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Abstract

Background: The emergence of drug resistant tuberculosis poses a serious concern globally and researchers are in

rigorous search for new drugs to fight against these dreadful bacteria. Recently, the bacterial GlmU protein,

involved in peptidoglycan, lipopolysaccharide and techoic acid synthesis, has been identified as an important drug

target. A unique C-terminal disordered tail, essential for survival and the absence of gene in host makes GlmU a

suitable target for inhibitor design.

Results: This study describes the models developed for predicting inhibitory activity (IC50) of chemical compounds

against GlmU protein using QSAR and docking techniques. These models were trained on 84 diverse compounds

(GlmU inhibitors) taken from PubChem BioAssay (AID 1376). These inhibitors were docked in the active site of the

C-terminal domain of GlmU protein (2OI6) using the AutoDock. A QSAR model was developed using docking

energies as descriptors and achieved maximum correlation of 0.35/0.12 (r/r2) between actual and predicted pIC50.

Secondly, QSAR models were developed using molecular descriptors calculated using various software packages

and achieved maximum correlation of 0.77/0.60 (r/r2). Finally, hybrid models were developed using various types of

descriptors and achieved high correlation of 0.83/0.70 (r/r2) between predicted and actual pIC50. It was observed

that some molecular descriptors used in this study had high correlation with pIC50. We screened chemical libraries

using models developed in this study and predicted 40 potential GlmU inhibitors. These inhibitors could be used

to develop drugs against Mycobacterium tuberculosis.

Conclusion: These results demonstrate that docking energies can be used as descriptors for developing QSAR

models. The current work suggests that docking energies based descriptors could be used along with commonly

used molecular descriptors for predicting inhibitory activity (IC50) of molecules against GlmU. Based on this study

an open source platform, http://crdd.osdd.net/raghava/gdoq, has been developed for predicting inhibitors GlmU.

Background
Antibiotic resistance has become a major hurdle to
overcome bacterial diseases and thus there is always a
need to find new drug targets or inhibitors or both. At
present very few drugs are available in the market for
treatment of M. tuberculosis infection as evolution of
drug-resistant strains have resulted in little efficacy and
some of them have shown undesired side-effects in host
[1]. Studies suggest that the prevalence of Multi Drug
Resistant tuberculosis (MDR-TB) ranged from 6.7% for
three drugs to 34% for four drugs and has caused an
annual loss of around $4 - $5 billion [2-5]. Keeping in
mind the rapidly changing pathogenesis of this lethal

micro-organism, identification of novel inhibitors for
recently discovered targets has become pressing need of
the hour. GlmU is one such target which is essential for
the survival of the pathogen [6,7]. Recent studies on the
Mycobacterial proteome using in-silico analysis sug-
gested GlmU to be a potential drug target [8]. This pro-
tein is a bi-functional enzyme that catalyzes a two steps
reaction. Initially, catalytic conversion of glucosamine-1-
phosphate to N-acetyl-glucosamine-1-phosphate takes
place at the C-terminal domain followed by conversion
of N-acetyl-glucosamine-1-phosphate to UDP-GluNAc
at the N-terminal domain [9,10]. Though the second
step is present in prokaryotes as well as in humans, the
first step is present only in prokaryotes [6]. The absence
of the first step in human makes it suitable for designing
non-toxic inhibitors. The three dimensional structure of
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the GlmU enzyme has been reported from Escherichia

coli, Mycobacterium tuberculosis, Streptococcus pneumo-

niae, Haemophilus influenzae, Yersinia pestis in apo and
holo-forms [11-14]. These structures have missing coor-
dinates for the C-terminal intrinsically disordered
regions.
The identification of inhibitors using experimental

