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Abstract

Wireless Community Networks (WCNs) are created and managed by a local community with the goal of sharing Internet connec-

tions and offering local services. This paper analyses the data collected on three large WCNs, ranging from 131 to 226 nodes, and

used daily by thousands of people. We first analyse the topologies to get insights in the fundamental properties, next we concentrate

on two crucial aspects: i) the routing layer, and ii) metrics on the centrality of nodes and the network robustness. All the networks

use the Optimized Link State Routing (OLSR) protocol extended with the Expected Transmission Count (ETX) metric. We analyse

the quality of the routes and two different techniques to select the Multi-Point Relay (MPR) nodes. The centrality and robustness

analysis shows that, in spite of being fully decentralized networks, an adversary that can control a small fraction of carefully chosen

nodes can intercept up to 90% of the traffic. The collected data-sets are available as Open Data, so that they can be easily accessed

by any interested researcher, and new studies on different topics can be performed. WCNs are just an example of large wireless

mesh networks, so our methodology can be applied to any other large mesh network, including commercial ISP networks.

Keywords: mesh networks, community networks, wireless ad-hoc networks, network topology, privacy, network analysis,

centrality metrics, robustness analysis.

1. Introduction

A Wireless Community Network (WCN) is a wireless mesh

network created by a local group of users to have an alternative,

self-managed, community-based networking infrastructure. A

WCN serves two purposes: It allows inter-user interactions

(messaging, talking, sharing etc.), and it brings Internet connec-

tivity where it is not present. WCNs are flourishing. Many Eu-

ropean cities feature WCNs with hundreds of nodes: in Athens

a single WCN includes more than 2,400 nodes, while in Spain,

the Guifi network is a composition of WCNs that counts more

than 23,000 nodes and growing. Thousands of nodes connect-

ing tens of thousands of individuals, families, associations, pub-

lic offices with a non-profit approach and a community-based

organization. After an initial interest in their early stages [1],

WCNs have lately re-attracted the attention of academia and

research funding [2, 3], and they are becoming a strong asset

in reducing the digital divide and pushing broadband networks

from the bottom up.

The goal of this paper is to analyze the main features of three

large European WCNs, with particular focus on routing aspects

and on centrality and robustness metrics.
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1.1. Contribution

This paper extends the initial findings on a small portion of

the data presented in [4], leveraging the analysis, the metrics

and theoretic contributions published in [5, 6]. It offers an origi-

nal combination of insights not present in the existent literature.

First of all, three different large networks are monitored for an

entire week, exploring their stability and different characteris-

tics and finally providing a novel comparative analysis of the

three networks.

Second, WCNs do not strictly focus on Internet connectiv-

ity, as the large commercial networks analyzed in the literature.

Instead, the participants of a WCN perceive the network as an

alternative communication media that offers a higher degree of

privacy and neutrality. For this reason they try to use the inter-

nal services of the network as an alternative to external commer-

cial services. In the light of the recent world-wide discussions

on privacy, neutrality and forced disconnections, WCNs rep-

resent successful networks based on a somehow revolutionary

societal approach. For this reason it is particularly important to

study their development, describe their features and verify how

much they match the expectations, raised even by mainstream

media1. One of the contributions of this paper is the analysis

of the robustness and of the centrality metrics of WCNs, that

give an unbiased overview of how much these expectations are

reflected in real networks.

Third, we focus on specific issues that have been ignored by

previous works, as the analysis on the choice of Multi-Point

1See, for instance, recent coverage from the New York Times “U.S. Pro-

motes Network to Foil Digital Spying” http://nyti.ms/1r6yltT
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Relays (MPRs) in the Optimized Link State Routing (OLSR)

protocol. MPRs are key nodes used in the OLSR protocol that

have been largely debated in the literature, most of the times

using a theoretical or simulative approach. We believe this is

the first attempt to evaluate on real topologies how MPRs could

impact the performance not only in terms of signalling, but also

in terms of accuracy in finding the best routes.

