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SUMMARY

We present the web application TRILL on SWISH, which allows the user to write probabilistic Description
Logic (DL) theories and compute the probability of queries with just a web browser. Various probabilistic
extensions of DLs have been proposed in the recent past, since uncertainty is a fundamental component
of the Semantic Web. We consider probabilistic DL theories following our DISPONTE semantics. Axioms
of a DISPONTE Knowledge Base (KB) can be annotated with a probability and the probability of queries
can be computed with inference algorithms. TRILL is a probabilistic reasoner for DISPONTE KBs that
is implemented in Prolog and exploits its backtracking facilities for handling the non-determinism of the
tableau algorithm. TRILL on SWISH is based on SWISH, a recently proposed web framework for logic
programming, based on various features and packages of SWI-Prolog (e.g., a web server and a library
for creating remote Prolog engines and posing queries to them). TRILL on SWISH also allows users to
cooperate in writing a probabilistic DL theory. It is free, open, and accessible on the Web at the url:
http://trill.lamping.unife.it; it includes a number of examples that cover a wide range of
domains and provide interesting Probabilistic Semantic Web applications. By building a web-based system,
we allow users to experiment with Probabilistic DLs without the need to install a complex software stack. In
this way we aim to reach out to a wider audience and popularize the Probabilistic Semantic Web. Copyright
c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The main objective of the Semantic Web is modeling the real world in a way that is automatically

understandable by machines [1]. To accomplish this objective, the W3C has standardized a family of

knowledge representation formalisms, called Web Ontology Language (OWL). The first version of

OWL defines three different sublanguages of increasing complexity: OWL-Lite, OWL-DL (based

on Description Logics) and OWL-Full. Since the real world often contains uncertain information, it

is of foremost importance to be able to represent and reason with such information. This problem

has been studied by various authors both in the general case of First Order Logic (FOL) [2, 3, 4]

and in the case of restricted logics, such as Description Logics (DLs) and Logic Programming (LP).

In particular, a field called Probabilistic Logic Programming (PLP) has recently arisen, which

introduces probabilistic reasoning in logic programs. In this field, the distribution semantics [5] is
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one of the most effective approaches and is exploited by many languages, such as Independent

Choice Logic [6], Probabilistic Horn Abduction [7], PRISM [8], pD [9], Logic Programs with

Annotated Disjunctions (LPADs) [10], CP-logic [11] and ProbLog [12]. The distribution semantics

defines a probability distribution over normal logic programs called worlds and the probability of a

query is obtained from this distribution by marginalization.

Following this line, in [13, 14, 15, 16] we defined DISPONTE (“DIstribution Semantics for

Probabilistic ONTologiEs”, Spanish for “get ready”) which applies the distribution semantics to

DLs by annotating axioms of a Knowledge Base (KB) with a probability and assuming that each

axiom is independent of the others. A DISPONTE KB defines a probability distribution over regular

KBs (also called worlds) and the probability of a query is obtained from the joint probability of the

worlds and the query. This semantics paves the way for the Probabilistic Semantic Web.

Several algorithms have been proposed for supporting the development of the Semantic Web.

Efficient DL reasoners, such us Pellet [17], RacerPro [18] and HermiT [19], are able to extract

implicit information from ontologies, and probabilistic DL reasoners, such as PRONTO [20], are

able to compute the probability of the inferred information. In this field, the tableau algorithm is

most widespread approach. However, some tableau expansion rules are non-deterministic, forcing

the implementation of a search strategy in an or-branching search space. In addition, in some cases

we want to compute all explanations for a given query, requiring the exploration of all the non-

deterministic choices made by the tableau algorithm during inference.

In order to manage this non-determinism, we developed the system TRILL (“Tableau Reasoner

for descrIption Logics in proLog”) [21, 22] which performs inference under DISPONTE. It

implements the tableau algorithm in the declarative Prolog language, whose search strategy is

exploited for taking into account the non-determinism of the reasoning process. TRILL uses

the Thea2 library [23] for translating OWL KBs into Prolog facts and exploits Binary Decision

Diagrams for computing the probability of queries from the set of all explanations, in a time that is

linear in the size of the diagram.

In this paper, we present the “TRILL on SWISH” web application for performing inference

on user-defined KBs under DISPONTE. It is based on the SWISH web framework [24], which

exploits features and packages of SWI-Prolog and its Pengines library. TRILL on SWISH allows

the user to write a KB in OWL, using the RDF/XML syntax, and ask a query to it. Then, using

JavaScript, the query and the program are sent to the server that builds a Pengine (Prolog Engine),

which translates the KB, evaluates the query and returns answers for it. TRILL on SWISH can

answer different types of queries and can compute the probability of the query, whether the

query is entailed or not from the knowledge base, and the set of explanations that explain the

entailment. Both the web server and the inference back-end are run entirely within SWI-Prolog.

Reasoning in TRILL on SWISH is accomplished by a version of TRILL ported to SWI-Prolog.

We also modified SWISH both in its server and client parts. TRILL on SWISH is available at

http://trill.lamping.unife.it. Its interface is shown in Figure 1 and offers several

examples of KBs and queries.

Prolog is a viable language for implementing DL reasoning algorithms and it is emerging as

a valid tool for the Semantic Web [25]. TRILL on SWISH allows users to experiment with these

algorithms without the need to install a system, a procedure which is often complex, error prone and

limited mainly to the GNU/Linux platform. In addition SWISH supports real-time collaboration, a

useful feature for both development and educational purposes.

The paper is organized as follows. Section 2 briefly introduces DLs and Section 3 presents

DISPONTE. Section 4 illustrates the TRILL algorithm, Section 5 describes the SWISH web

platform and Section 6 the integration of TRILL in it. Finally, Section 7 concludes the paper.