techniques is an expensive and tedious job. Thus, there
is need to develop theoretical models for predicting
inhibitors against a potential target. In the past, a num-
ber of models has been developed using QSAR and
docking [12-17] for the identification of novel inhibitors
against different bacterial targets. Except KiDoQ [18]
and CDD [19] none of them is freely available to the
scientific community. KiDoQ is based on prediction of
binding affinity against Dihydrodipicolinate synthase
(DHDPS) enzyme of E.coli while CDD is a collection of
compounds and predictive models against M.tb. It is
important that newly developed models for predicting
inhibitors should be made available in the public
domain, in order to assist researchers in discovering
new drugs against diseases of the poor. In this study, a
systematic attempt has been made to address these
issues. Firstly, we developed QSAR models using dock-
ing energies as molecular descriptors. Secondly, QSAR
models were developed using commonly used molecular
descriptors calculated using various freeware and com-
mercial software packages. Thirdly, hybrid models were
developed using docking energy based descriptors and
commonly used molecular descriptors. Finally, a web
server has been implemented using the best models
developed in this study, hence providing an open source
platform to the scientific community for discovering
new drugs against bacterial target GlmU protein.

Methods
Data set

We retrieved 125 GlmU inhibitors from PubChem
Bioassay AID-1376 [20,21] with known IC50 values
against M.tuberculosis GlmU. These inhibitors exhibit
a wide range of activity (1-9999 μM) and structural
diversity (see clustering at 70% in Additional file-1).
There were errors in calculating descriptors for 4
molecules and hence a reduced set of 119 molecules
was considered for further analysis. After docking
these 119 molecules in active site of GlmU protein, 27
molecules have higher energy than substrate. After
removing these molecules, we were left with only 92
molecules which were further studied. At the time of
QSAR model development, we observed that around 8
molecules acted as outliers. These molecules were also
removed which led us to a final dataset of 84 mole-
cules to be used in this study.

Docking Protocol

Blind Docking

In this approach, we performed blind docking against
GlmU protein of M. tuberculosis using AutoDock [22].
Ideally molecules should be docked against the GlmUmtb,
but the coordinates available in the Protein Databank
(PDB) for full length (residue 1-479) GlmUmtb are unli-
ganded and show a disordered loop (N397 to R405) in the
active site. For these reasons, we developed a structural
model of GlmUmtb protein using Modeller 9v8 based on
3D8V as the basic template [23]. For the missing loop
region in 3D8V, GlmUecoli in liganded form (2OI6) was
used as template. This was followed by loop refinement
and the model with best DOPE score was selected for
further studies. We generated a trimeric state of the
modeled structure using Matchmaker utility of chimera
[24] with 2OI6 as the template for superposition.
Site Specific Docking

In this approach, potential inhibitors were docked in the
substrate binding site of GlmUecoli. We obtained the
structure of GlmU protein of E. coli (2OI6) complex
with substrates from the PDB. Since we were focusing
on the glucosamine-1-phosphate binding pocket, that
requires only 2-chain association, dimeric model was
used as input for docking studies after removal of hetero
atoms. An automated flexible docking approach was car-
ried out to find effective molecule with specific binding
using AutoDock.
Receptor and ligand preparation

Protein and ligand preparation was performed using the
AutoDock and involved the addition of hydrogen atoms,
computing charges, merging non-polar hydrogen atoms
and defining AD4 atom types to ensure that atom con-
formed to the AutoDock atom types. A grid was defined
using Autogrid feature of the software and docking con-
formation search was done using a genetic algorithm
(GA) procedure with t-step value of 1.8. Default para-
meters were used for rest of the options.

Descriptor Calculation

Descriptors are the basis of any QSAR modeling strategy
and we calculated descriptors using various software
packages. Firstly, V-Life MDS 2.0 software was used to
calculate 1576 descriptors comprising of topological
descriptors, physiological descriptors etc. Secondly, 178
descriptors were calculated using open source Web-Cdk
[25] software based on CDK library. Thirdly, the Dragon
[26] software was used for calculating 1665 descriptors.
Additionally, we also used docking energy as descriptors
for QSAR modeling. Docking of a compound using
AutoDock gives 11 types of energy i.e. free energy, VdW
+ Hbond + desolv Energy, unbound system energy,
moving ligand fixed receptor, Electrostatic Energy,
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Moving Ligand-Moving Receptor, Final Total Internal
Energy, Internal Energy Ligand, Internal Energy Recep-
tor and Torsional Free Energy. These different types of
energies were used as descriptors for development of
the QSAR based model based on algorithm similar to
that of KiDoQ.

