,” ACM Transactions on Internet Technology (TOIT), vol. 2,
no. 2, pp. 115–150, 2002.

[5] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture
for the web of things,” in Internet of Things (IOT), 2010. IEEE, 2010,
pp. 1–8.

[6] C. Pautasso and E. Wilde, “Why is the web loosely coupled?: a multi-
faceted metric for service design,” in Proc. of the 18th international

conference on World wide web. ACM, 2009, pp. 911–920.

[7] D. Guinard, I. Ion, and S. Mayer, “In search of an internet of things
service architecture: Rest or ws-*? a developers perspective,” in Mo-

bile and Ubiquitous Systems: Computing, Networking, and Services.
Springer, 2012, pp. 326–337.

[8] D. Zeng, S. Guo, and Z. Cheng, “The web of things: A survey,” Journal

of Communications, vol. 6, no. 6, pp. 424–438, 2011.

[9] S. Vinoski, “Restful web services development checklist,” Internet

Computing, IEEE, vol. 12, no. 6, pp. 96–95, 2008.

[10] I. Zuzak, I. Budiselic, and G. Delac, “A finite-state machine approach
for modeling and analyzing restful systems,” Journal of Web Engineer-

ing, vol. 10, no. 4, pp. 353–390, 2011.

[11] I. Zuzak and S. Schreier, “Arrested development: Guidelines for de-
signing rest frameworks,” Internet Computing, IEEE, vol. 16, no. 4, pp.
26–35, 2012.

[12] P. Adamczyk, P. H. Smith, R. E. Johnson, and M. Hafiz, “Rest and web
services: In theory and in practice,” in REST: from research to practice.
Springer, 2011, pp. 35–57.

[13] R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
2000.

[14] L. Richardson and S. Ruby, RESTful web services. O’Reilly, 2008.

[15] C. Pautasso, O. Zimmermann, and F. Leymann, “Restful web services
vs. big’web services: making the right architectural decision,” in Pro-

ceedings of the 17th international conference on World Wide Web.
ACM, 2008, pp. 805–814.

[16] D. Guinard, V. Trifa, T. Pham, and O. Liechti, “Towards physical
mashups in the web of things,” in Networked Sensing Systems (INSS),

2009 Sixth International Conference on. IEEE, 2009, pp. 1–4.

[17] S. Mayer, D. Guinard, and V. Trifa, “Facilitating the integration and
interaction of real-world services for the web of things,” in Urban

Internet of Things (UrbanIOT 2010); Workshop at the Internet of Things

2010 Conference (IoT 2010), Tokyo, Japan, 2010.

[18] B. Ostermaier, F. Schlup, and K. Romer, “Webplug: a framework for
the web of things,” in Pervasive Computing and Communications Work-

shops (PERCOM Workshops), 2010 8th IEEE International Conference

on. IEEE, 2010, pp. 690–695.

[19] B. Christophe, M. Boussard, M. Lu, A. Pastor, and V. Toubiana, “The
web of things vision: Things as a service and interaction patterns,” Bell

Labs Technical Journal, vol. 16, no. 1, pp. 55–61, 2011.

[20] A. Orestis, A. Dimitrios, and C. Ioannis, “Towards integrating iot
devices with the web,” in Emerging Technologies & Factory Automation

(ETFA), 2012 IEEE 17th Conference on. IEEE, 2012, pp. 1–4.

[21] A. Sheth, C. Henson, and S. S. Sahoo, “Semantic sensor web,” Internet

Computing, IEEE, vol. 12, no. 4, pp. 78–83, 2008.

[22] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data-the story so
far,” International Journal on Semantic Web and Information Systems

(IJSWIS), vol. 5, no. 3, pp. 1–22, 2009.

http://cordis.europa.eu/fp7/ict/ssai/docs/softwareconsultationreportfeb2011.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/softwareconsultationreportfeb2011.pdf

SYSTEMS JOURNAL 12

[23] A. Moraru, D. Mladenic, M. Vucnik, M. Porcius, C. Fortuna, and
M. Mohorcic, “Exposing real world information for the web of things,”
in Proc. of the 8th International Workshop on Information Integration

on the Web: in conjunction with WWW 2011. ACM, 2011, p. 6.

[24] D. Pfisterer, K. Romer, D. Bimschas, O. Kleine, R. Mietz, C. Truong,
H. Hasemann, A. Kroller, M. Pagel, M. Hauswirth et al., “Spitfire:
toward a semantic web of things,” Communications Magazine, IEEE,
vol. 49, no. 11, pp. 40–48, 2011.

[25] N. Freed and N. Borenstein, “Multipurpose internet mail extensions
(mime) part one: Format of internet message bodies,” 1996.

[26] G. T. Lakshmanan, F. Curbera, J. Freire, and A. Sheth, “Provenance in
web applications,” IEEE Internet Computing, vol. 15, no. 1, pp. 0017–
21, 2011.

[27] Y. Theoharis, I. Fundulaki, G. Karvounarakis, and V. Christophides,
“On provenance of queries on semantic web data,” Internet Computing,

IEEE, vol. 15, no. 1, pp. 31–39, 2011.

[28] L. P. Rothfusz and N. S. R. Headquarters, “The heat index equation (or,
more than you ever wanted to know about heat index),” Fort Worth,

Texas: National Oceanic and Atmospheric Administration, National

Weather Service, Office of Meteorology, pp. 90–23, 1990.

[29] J. Bouttier, P. Di Francesco, and E. Guitter, “Geodesic distance in planar
graphs,” Nuclear Physics B, vol. 663, no. 3, pp. 535–567, 2003.