2. DESCRIPTION LOGICS

Description Logics are knowledge representation formalisms that possess nice computational

properties such as decidability and/or low complexity, see [26, 27] for excellent introductions. DLs
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Figure 1. “TRILL on SWISH” web interface.

are particularly useful for representing ontologies and have been adopted as the basis of the Semantic

Web.

While DLs can be translated into FOL, they are usually represented using a syntax based on

concepts and roles. A concept corresponds to a set of individuals of the domain while a role

corresponds to a set of pairs of individuals of the domain. In order to illustrate DLs, we now describe

SHOIN (D), the basis of OWL DL.

Let A, R and I be sets of atomic concepts, roles and individuals, respectively. A role is either

an atomic role R ∈ R or the inverse R− of an atomic role R ∈ R. We use R
− to denote the set

of all inverses of roles in R. Concepts are defined by induction as follows. Each C ∈ A, ⊥ and ⊤
are concepts. If a ∈ I, then {a} is a concept called nominal, and if C, C1 and C2 are concepts and

R ∈ R ∪R
−, then (C1 ⊓ C2), (C1 ⊔ C2) and ¬C are concepts, as well as ∃R.C, ∀R.C, ≥ nR and

≤ nR for an integer n ≥ 0.

An RBox R consists of a finite set of transitivity axioms Trans(R), where R ∈ R, and role

inclusion axioms R ⊑ S, where R,S ∈ R ∪R
−. A TBox T is a finite set of concept inclusion

axioms C ⊑ D, where C and D are concepts. We use C ≡ D to abbreviate the conjunction of

C ⊑ D and D ⊑ C. An ABox A is a finite set of concept membership axioms a : C, role membership

axioms (a, b) : R, equality axioms a = b and inequality axioms a 6= b, where C is a concept, R ∈ R

and a, b ∈ I. A knowledge base K = (T ,R,A) consists of a TBox T , an RBox R and an ABox A.

A knowledge base K is usually assigned a semantics in terms of interpretations I = (∆I , ·I),
where ∆I is a non-empty domain and ·I is the interpretation function that assigns an element in ∆I

to each a ∈ I, a subset of ∆I to each C ∈ A and a subset of ∆I ×∆I to each R ∈ R. The mapping

·I is extended to all concepts (where RI(x) = {y|(x, y) ∈ RI} and #X denotes the cardinality of

the set X) as:
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(R−)I = {(y, x)|(x, y) ∈ RI}
⊤I = ∆I

⊥I = ∅
{a}I = {aI}

(C1 ⊓ C2)
I = CI

1 ∩ CI
2

(C1 ⊔ C2)
I = CI

1 ∪ CI
2

(¬C)I = ∆I \ CI

(∀R.C)I = {x ∈ ∆I |RI(x) ⊆ CI}
(∃R.C)I = {x ∈ ∆I |RI(x) ∩ CI 6= ∅}
(≥ nR)I = {x ∈ ∆I |#RI(x) ≥ n}
(≤ nR)I = {x ∈ ∆I |#RI(x) ≤ n}

SHOIN (D) allows the definition of datatype roles, i.e., roles that map an individual to an element

of a datatype such as integers, floats, etc. Then new concept definitions involving datatype roles are

added that mirror those involving roles introduced above. We also assume that we have predicates

over the datatypes.

The satisfaction of an axiom E in an interpretation I = (∆I , ·I), denoted by I |= E, is defined

as follows: (1) I |= Trans(R) iff RI is transitive, (2) I |= R ⊑ S iff RI ⊆ SI (3) I |= C ⊑ D

iff CI ⊆ DI , (4) I |= a : C iff aI ∈ CI , (5) I |= (a, b) : R iff (aI , bI) ∈ RI , (6) I |= a = b iff

aI = bI , (7) I |= a 6= b iff aI 6= bI . I satisfies a set of axioms E , denoted by I |= E , iff I |= E

for all E ∈ E . An interpretation I satisfies a knowledge base K = (T ,R,A), denoted I |= K, iff I
satisfies T , R and A. In this case we say that I is a model of K.

Inference in a DL is decidable if the problem of checking the satisfiability of any possible KB

representable with that DL is decidable. In particular, SHOIN (D) is decidable iff there are no

number restrictions on non-simple roles. A role is non-simple iff it is transitive or it has transitive

subroles.

A query Q over a KB K is usually an axiom for which we want to test the entailment from the KB,

written K |= Q. The entailment test in SHOIN (D) may be reduced to checking the unsatisfiability

of a concept in the knowledge base, i.e., the emptiness of the concept. For example, the entailment

of the axiom C ⊑ D may be tested by checking the unsatisfiability of the concept C ⊓ ¬D.

Example 1

The following KB is derived from the ontology people+pets [28]:

∃hasAnimal.Pet ⊑ NatureLover

fluffy : Cat

tom : Cat

Cat ⊑ Pet

(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

It states that individuals that own an animal which is a pet are nature lovers and that kevin

owns the animals fluffy and tom. Moreover, fluffy and tom are cats and cats are pets. The query

Q = kevin : NatureLover is entailed by the KB.

3. DISPONTE

DISPONTE [29] applies the distribution semantics [5] of probabilistic logic programming to DLs. A

program following this semantics defines a probability distribution over worlds that are normal logic

programs. Then the distribution is extended to a joint distribution over the query and the programs

from which the probability of the query is obtained by marginalization.
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In DISPONTE, a probabilistic knowledge base K contains a set of certain axioms and a set of

probabilistic axioms which take the form

p :: E (1)

where p is a real number in [0, 1] and E is any DL axiom of the KB (either of the terminological or

assertional part of the KB).