Selection of Descriptors

In QSAR modeling, descriptors play an important role
and hence selection of highly important descriptors is
necessary for building the most efficient QSAR model.
To achieve this, we removed descriptors that were
invariable and then used the CfsSubsetEval module
implemented in the Weka [27] followed by an F-step-
ping (leave one out) approach. The CfsubsetEval module
along with best fit method finds the best descriptors by
considering the predictive ability of each descriptor.
While in F-stepping approach, each descriptor is
removed from the dataset of n variable, followed by
model building and evaluation. If removal of descriptor
decreases the performance it will be added in the next
step otherwise it is removed finally from the dataset. For
example, we calculated 1576 descriptors using v-life
software. For example, we calculated 1576 descriptors
using v-life software. After removing the invariable
descriptors, we selected best descriptors using Cfsubse-
tEval implemented in Weka and obtained 20 descriptors.
In final step, F-step approach was implemented in which
each descriptor is removed one by one and model per-
formance is measured and this gave us 5 descriptors.
This procedure was also implemented on other soft-
ware’s calculated descriptors.

QSAR Models

SVM based QSAR models

We used Support Vector Machine (SVM) for prediction of
GlmU inhibitors. SVM based on statistical and optimiza-
tion theory, handles complex structural features. SVMlight

software package has been used to develop SVM based
QSAR models. This software is freely downloaded from
http://www.cs.cornell.edu/People/tj/svm_light/. The per-
formance of models was optimized using systematic varia-
tion of different SVM parameters and kernels.
QSAR model using Weka

Weka is a very popular and reliable package widely used in
the field of Bioinformatics and Chemoinformatics [27]. It
is a collection of machine-learning algorithms and sup-
ports several standard features like classification, regres-
sion, data preprocessing, and feature selection. Here we
used SMOreg (Sequential Minimization Optimization)
implemented in Weka to predict inhibitory activity of
GlmU compounds. This implementation globally replaces
all missing values and transformed nominal attributes into
binary ones and also normalizes all attributes.

Multiple linear regression based model

MLR is a statistical technique that finds the linear rela-
tionship between two or more independent variables
and one dependent variable. In this study, we used the
commercial the software STATISTICA [28] for imple-
menting MLR for developing QSAR model.

Evaluation of QSAR models

To evaluate the performance of the QSAR model, we
adopted two different procedures. First, Leave One Out
(LOOCV) strategy was implemented in which one mole-
cule is taken from the dataset of 84 compounds (men-
tioned in Development of QSAR Models section) as a
test compound and the remaining 83 compounds used
for model building. This process is repeated 84 times
such that each compound come in test set one time.
Once the model was constructed, fitness of model was
assessed using the following statistical parameters.
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Where xi and yi represent actual and predicted pIC50

value for the ith compound, N is number of compounds,
and x represents the averaged value of the actual pIC50

value for the whole dataset.
Despite this LOOCV strategy, it is very important to

use an independent dataset to access overall performance
of QSAR model. Thus to evaluate the performance with-
out any bias, we made a random set of 25 compounds as
an independent test set and the remaining compounds
were used for model development using the LOOCV
method. This cycle was repeated about 25 times and pre-
dictive r and r2 on training as well as independent sets
were observed as shown in Additional file-2.

r2
=

SD −

N
∑
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(
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)2

SD

where SD is the sum of the Squared Deviations
between the activities of the test set and mean activities
of the training molecules.