[30] T. Berners-Lee, R. Fielding, and L. Masinter, “Rfc 3986: Uniform
resource identifier (uri): Generic syntax,” The Internet Society, 2005.

[31] J. Clark, S. DeRose et al., “Xml path language (xpath) version 1.0,”
1999.

[32] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1,” RFC
2616 (Draft Standard), Internet Engineering Task Force, Jun. 1999,
updated by RFCs 2817, 5785, 6266, 6585. [Online]. Available:
http://www.ietf.org/rfc/rfc2616.txt

[33] M. C. Pettenati, L. Ciofi, F. Pirri, and D. Giuli, “Towards a restful
architecture for managing a global distributed interlinked data-content-
information space,” in The future internet. Springer, 2011, pp. 81–90.

[34] F. Paganelli, S. Turchi, L. Bianchi, L. Ciofi, M. C. Pettenati, F. Pirri,
and D. Giuli, “An information-centric and rest-based approach for epc
information services.” Journal of Communications Software & Systems,
vol. 9, no. 1, 2013.

[35] L. Bianchi, F. Paganelli, M. Pettenati, S. Turchi, L. Ciofi, E. Iadanza,
and D. Giuli, “Design of a restful web information system for drug
prescription and administration,” Journal of Biomedical and Health

Informatics, 2013.

[36] R. Johnson, J. Hoeller, A. Arendsen, and R. Thomas, Professional Java

Development with the Spring Framework. Wiley. com, 2009.

[37] C. Bauer and G. King, Hibernate in action. Manning Greenwich,
2005.

[38] E. Ort and B. Mehta, “Java architecture for xml binding (jaxb),” Sun

Developer Network, 2003.

[39] H. Bergsten, Java Server Pages. O’reilly, 2003.

[40] D. Smiley and D. E. Pugh, Apache Solr 3 Enterprise Search Serve.
Packt Publishing, 2011.

[41] J. Resig et al., “jquery: The write less, do more, javascript library,”
Disponıvel em http://jquery. com/, Acesso em, vol. 18, no. 04, p. 2009,
2009.

[42] D. Crockford, “Json in javascript,” https://github.com/douglascrockford/
JSON-js, nov 2010.

[43] J. J. Garrett et al., “Ajax: A new approach to web applications,” 2005.

[44] S. Turchi, L. Bianchi, F. Paganelli, F. Pirri, and D. Giuli, “Towards
a web of sensors built with linked data and rest,” in World of Wire-

less, Mobile and Multimedia Networks (WoWMoM), 2013 IEEE 14th

International Symposium and Workshops on a. IEEE, 2013, pp. 1–6.

[45] J. M. Hernández-Muñoz and L. Muñoz, “The smartsantander project,”
in The Future Internet. Springer, 2013, pp. 361–362.

[46] L. Sanchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana,
V. Gutierrez, R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis
et al., “Smartsantander: Iot experimentation over a smart city testbed,”
Computer Networks, 2013.

[47] G. Tselentis, Towards the Future Internet: A European Research Per-

spective. IOS press, 2009.

[48] D. Lizcano, F. Alonso, J. Soriano, and G. López, “End-user development
success factors and their application to composite web development
environments,” in ICONS 2011, The Sixth International Conference on

Systems, 2011, pp. 99–108.

[49] J. Kopecky, T. Vitvar, C. Bournez, and J. Farrell, “Sawsdl: Semantic
annotations for wsdl and xml schema,” Internet Computing, IEEE,
vol. 11, no. 6, pp. 60–67, 2007.

[50] J. Lathem, K. Gomadam, and A. P. Sheth, “Sa-rest and (s) mashups:
Adding semantics to restful services,” in Semantic Computing, 2007.

ICSC 2007. International Conference on. IEEE, 2007, pp. 469–476.

Federica Paganelli (M07) received a Ph.D. de-
gree in Telematics and Information Society from
the University of Florence, Italy, in 2004. She is
a Senior Researcher at the National Interuniversity
Consortium for Telecommunications (CNIT), Italy.
Her research interests include context-aware systems,
service-oriented computing and communication, and
next generation networks.

Stefano Turchi graduated in Computer Engineering
(M.S.) in 2010 at the University of Florence and
received a Ph.D. degree in Informatics, Systems and
Telecommunications in 2014 by the same university.
Currently he is researching in the field of Distributed
Architectures, Web Applications, Data Security and
Data Privacy in distributed and granular data scenar-
ios.

Dino Giuli (SM84) is Full Professor in Telecom-
munications at the Department of Electronics and
Telecommunications of the University of Florence.
Since 1996 he is Promoter and Scientific Coordinator
of the Ph.D. program in Telematics and Information
Society. His research activities are focused in the
domain of Telematics and Environmental Monitor-
ing Systems. He is AEI member and IEEE senior
member.

http://www.ietf.org/rfc/rfc2616.txt
https://github.com/douglascrockford/JSON-js
https://github.com/douglascrockford/JSON-js

	Introduction
	Related Work
	REpresentational State Transfer architectural style
	Middleware and frameworks for the Web of Things
	Motivation of our work

	Web of Things RESTful Framework
	Web Resource Model
	Node Data Model
	Web Resource Exposure
	Examples

	Middleware
	Programming and Web Publishing tools
	IDN Java Library
	IDN JavaScript Library
	IDN-Studio
	IDN-Viewer

	Evaluation
	MySmartCity application
	User-centric creation of Web of Things applications
	Evaluation with users
	Performance Evaluation

	Conclusions
	References
	Biographies
	Federica Paganelli
	Stefano Turchi
	Dino Giuli