The idea of DISPONTE is to associate independent Boolean random variables to the probabilistic

axioms. To obtain a world w we decide whether to include each probabilistic axiom or not in w by

assigning values to every random variable. A world is the set of axioms whose random variables are

assigned the value 1. A world is therefore a non probabilistic KB that can be assigned a semantics

in the usual way. A query is entailed by a world if it is true in every model of the world.

The probability p can be interpreted as an epistemic probability, i.e., as the degree of our belief

in axiom E. For example, a probabilistic concept membership axiom p :: a : C means that we

have degree of belief p in C(a). A probabilistic concept inclusion axiom of the form p :: C ⊑ D

represents the fact that we believe in the truth of C ⊑ D with probability p. For example, the axioms
0.9 :: tweety : Flies

0.7 :: Bird ⊑ Flies

mean that Tweety flies with probability 0.9 and that we believe in the fact that birds fly with

probability 0.7.

Formally, an atomic choice is a pair (Ei, k) where Ei is the ith probabilistic axiom and

k ∈ {0, 1}. k indicates whether Ei is chosen to be included in a world (k = 1) or not (k = 0). A

composite choice κ is a consistent set of atomic choices, i.e., (Ei, k) ∈ κ, (Ei,m) ∈ κ implies k = m

(only one decision is taken for each axiom). The probability of a composite choice κ is P (κ) =∏
(Ei,1)∈κ

pi
∏

(Ei,0)∈κ
(1− pi), where pi is the probability associated with axiom Ei. A selection σ

is a total composite choice, i.e., it contains an atomic choice (Ei, k) for every axiom of the theory. A

selection σ identifies the theory, also called world, wσ = {Ei|(Ei, 1) ∈ σ}. Let us indicate with WK

the set of all worlds. The probability of a world wσ is P (wσ) = P (σ) =
∏

(Ei,1)∈σ
pi
∏

(Ei,0)∈σ
(1−

pi). P (wσ) is a probability distribution over worlds, i.e.,
∑

w∈WK
P (w) = 1.

We can now assign probabilities to queries. Given a world w, the probability of a query Q is

defined as P (Q|w) = 1 if w |= Q and 0 otherwise. The probability of a query can be defined by

marginalizing the joint probability of the query and the worlds:

P (Q) =
∑

w∈WK

P (Q,w) (2)

=
∑

w∈WK

P (Q|w)P (w) (3)

=
∑

w∈WK:w|=Q

P (w) (4)

where (2) and (3) follow for the sum and product rules of probability theory respectively and (4)

holds because P (Q|w) = 1 if w |= Q and 0 otherwise.

Example 2

Consider the KB presented in Example 1 where we turned some axioms into probabilistic axioms:

∃hasAnimal.Pet ⊑ NatureLover

(kevin,fluffy) : hasAnimal

(kevin, tom) : hasAnimal

0.4 :: fluffy : Cat E1

0.3 :: tom : Cat E2

0.6 :: Cat ⊑ Pet E3

The KB indicates that the individuals that fluffy and tom are cats with 40% and 30% probability

respectively and cats are pets with a 60% probability. The KB has eight possible worlds,

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



6

corresponding to the selections:

{(E1, 0), (E2, 0), (E3, 0)}
{(E1, 0), (E2, 0), (E3, 1)}
{(E1, 0), (E2, 1), (E3, 0)}
{(E1, 0), (E2, 1), (E3, 1)}

{(E1, 1), (E2, 0), (E3, 0)}
{(E1, 1), (E2, 0), (E3, 1)}
{(E1, 1), (E2, 1), (E3, 0)}
{(E1, 1), (E2, 1), (E3, 1)}

and the query axiom Q = kevin : NatureLover is true in three of them, corresponding to the

following choices:

{(E1, 0), (E2, 1), (E3, 1)}

{(E1, 1), (E2, 0), (E3, 1)}

{(E1, 1), (E2, 1), (E3, 1)}

while in the remaining ones it is false. Each pair in the selections contains the axiom identifier and

the value of its selector (k). The probability of the query is P (Q) = 0.6 · 0.3 · 0.6 + 0.4 · 0.7 · 0.6 +
0.4 · 0.3 · 0.6 = 0.348.

Note that a DISPONTE KB with inconsistent worlds should not be used to derive consequences,

just as a regular DL KB that is inconsistent should not.

A different approach for assigning a semantics to probabilistic DLs is followed in [30] and

[31]. Here, a KB is associated with a Bayesian network with variables V . Axioms take the form

E : X = x where E is a DL axiom and X = x is an annotation with X ⊆ V and x a set of values

for these variables. The Bayesian network assigns a probability to every assignment of V , called a

world. The authors show that the probability of a query Q = E : X = x is given by the sum of the

probabilities of the worlds where X = x is satisfied and where E is a logical consequence of the

theory composed of the annotated axioms whose annotation is true in the world. DISPONTE is a

special case of this semantics where every axiom Ei : Xi = xi is such that Xi is a single Boolean

variable and the Bayesian network has no edges, i.e., all the variables are independent. This is an

important special case that greatly simplifies reasoning, as computing the probability of the worlds

takes a time linear in the number of variables.

4. TRILL

TRILL (“Tableau Reasoner for descrIption Logics in Prolog”) [21, 22] implements a tableau

algorithm in Prolog. It is able to compute the set of all the explanations of queries w.r.t. both

probabilistic and non-probabilistic KBs. Moreover, it can compute the probability of queries w.r.t.

probabilistic KBs. In this case, after generating the explanations, TRILL converts them into a Binary

Decision Diagram (BDD) which is exploited to efficiently compute the probability of the query.