Results
Similarity Search

Similarity describes how two compounds are structurally
similar to each other. Thus if two compounds are highly
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similar to each other they should have similar chemical
as well as biological properties. Using this concept, we
tried to find relationship between actual and predicted
inhibitory activity values. In order to predict the activity
of a compound, we took the average of pIC50 value for
all hits (except self hit) that have high similarity with
query compound. We used software JC Search [29] for
searching similar compounds using different similarity
cutoff value. A poor correlation among the actual and
predicted pIC50 values was observed, so this was not
pursued further.

Target Structure for Docking

In PDB, a number of crystal structures for M. tuberculo-

sis are present but all these structures are found with
missing loop in the active site and also in unliganded
state. Thus, we modeled only the missing loop portion
(G400) of M. Tuberculosis crystal structure using Model-
ler 9v8. All the inhibitors were docked against the mod-
eled structure of GlmU with the help of AutoDock
using a blind docking approach. The docking energies
of each inhibitor were computed to develop a QSAR
model. These docking energies were used as descriptors
and QSAR model for predicting inhibition activity of
inhibitors was developed. We achieved poor correlation
r = 0.15 between predicted and actual pIC50 value of
inhibitors.
In order to explore alternative strategies, we searched

GlmU in other organisms and found a substrate bound
crystal structure of GlmU protein in trimeric form in E.

coli. In order to understand the level of conservation in
the glucosamine-1-phosphate active site, we aligned
GlmU proteins from the different bacterial species and

its homolog (yeast/human) UAP1 using ClustalW [30].
As shown in Figure 1, multiple sequence alignment
reveals a high degree of conservation in the active site
among the different bacterial species. It was also
observed that active site residues of bacterial GlmU
have poor conservation with human UAP1 protein.
Thus the presence of such a highly conserved set of
amino acid residues suggests that inhibitors designed for
this site show broad spectrum activity. Site-specific
docking was performed against the GlmUecoli. We devel-
oped a QSAR model using docking energies as descrip-
tors and achieved correlation of r = 0.37 between
predicted and actual inhibition. This correlation is sig-
nificantly better than the correlation we got in case of
blind docking against a modeled structure of GlmUmtb.
Hence we used site specific docking against a substrate
bound GlmU structure of E. coli for further study.
Evaluation and Validation of Docking Protocol

For evaluation of docking protocol, we used the E.coli

GlmU enzyme crystal structure 2OI6 retrieved from the
PDB. We docked glucosamine-1-phosphate into the
active site of the protein by making Asn377A and
Tyr366C residue flexible. Visually examining the ligand-
protein interaction and calculating RMSD between crys-
tal structure and docked structure 0.072 Å was used to
validate docking protocol which has been shown in Fig-
ure 2.

QSAR Models

In this study, we developed QSAR models using various
algorithms/techniques; this includes techniques like
MLR and SVM. It has been observed that MLR based
QSAR models perform better or equal to other learning

Figure 1 Multiple sequence alignment of GlmU proteins of different bacterial species and UAP1 proteins of human/yeast using

clustalW. The red color shows conserved residues in active site.
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techniques (data not shown). Thus we developed rest of
QSAR models using MLR. First, MLR based QSAR
model was developed on 84 compounds using five mole-
cular descriptors obtained from V-life descriptors after
removing highly correlated descriptors. We obtained
correlation r/r2 of 0.75/0.56 between predicted and
actual value of pIC50 (Table 1). As shown in Table 1,
mean absolute error between predicted and actual inhi-
bitory constant was found to be 0.36. Secondly, QSAR
model was developed on same dataset using two best
molecular descriptors selected from Web-Cdk descrip-
tors. As shown in Table 1, a correlation r/r2 of 0.56/0.31
with MAE 0.43 was achieved on 84 compounds. In this
study, we used docking energies as descriptor and devel-
oped QSAR model using these descriptors, similar
approach has been used in past for developing KiDoQ
[18]. We achieved correlation r = 0.16 using site specific
docking and correlation r = 0.15 using blind docking on
modeled structure. As evident from Table 1, we got

poor correlation r/r2 of 0.35/0.12 using four best dock-
ing energies (site specific docking) on E. coli structure.
The QSAR models based on nine selected descriptors of
Dragon perform (correlation r/r2 0.77/0.60) was found
to be better than any other model.
One of the important questions is whether selected