TRILL can answer concept membership queries and subsumption queries, and can find explanations

both for the unsatisfiability of a concept contained in the KB or for the inconsistency of the entire

KB. TRILL is implemented in Prolog, so the management of the rules’ non-determinism is delegated

to this language.

For converting OWL DL KBs into Prolog, we use the Thea2 library [23]. Thea2 performs

a direct translation of the OWL axioms into Prolog facts. For example, a simple subclass

axiom between two named classes Cat ⊑ Pet is written using the subClassOf/2 predicate

as subClassOf(‘Cat’,‘Pet’). For more complex axioms, Thea2 exploits the list Prolog

construct, so the axiom

NatureLover ≡ PetOwner ⊔GardenOwner

becomes

equivalentClasses([‘NatureLover’,

unionOf([‘PetOwner’,‘GardenOwner’])]).
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Table I. Comparison between an OWL axiom and its Prolog translation.

OWL forebrain neuron ≡ neuron ⊓ ∃partOf .forebrain
Prolog equivalentClasses( [forebrain neuron,

intersectionOf([neuron, someValuesFrom(partOf, forebrain)])])

When a probabilistic KB is given as input to TRILL, for each probabilistic axiom of the form

Prob :: Axiom, two facts are asserted, the axiom itself and an annotation assertion of the form

annotationAssertion( ProbAnnot, Axiom, literal(Prob)), where ProbAnnot is

the name of the annotation, Axiom is the probabilistic axiom and Prob is the probability value.

Complex classes are represented by means of function symbols, as shown in Table I.

A tableau is an ABox. It can also be seen as a graph G where each node represents an individual

a and is labeled with the set of concepts L(a) it belongs to. Each edge 〈a, b〉 in the graph is labeled

with the set of roles L(〈a, b〉) to which the pair (a, b) belongs. A tableau algorithm proves an axiom

by refutation: it starts from a tableau that contains the negation of the axiom and applies the tableau

expansion rules. For example, if the query is a class assertion, C(a), we add ¬C to the label of a. A

tableau algorithm repeatedly applies a set of consistency preserving tableau expansion rules until

a clash (i.e., a contradiction) is detected or a clash-free graph is found to which no more rules are

applicable. A clash is, for example, a concept C and a node a where C and ¬C are present in its

label, i.e. {C,¬C} ⊆ L(a). If no clashes are found, the tableau represents a model for the negation

of the query, which is thus not entailed. Each expansion rule updates as well a tracing function τ ,

which associates sets of axioms with labels of nodes and edges. It maps pairs (concept, individual)

or (role, pair of individuals) to a fragment of the knowledge base K. τ is initialized to the empty

set for all the domain elements, except for τ(C, a) and τ(R, 〈a, b〉) to which the values {a : C} and

{(a, b) : R} are assigned if a : C and (a, b) : R are in the ABox respectively. The tableau algorithm

output is a set S of axioms that is a fragment of K from which the query is entailed.

In [32] the authors showed that pinpointing extensions of tableau algorithms need a blocking

condition in order to ensure termination. TRILL uses the blocking condition described in [33]. In

a tableau a node x can be a nominal node if its label L(x) contains a nominal, or a blockable

node otherwise. If there is an edge e = 〈x, y〉 then y is a successor of x and x is a predecessor

of y. Ancestor is the transitive closure of predecessor while descendant is the transitive closure of

successor. A node y is called R-neighbour of a node x if y is a successor of x and R ∈ L(〈x, y〉),
where R ∈ R.

An R-neighbour y of x is safe if (i) x is blockable or if (ii) x is a nominal node and y is not

blocked. Finally, a node x is blocked if it has ancestors x0, y and y0 such that all the following

conditions are true: (1) x is a successor of x0 and y is a successor of y0, (2) y, x and all nodes on the

path from y to x are blockable, (3) L(x) = L(y) and L(x0) = L(y0), (4) L(〈x0, x〉) = L(〈y0, y〉).
In this case, we say that y blocks x. A node is blocked also if it is blockable and all its predecessors

are blocked; if the predecessor of a safe node x is blocked, then we say that x is indirectly blocked.

In order to represent the tableau, TRILL uses a pair Tableau = A-T, where A is a list containing

information about nominal individuals and class and role assertions with the corresponding

explanation, while T is a fact tnr(G,RBN,RBR) in which G is a directed graph that contains

the main structure of the tableau, RBN is a red-black tree (a key-value dictionary) in which a key is a

pair of individuals and its value is the set of the labels of the edge between the two individuals, and

RBR is a red-black tree in which a key is a role and its value is the set of pairs of individuals that are

linked by the role. This representation allows TRILL to quickly find the information needed during

the execution of the tableau algorithm. For managing the blocking system we use a predicate for each

blocking state: nominal/2, blockable/2, blocked/2, indirectly_blocked/2 and

safe/3. Each predicate takes as arguments the individual Ind and the tableau A-T; safe/3 takes

as input also the role R. For each individual ind in the ABox we add the atom nominal(ind) to

A, then every time we have to check the blocking status of an individual we call the corresponding

predicate that returns the status by checking the tableau. For example, indirectly_blocked/2

is implemented as:
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indirectly_blocked(Ind,ABox-tnr(T,RBN,RBR)):-
transpose(T,T1),
neighbours(Ind,T1,N),
member(A,N),
blocked(A,ABox-tnr(T,RBN,RBR)),!.

where transpose/2 builds a transposed version of the tableau, which is examined by

neighbours/3 that returns in N the list of neighbours of Ind. Then, member/2 and

blocked/2 are exploited to check if there is at least an individual in N which is blocked.

Deterministic and non-deterministic tableau expansion rules are treated differently in TRILL.

Non-deterministic rules are implemented by a predicate <rule name>(Tab0, TabList) that,

given the current tableau Tab0, returns the list of tableaux TabList created by the application

of the rule to Tab0. For example, the non-deterministic rule that expands the concept A ⊔B is

implemented by the following code:

or_rule(ABox0-Tabs0,L):-
find((classAssertion(unionOf(LC),Ind),Expl),ABox0),
\+indirectly_blocked(Ind,ABox0-Tabs0),
findall(ABox1-Tabs0,scan_or_list(LC,Ind,

Expl,ABox0,Tabs0,ABox1),L),
dif(L,[]),!.

scan_or_list([],_Ind,_Expl,ABox,_Tabs,ABox).

scan_or_list([C|_T],Ind,Expl,ABox,Tabs,
[(classAssertion(C,Ind),Expl)|ABox]):-
absent(classAssertion(C,Ind),Expl,ABox-Tabs).

scan_or_list([_C|T],Ind,Expl,ABox0,Tabs,ABox):-
scan_or_list(T,Ind,Expl,ABox0,Tabs,ABox).

The predicate or rule/2 searches Tab0, which corresponds to the pair ABox0-Tabs0, for an

individual to which the rule can be applied and returns in L the list of new tableaux created by

scan_or_list/6.

Deterministic rules are implemented by a predicate <rule name>(Tab0,Tab) that, given the

current tableau Tab0, returns the tableau Tab obtained by the application of the rule to Tab0. For

example, the unfold rule looks for subclass and class equivalence axioms in order to add information

to individuals. A snippet of the code which corresponds to this rule is reported here:

unfold_rule(ABox0-Tabs0,
[(classAssertion(D,Ind),[Ax|Expl])|ABox]-Tabs0):-

find((classAssertion(C,Ind),Expl),ABox0),
find_sub_sup_class(C,D,Ax),
absent(classAssertion(D,Ind),[Ax|Expl],ABox0-Tabs0),
add_nominal(D,Ind,ABox0,ABox).

find_sub_sup_class(C,D,subClassOf(C,D)):-
subClassOf(C,D).

find_sub_sup_class(C,D,equivalentClasses(L)):-
equivalentClasses(L),
member(C,L),
member(D,L),
dif(C,D).

The unfold_rule/2 predicate searches ABox0-Tabs0, corresponding to Tab0, for an

individual to which the rule can be applied and calls the find_sub_sup_class/3 predicate

in order to find the class to be added to the individual. find/2 implements the search for a class

assertion. Since the data structure that stores class assertions is currently a list, find/2 simply

calls member/2. absent/3 checks if the class assertion axiom with the associated explanation
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is already present in the tableau, while add_nominal/4 handles nominal individuals in case D is

a nominal concept.

Expansion rules are applied in order by apply_all_rules/2, first the non-deterministic

ones and then the deterministic ones. The apply_nondet_rules(RuleList, Tab0, Tab)

predicate takes as input the list of non-deterministic rules and the current tableau and returns a

tableau obtained by the application of one of the rules. apply_nondet_rules/3 is called as

apply_nondet_rules( [or_rule, max_rule], Tab0, Tab) and is shown below:

apply_all_rules(Tab0,Tab):-
apply_nondet_rules([or_rule,max_rule],Tab0,Tab1),
(Tab0=Tab1 ->

Tab=Tab1
;

apply_all_rules(Tab1,Tab)
).

apply_nondet_rules([],Tab0,Tab):-
apply_det_rules([o_rule,and_rule,
unfold_rule,add_exists_rule,
forall_rule,forall_plus_rule,
exists_rule,min_rule],Tab0,Tab).

apply_nondet_rules([H|T],Tab0,Tab):-
once(call(H,Tab0,L)),
member(Tab,L),
dif(Tab0,Tab).

apply_nondet_rules([_|T],Tab0,Tab):-
apply_nondet_rules(T,Tab0,Tab).

If a non-deterministic rule is applicable, the tableau list obtained by its application is returned by the

predicate corresponding to the applied rule, a cut is performed to avoid backtracking to other rule

choices and a tableau from the list is non-deterministically chosen with the member/2 predicate.

If no non-deterministic rule is applicable, deterministic rules are tried sequentially by the predi-

cate apply_det_rules/3, that is called as apply_det_rules(RuleList,Tab0,Tab).

It takes as input the list of deterministic rules and the current tableau and returns a tableau obtained

by the application of one of the rules.

apply_det_rules([],Tab,Tab).

apply_det_rules([H|_],Tab0,Tab):-

once(call(H,Tab0,Tab)).

apply_det_rules([_|T],Tab0,Tab):-

apply_det_rules(T,Tab0,Tab).

After the application of a deterministic rule, a cut avoids backtracking to other possible choices for

the deterministic rules. If no rule is applicable, the input tableau is returned and rule application

stops, otherwise a new round of rule application is performed.

Once the set of explanations K for the query Q is found, we can define the Disjunctive Normal

Form (DNF) Boolean formula φK in this way

φK =
∨

κ∈K

∧

(Ei,1)∈κ

var(Ei).

where var(Ei) is the propositional variable associated with the probabilistic axiom Ei. φK is also

called pinpointing formula† and it is easy to see that every set of propositional variables that makes

φK true uniquely corresponds to a world where Q is true.

†It corresponds to the clash formula introduced in [34].
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Computing the probability of a DNF formula is a #P-hard problem [35], even if all variables

are independent, as they are in our case. An approach that seems to give good results in practice

is knowledge compilation [36]. TRILL applies it by translating φK into a BDD. The size of the

obtained BDD depends on the number of probabilistic axioms used for the explanations rather than

on the logic. The problem of compiling a Boolean formula into the smallest BDD is NP-hard [37].