descriptor used in this study for developing QSAR mod-
els also has direct correlation with inhibition constant.
For this we computed correlation between selected
descriptor and pIC50 as shown in Table 2. It was
observed that some of the descriptor even have a corre-
lation higher than 0.5. The quality of descriptor depends
on it correlation with inhibition constant, the higher the
correlation, better is the descriptor. It is also clear from
data shown in Table 2 that performance of QSAR mod-
els depended on quality of descriptors. Thus there was a
need to develop hybrid model which could utilize best
descriptors calculated using various software like Dra-
gon, Web-Cdk, V-life.

Hybrid QSAR models

In this study, the best descriptors selected from different
software like V-life, WEB-CDK, Dragon were combined
and hybrid models were developed from these that
encapsulated more information as compared to descrip-
tors calculated from individual software. We developed
three different types of hybrid models. Hybrid model 1
(Model 1) was developed using V-life and Web-Cdk
descriptors and achieved r2 = 0.60, which is better than
individual models based on V-life or Web-Cdk descrip-
tors (Table 2). Hybrid model 2 (Model 2) was build
using descriptors obtained from V-life, Web-Cdk and
docking energy and obtained r2 = 0.63, which is signifi-
cantly higher than r2 of QSAR models individual
descriptors. Third Hybrid model 3 (Model 3) was devel-
oped using V-life, Web-Cdk and Dragon based descrip-
tors [See Additional file -3 for descriptor explanation]
and achieved r2 = 0.70, which is significantly better than
any individual model [Table-3].

Potential GlmU Inhibitors

Screening of Substrate similar Compounds

In this study, we predict chemical compounds that have
the potential to inhibit GlmU target. We screened che-
mical libraries using QSAR models developed in this
study. Firstly, a set of 15930 molecules were retrieved
from PubChem having similarity more than 60% with
GlmU substrate. We removed molecules that do not
satisfy Lipinski rule of five. Finally we obtained 5008
molecules having 3D structural coordinates. These
molecules were docked in binding pocket of GlmU
using AutoDock (described in Receptor and Ligand pre-
paration section) and docking energy was computed for
each the molecule. Table 4, shows top 20 compounds

Figure 2 Shows the superimposed structure of docked

substrate over crystal structure. This figure depict the

superimposed structure of docked ligand with crystal structure with

active site residues in ball and stick form and hydrogn bond with

yelllow colour dashes line. The flexible residues TYR366 and ASN377

are coloured cyan and labeled.

Table 1 The performance of QSAR models developed

based on best descriptors computed using various

software and techniques

Number of
Descriptors

Software Packages R R2 MAE

5 V-life 0.75 0.56 0.36

2 Web-Cdk 0.56 0.31 0.43

4 Docking Energy Based
Descriptor

0.35 0.12 0.44

9 Dragon 0.77 0.60 0.32
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having minimum docking energies, as shown energy var-
ies from -9.84 to -8.73 along with inhibitory activity of
these molecules.
Screening of Anti-infective Compounds

We found a list of 3847 anti-infective compounds, out
of which 1750 anti-infective compounds satisfy the
Lipinski’s rule. These compounds were retrieved from
PubChem and used for screening against GlmU protein.
These compounds were docked in the binding pocket of
GlmU and docking energy was computed for each of
the molecule. Based on minimum docking energy, we
predicted 758 molecules as novel inhibitors of GlmU
protein; top 20 compounds having minimum docking
free energy is shown in Table 4. We also calculated
inhibitory constant of these molecules using V-life
descriptors based model.
The virtual screening of chemical compounds library

predicts some potential inhibitors. Sometimes false posi-
tive prediction by docking or QSAR misleads thereby
wasting time and money. Thus, it becomes difficult to
identify a compound that is potentially active in experi-
mental study. For example, in our case anti-infective com-
pound PubChem ID 4451056 showed lower free energy as
compared to compound PubChem ID 4095801 that is also
in agreement with prediction by QSAR model. In such
cases a hybrid approach could be beneficial. On this basis,
we observed that there was a little difference in free energy
of binding between compound 441056 and 4095801 and
thus anti-infective compound 441056 could be used for
experimental study having higher probability to act as
potential inhibitor against GlmU enzyme.