Therefore we cannot hope to reduce the complexity in the worst case, we only hope to be able to

handle non-trivial average cases. Finally, TRILL computes the probability of the query from the

BDD in polynomial time [21].

TRILL is available for Yap Prolog‡ [38] and SWI-Prolog§ [39], which is the basis of the TRILL

on SWISH web application described in Section 6.

5. SWISH

SWISH¶ is a web application based on SWI-Prolog that allows the users to write Prolog programs

and ask queries through the browser without installing anything on their machines. The SWISH

page, shown in Figure 1, is divided into three panels: the left one contains a program editor,

the bottom right the query editor and the top right the query results. The query editor contains

also the button “Run!”, which creates a JavaScript object called runner. The runner collects the

text in the program editor and the query and sends this information to the server, which creates

a Pengine (Prolog Engine). The Pengine initializes a temporary private module in which the

program is compiled, then it checks whether the query execution is safe. If executing the query

may compromise the system, an error is returned, otherwise the query is computed and the results

are returned to the runner (and thus to the user) through JSON messages.

SWISH uses the SWI-Prolog Pengines library [24], which allows to create Prolog engines from

different sources: (1) an ordinary Prolog thread, (2) another Pengine, (3) JavaScript running in a

web client. Each Pengine is associated with a Prolog thread with a message queue for incoming

requests, a message queue for outgoing responses and a dynamic clause database, all private to the

Pengine.

The Pengine library follows a master/slave architecture. The master creates a Pengine on the

slave and sends a query to it. The conversations between them follow the Prolog Transport Protocol

(PLTP), a protocol based on HTTP.

Example 3

Consider this example from [24]:

:- use_module(library(pengines)).

main :-

pengine_create([

server(’http://pengines.org’),

src_text("

q(X) :- p(X).

p(a). p(b). p(c).

")

]),

pengine_event_loop(handle, []).

handle(create(ID, _)) :-

pengine_ask(ID, q(X), []).

‡http://www.dcc.fc.up.pt/˜vsc/Yap/
§http://www.swi-prolog.org/
¶http://swish.swi-prolog.org/
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handle(success(ID, [X], false)) :-

writeln(X).

handle(success(ID, [X], true)) :-

writeln(X),

pengine_next(ID, []).

This code calls pengine create/1 to create a slave Pengine in a remote Pengine server and

uses the src text option to send a textual message to the Pengine containing the program to be

queried. pengine event loop/2 starts a listener loop which waits for event terms. Once it finds

an event, it calls handle/1 on it. handle/1 can manage two different events:

1. create(ID, ): the Pengine identified by ID has been created and the event handler uses

pengine ask/3 to ask a query; pengine ask/3 is deterministic and the results of the

query will be returned in the form of event terms;

2. success(ID, Inst, More): the Pengine identified by ID has successfully solved the

query, Inst holds instantiations for the variables of the query and More is either true or

false, indicating whether we may expect the Pengine to be able to return more solutions

or not; pengine next/2 is called if More is true, to get the next solution.

Thus, by running main/0, we will see the terms q(a), q(b) and q(c)written to standard output.

Code sent to Pengines is executed in a “sandboxed” environment ensuring that only predicates

that do not have side effects - such as accessing the file system, loading foreign extensions, defining

other predicates outside the sandboxed environment, etc. - are called.

SWI-Prolog also offers a JavaScript library called pengine.js that allows the creation of

Pengine JavaScript objects on the server and to query them from JavaScript.

The SWISH web server is implemented by the SWI-Prolog HTTP package, a series of libraries

for serving data on HTTP [40].

SWISH allows users to collaborate on code development. It exploits the TogetherJS‖ library, that

is an open source JavaScript library built and hosted by Mozilla. TogetherJS offers different built-in

features which permit a real time interaction between users:

Audio and Text Chat The collaborators can chat by talking or texting to each other.

User Focus The collaborators see each other’s mouse cursors and clicks.

Co-browsing The collaborators can follow each other to different pages on the same domain.

Real time content sync The content is synchronized between all the collaborators.

It is possible to start collaborating on SWISH by clicking the item “File” in the menu bar and then

clicking on “Collaborate..”. The TogetherJS dock will appear and you can invite other users by

sharing the generated link.

For TRILL on SWISH we used the version of SWISH included in ClioPatria∗∗, a Semantic Web

server based on SWI-Prolog. This version was chosen because it offers the RDF handling features

of ClioPatria.

6. TRILL ON SWISH

In order to implement TRILL on SWISH, we installed the cplint pack [41], which includes a

foreign language C library for building BDDs, and the trill pack into SWI-Prolog. cplint

‖https://togetherjs.com/
∗∗http://cliopatria.swi-prolog.org/home
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can be installed by the user with the command pack_install(cplint) at the SWI-Prolog

prompt. Similarly, trill can be installed with the command pack_install(trill). After

loading TRILL with use module(library(trill)), the KB must be loaded in memory. This

is done by exploiting Thea2.

TRILL on SWISH, whose interface is shown in Figure 1, allows the user to write a KB in

the RDF/XML format in the left panel and write a query in the bottom right panel. Both the KB

and query editor have syntax highlighting. Moreover, URIs in queries can be written without the

base URI or using a namespace defined in the RDF/XML file and the system checks for possible

misspellings of URIs that are reported to the user.

In case one needs KB serializations different from RDF/XML or prefers a GUI to build the KB,

it is possible to use WebProtégé [42] to develop the KB, then download it in RDF/XML and upload

it into TRILL on SWISH.