Web Service to Community

One of the major objectives of our group is to bring
down the cost of drug discovery. Unfortunately, most of
the software for calculating molecular descriptors are
commercial and come with number of restrictions. This
webserver is a step to promote open source software in
computer aided drug discovery. As shown in Table 3,
we achieved best performance using model Hybrid 3.
Unfortunately, Dragon is a commercial software come
with restriction to use for public. Thus in this study, we
developed a web server using second best model Hybrid
2, which used V-life, Web-Cdk descriptors and docking
energies based descriptors. Though V-life is commercial
software but we have license to use it for developing
web services. Web-Cdk is based on CDK library which
is open source. Server has been developed under Linux
environment using CGI-Perl and Python scripts. In this
web server, there are three options for molecule submis-
sion, 1) Draw structure using JME editor [31], 2) By
pasting molecule in mol/mol2 file format, 3) By file
upload using browse option. The result of prediction is
seen interactively in the form of bound ligand in GlmU
protein and its predicted IC50 value. We have also
shown the descriptors used in this study along with
Lipinski rule of five.

Discussion
The trimeric GlmU protein is considered as a poten-
tial target for inhibitor design as it is essential for
survival of bacteria. The identification of highly con-
served amino acid residues from multiple sequence

Table 2 Correlation values for molecular descriptors with pIC50 value

WebCdk Descriptors

Descriptor VCH-4 Wlambda2.unity

Correlation -(0.50) 0.36

Docking based energy descriptors

Descriptor VdW + Hbond + desolv Energy Moving Ligand-Moving Receptor Internal Energy Receptor Unbound System’s Energy

Correlation 0.17 0.26 -(0.098) -(0.008)

V-life descriptors

Descriptor chi6chain chi5chain SsBrE-index T_2_F_1 T_N_F_7

Correlation 0.42 -(0.54) -(0.22) 0.36 0.39

Dragon descriptors

Descriptor GATS4p BELe1 H8v R1p+ RTp+ nAr-CONR2 C-041 H-049 F-084

Correlation 0.27 0.38 0.31 -(0.55) -(0.50) 0.35 -(0.13) 0.16 0.36

Table 3 The performance of QSAR models developed using descriptors calculated from two or more than two

software packages

Type of Model Number of Descriptors Software Packages R R2 MAE

Hybrid 1 7 V-life + Web-Cdk 0.77 0.6 0.33

Hybrid 2 11 V-life + Web-Cdk-Docking 0.79 0.63 0.32

Hybrid 3 15 V-life + Web-Cdk-Dragon 0.83 0.7 0.28
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alignment reveals that single inhibitor may be able to
kill wide range of bacterial species. The superimposi-
tion of E.coli structure 2OI6 and modeled M. tubercu-

losis structure shows rmsd of 1.02 A0 using
Matchmaker utility of chimera. Docking and QSAR
are two well-known approaches in drug designing but
each has its own limitation. While identification of
lead molecules using QSAR techniques has been
widely accepted in the absence of crystal structure of
target molecule, docking based method is considered
to be more accurate if the target structure is available.
Thus we have used both techniques for predicting
potential inhibitors.
Recently, a collaborative drug discovery program