Currently, the queries that can be executed are specified using the Prolog syntax. The types of

query that are available are shown below:

1. sub class(Class1,Class2),
sub class(Class1,Class2,Expl),
prob sub class(Class1,Class2,Prob),

2. instanceOf(Class,Individual),
instanceOf(Class,Individual,Expl),
prob instanceOf(Class,Individual,Prob),

3. unsat(ClassExpression),
unsat(ClassExpression,Expl),
prob unsat(ClassExpression,Prob),

4. inconsistent theory,
inconsistent theory(Expl),
prob inconsistent theory(Prob).

Each query has three versions which respectively test, find an explanation Expl or compute the

probability Prob of the query. Once the query is written (Figure 2), by pressing the “Run!” button

the information is sent to the server. This in turn creates a Pengine with the program. The creation

of a new Pengine object is done by the runner.js JavaScript file. runner.js was modified by

adding directives for loading the TRILL library, for disabling the check for discontiguous clauses,

and for parsing RDF/XML and translating it into Prolog. This is done by the following snippet of

runner.js:

data.prolog = new Pengine({

...

src: ":-use_module(library(trill)).

:-use_module(library(translate_rdf)).

:-use_module(library(pengines)).

parse:- pengine_self(M),

set_prolog_flag(M:unknwon,fail),

query.source+"’).",

...

oncreate: handleCreate,

...

});

that stores a new Pengine object in the runner’s data.prolog attribute. query.source holds

the KB. The module translate_rdf exploits Thea2 to parse and translate RDF KBs into Prolog

facts. It contains a modified version of the standard Thea2 library where we implemented some

improvement for the management of annotation assertions to handle the probabilistic ones.

The handleCreate function is performed at the Pengine creation and was modified to allow

the translation of the KB. The query given by the user is sent to the Pengine with the ask method,

which executes the parse goal for the translation and then the query in this way:

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



13

Figure 2. TRILL on SWISH ready to execute the query of Example 2. The left panel contains the KB while
the bottom right panel a prob instanceOf/3 query.

function handleCreate() {
var elem = this.pengine.options.runner;
var data = elem.data(pluginName);
...
this.pengine.ask("’$trill_on_swish wrapper’((" +

"parse,query_call(" +
termNoFullStop(data.query.query) +
")))", options);

elem.prologRunner(’setState’,"running");
}

where data.query.query is a string containing the query and the predicate query_call/1

expands if needed the arguments of the query and then calls it. The top right panel will then show

the result of the query, see Figure 3.

TRILL on SWISH can be opened with data preloaded in it. In order to preload a KB some

parameters must be provided in the URL of TRILL on SWISH, in particular:

code The value can be either the text of the KB or a URL from which the KB is available and

downloadable;

q The query to be set in the query panel.

For example the URL http://trill.lamping.unife.it/trill_on_swish/?code=

https://github.com/friguzzi/trill-on-swish/raw/master/examples/

BRCA.owl opens TRILL on SWISH preloading an owl file from GitHub.

We tested the robustness of the application by running two different stress tests. First we

submitted queries without imposing a time limit for the executions. The queries and the KBs were

chosen in order to saturate the main memory. Then, we set the time limit to 300 seconds, and we

ran again all the queries. In both cases, the serves simply kills or interrupts the thread that exhaust

the memory or that reaches the time limit without affecting the executions of other threads. An error

message is returned to the client regarding the motivation for the execution interruption. It should

be noted is that TRILL on SWISH is a testing tool useful for developing and experimenting also in
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Figure 3. TRILL on SWISH after the execution of the query of Example 2. The resulting probability is
shown in the top right panel.

a collaborative way, but it is not befitting heavy computations, for which a local installation should

be used. For these reasons and to ensure the server responsiveness, we imposed a time limit on the

query execution of 300 seconds. The tests show that the system is robust and can manage high loads

even in case of errors in some threads.

6.1. Examples

TRILL on SWISH offers some example ontologies, available from the “Examples” menu,

containing both probabilistic and certain axioms. In this section we show three examples.

The first ontology is the one of Example 2, which is shown in Figure 4 on

page 16. The first two axioms are probabilistic, the former indicating that the individuals

that own a pet are nature lovers with probability 0.5, the latter that a cat is a

pet with probability 0.6. The remaining axioms are certain. The query can be written

with the whole URL or in a short form, i.e. without the base part of the URL.

By querying prob instanceOf(’natureLover’,’Kevin’,Prob). we get Prob=0.3,

as calculated in Example 2.

The second example is the BRCA ontology. This example could be seen as a use case of

a real application of the proposed system. The axiom in Figure 5 on page 17 indicates that

postmenopausal women who take estrogens can suffer a moderate increase of breast cancer risk with

probability 0.67. If we want to compute the probability of a woman between 30 and 40 years old

of getting breast tumor, we can express it as sub class(‘cancer ra:WomanAged3040’,

‘WomanUnderLifetimeBRCRisk’, Prob) and obtain Prob=0.123. Note that in this

example we use the namespace cancer_ra defined in the RDF/XML file.

The third ontology is a part of the Vicodi KB. Figure 6 on page 17 shows two probabilistic

axioms. The former is a terminological axiom asserting that an artist is also a creator with probability

equal to 0.85, the latter is an assertional axiom which means that Anthony van Dyck is a painter with

probability 0.9. If we perform the query prob instanceOf(‘vicodi:Role’,‘vicodi:

Anthony-van-Dyck-is-Painter-in-Flanders’, Prob), TRILL returns

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



15

Prob=0.2754. This means that Anthony van Dyck had a role in European history with a

27.54% probability.

7. CONCLUSIONS

Web-based systems are, today, the way to reach out to a wider audience. In order to popularize the

Probabilistic Semantic Web, we have developed the TRILL on SWISH web application that allows

users to write and query probabilistic KBs following DISPONTE with just a web browser.

The program and the query are sent to the server, which returns the answer(s) to the user. TRILL

on SWISH has been implemented by exploiting the features of the SWISH system for Prolog

programming and querying on the Web and the cplint package for performing efficient inference

by means of BDDs. TRILL on SWISH is available at http://trill.lamping.unife.it

and already includes a number of examples that cover various domains, providing interesting

applications of the Probabilistic Semantic Web.

A work analogous to TRILL on SWISH is cplint on SWISH [43]. As the name suggests, this

application is based on SWISH and provides a web interface for the cplint suite.

In the months from July to November 2015 we monitored the accesses to http://trill.

lamping.unife.it and we observed a total of 191 sessions with 83 different users and 404

page views, thus testifying the interest in the tool.

In the future, we are planning to include all the updates of SWISH in our system and to extend

it with the possibility of expressing KBs with other OWL syntaxes (such as Functional, Turtle,

etc.), and with learning algorithms. In addition we would like to integrate WebProtégé in TRILL

on SWISH in order to allow users to build ontologies with a GUI. We are also planning to add the

possibility to return the explanations in decreasing order with respect to their probability.

ACKNOWLEDGEMENT

We would like to thank Jan Wielemaker for his very useful comments on how to set up the system.

This work was supported by the “GNCS-INdAM”.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe



16

...
<owl:Axiom>

<disponte:probability rdf:datatype="&xsd;decimal">0.5</disponte:
probability>

<owl:annotatedTarget
rdf:resource="http://cohse.semanticweb.org/ontologies/people#

natureLover"/>
<owl:annotatedProperty rdf:resource="&rdfs;subClassOf"/>
<owl:annotatedSource>

<owl:Restriction>
<rdfs:subClassOf

rdf:resource="http://cohse.semanticweb.org/ontologies/people#
natureLover"/>

<owl:onProperty
rdf:resource="http://cohse.semanticweb.org/ontologies/people#

has_animal"/>
<owl:someValuesFrom

rdf:resource="http://cohse.semanticweb.org/ontologies/people#
pet"/>

</owl:Restriction>
</owl:annotatedSource>

</owl:Axiom>

<owl:Axiom>
<disponte:probability rdf:datatype="&xsd;decimal">0.6</disponte:

probability>
<owl:annotatedSource

rdf:resource="http://cohse.semanticweb.org/ontologies/people#
cat"/>

<owl:annotatedTarget
rdf:resource="http://cohse.semanticweb.org/ontologies/people#

pet"/>
<owl:annotatedProperty

rdf:resource="&rdfs;subClassOf"/>
</owl:Axiom>

<owl:NamedIndividual rdf:about="http://cohse.semanticweb.org/ontologies
/people#Kevin">

<rdfs:label>Kevin</rdfs:label>
<has_animal

rdf:resource="http://cohse.semanticweb.org/ontologies/people#Fluffy
"/>

<has_animal
rdf:resource="http://cohse.semanticweb.org/ontologies/people#Tom"/>

</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="http://cohse.semanticweb.org/ontologies
/people#Fluffy">

<rdf:type rdf:resource="http://cohse.semanticweb.org/ontologies/
people#cat"/>

<rdfs:label>Fluffy</rdfs:label>
</owl:NamedIndividual>

<owl:NamedIndividual rdf:about="http://cohse.semanticweb.org/ontologies
/people#Tom">

<rdf:type rdf:resource="http://cohse.semanticweb.org/ontologies/
people#cat"/>

<rdfs:label>Tom</rdfs:label>
</owl:NamedIndividual>
...

Figure 4. Axioms of the people+pets KB in RDF/XML syntax.
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...
<rdf:RDF xmlns="&cancer_ra;"

xml:base="http://clarkparsia.com/pronto/cancer_ra.owl#"
xmlns:cancer_ra="http://clarkparsia.com/pronto/cancer_ra.owl#"
... >

...
<owl:Axiom>

<disponte:probability
rdf:datatype="&xsd;decimal">0.67</disponte:probability>

<owl:annotatedSource
rdf:resource="&cancer_ra;PostmenopausalWomanTakingEstrogen"/>

<owl:annotatedTarget
rdf:resource="&cancer_ra;WomanUnderModeratelyIncreasedBRCRisk"/>

<owl:annotatedProperty rdf:resource="&rdfs;subClassOf"/>
</owl:Axiom>
...

Figure 5. An axiom and a snippet of the declaration of the namespaces of the BRCA KB expressed in
RDF/XML syntax.

...
<owl:Axiom>

<disponte:probability
rdf:datatype="&xsd;decimal">0.85</disponte:probability>

<owl:annotatedSource
rdf:resource="http://vicodi.org/ontology#Artist"/>

<owl:annotatedTarget rdf:resource="http://vicodi.org/ontology#Creator
"/>

<owl:annotatedProperty rdf:resource="&rdfs;subClassOf"/>
</owl:Axiom>
...
<owl:Axiom>

<disponte:probability
rdf:datatype="&xsd;decimal">0.9</disponte:probability>

<owl:annotatedSource
rdf:resource="http://vicodi.org/ontology#Anthony-van-Dyck-is-

Painter-in-Flanders"/>
<owl:annotatedTarget

rdf:resource="http://vicodi.org/ontology#Painter"/>
<owl:annotatedProperty rdf:resource="&rdf;type"/>

</owl:Axiom>
...

Figure 6. Axioms from the Vicodi KB in RDF/XML syntax.
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