(CDD) [19] yielded a collection of potential anti tuber-
cular compounds and predictive models for the same,
but our study is focused on identification of potential
inhibitors of GlmU using hybrid approach. In this study,
a wide range of machine learning techniques has been
used to develop QSAR models. It was found that MLR
based model performs nearly equal/better as compared
to other machine learning techniques. In order to avoid
over optimization, it is important to follow (n < 4d) rule
where number of descriptors should be less than one
fourth of total compounds. All software calculates large
number of descriptors, thus there is a need to reduce
number of descriptors by removing irrelevant, duplicate
and highly correlated descriptors so that we can narrow

down to best-performing as well best-representative
descriptor set. As shown in Table 2, V-life descriptor
chi5chain, Web-Cdk descriptor VCH-4 and Dragon
descriptor R1p+, Rtp+ high correlation >0.50 with pIC50

value, which demonstrate the importance of these
descriptors. While among docking based descriptors,
Moving Ligand-Moving Receptor shows maximum cor-
relation 0.26 with pIC50. The better performance of dra-
gon based selected descriptors may be due to the
presence of two descriptors namely R1P+, RTP+ that
shows high correlation with inhibitory activity as com-
pared to other that have only one descriptor that shows
high correlation. In this study, we integrated both QSAR
and docking techniques for predicting inhibition poten-
tial of compounds. Using only docking energies as
descriptors may give poor correlation because it’s not
always true that the pose with lowest binding energy is
the one with the lowest RMSD and also practically
impossible to analyze each docking pose. Besides, there
are other kinds of interactions that play important role
in predicting binding energies. Thus a hybrid approach
may be beneficial to develop better predictive model. As
shown in Table 3, hybrid method which combined two
or more than two types descriptors. Based on this study,
we have screened potential inhibitors against GlmU and
predicted 40 compounds as potential inhibitor. By devel-
oping BioAssay using recombinant protein, validation of
these inhibitors by others will confirm our algorithms

Table 4 List of potential GlmU inhibitors selected based on minimum docking free energy

Substrate similar compounds Anti-infective Compounds

S.No. Compound ID Free Energy of Binding Predicted IC50 value S.No. Compound ID Free Energy of Binding Predicted IC50 value

1 21681703 -9.84 82.94 1 4451056 -9.15 101.40

2 21597577 -9.37 109.93 2 4095801 -9.08 121.50

3 23421195 -9.27 82.94 3 702695 -8.87 85.30

4 24794354 -9.22 80.26 4 9612992 -8.74 126.62

5 21678408 -9.17 80.26 5 2236 -8.59 121.50

6 24794360 -9.17 80.26 6 3092 -8.36 111.76

7 24794349 -9.14 80.26 7 10751694 -8.12 111.77

8 21602943 -9.11 109.93 8 34318 -8.05 76.33

9 7098640 -9.03 80.26 9 5284340 -7.89 76.33

10 24794358 -9.02 80.26 10 93364 -7.65 66.27

11 21145106 -9.01 110.46 11 31715 -7.43 70.88

12 7098639 -8.97 109.93 12 39981 -7.35 101.40

13 24794356 -8.97 80.26 13 10611 -7.32 118.08

14 23421194 -8.94 82.94 14 2774 -7.3 118.08

15 20843309 -8.93 110.46 15 20824 -7.27 88.64

16 26470622 -8.92 109.93 16 7059498 -7.25 88.63

17 25202420 -8.9 109.93 17 3415 -7.22 101.40

18 23421196 -8.83 109.93 18 3070413 -7.21 127.04

19 21681821 -8.76 82.94 19 12874082 -7.21 70.89

20 4624316 -8.73 80.26 20 7018315 -7.19 61.59

These compounds were selected from group of compounds similar to substrate and anti-infective compound.
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and methodology. We hope our web service will serve
the community involved in drug discovery as well as it
will encourage other scientist working in the field of
informatics to develop free software/web-servers.

Conclusion
This study describes the development of a freely avail-
able webserver for screening chemical compounds
library against GlmU protein. The docking approach
also provides valuable information about protein-ligand
interaction and help in further ligand based drug design-
ing. This server will be useful to narrow down the time
and cost required to screen a chemical library.

Additional material

Additional file 1: Clustering of 125 inhibitors at threshold 0.7 using

PubChem Clustering Tool.

Additional file 2: Results of hybrid model on independent data sets.

Additional file 3: Descriptors calculated from different software’s

with their explanation.
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