Finally, and contrarily to the majority of the works in litera-

ture, we release all the data we have collected and the software

we developed to encourage more researchers to investigate on

this topic, so that new comparative research can be based on

this work. We will continue to monitor the three networks and,

if possible, to extend the monitoring to new ones and enrich the

public data-set with new features2.

1.2. Related Work

Several works describe the features of wireless mesh net-

works. In some cases, detailed analysis were made on small

wireless networks [7, 8], in some other cases large networks

providing Internet access were analyzed [9, 10, 11]. Never-

theless, there is a great difference between a commercial ac-

cess network and a large WCN, which offers some unique chal-

lenges [12] and displays some unique features.

Recently the topological properties of Guifi have been stud-

ied [13], and in a previous work [4] we analysed some feature

of the Ninux network.

This paper goes beyond the state of the art and focuses on

some currently unexplored specific issues. Among these, we

will study the centrality metrics applied to WCNs, and, specifi-

cally, group centrality metrics. These are metrics that have been

largely used in social science, but have been applied to wireless

networks only recently [14, 15], but never to networks as large

as the ones we consider.

Finally, many works in the literature address the problem of

finding the optimal MPR set for a network [16, 17, 18, 19].

Most of these works are based on geometric evaluations or sim-

ulations and, to the best of our knowledge, there is none es-

timating the impact of different MPR choice strategies in real

large topologies as we do in this work.

2. Overview of the Networks and the Measurements

The three networks we consider are Funk Feuer Wien and

Funk Feuer Graz in Austria, and Ninux in Italy: FFWien, FF-

Graz, and NNX for short. They have different management

structures and “philosophy”, but they all exploit the OLSR rout-

ing protocol to maintain the network topology and compute

routing.

2.1. Nodes’ Configuration

The majority of the nodes use either one of two solutions: i)

boxed indoor equipment, or ii) commercial devices for outdoor

use.

2The software developed and data-sets collected for this work are available

at http://disi.unitn.it/maccari/CN

In the first case devices such as the TP-Link TL-wr841nd3

are modified using outdoor antennas, powered over Ethernet

and enclosed in a plastic box. This is a low cost solution, easy

to deploy since it relies on omnidirectional antennas that do not

need to be aligned. The drawbacks are short ranges, higher in-

terference, and a lower throughput.

In the second case devices such as the Ubiquiti nanostation4

are used. They have embedded panel antennas with a beam-

width of 40 degrees or parabolic antennas with a beam-width

of 10 degrees. This second solution needs more expertise to

be installed, but guarantees longer ranges and higher bit rates.

Using directional antennas, it is often necessary to install more

than one device to connect to neighbor nodes. Each device is

connected to the others via Ethernet; this configuration is called

a super-node. A super-node implements cross-AP routing and

maintains a large horizontal ‘virtual’ coverage angle while fea-

turing long ranges and high bit rates.

The communication technology used is a mixture of IEEE

802.11g/a/n standards with preference for 802.11n to achieve

higher bit rates and use the 5GHz frequency that is generally

less crowded of consumer devices.

Each WCN or user, decides what is the best Operating Sys-

tem (OS) for the nodes, and the choice depends on many fac-

tors. As a general rule, using the OS shipped with the device

has higher stability and better performance due to a better inte-

gration with the hardware. As a drawback it may not allow the

users to modify the routing protocols or use the ad-hoc mode.

2.2. The OLSR routing protocol

Some comprehension of the OLSR protocol is needed to bet-

ter understand the remaining of the paper. Since OLSR is well

known and described in the literature [20], we give just a brief

description of its principles. OLSR is a link state protocol based

on Djikstra algorithm, where only bi-directional links are in-

cluded in the link set, and they are discovered using a “hello”

procedure that pairs beacons, called HELLO messages, broadcast

by each and every node in the network.

Let’s now introduce some specific notation. In a network N

each node j has a set of one-hop neighbors N1( j) reachable with

a direct link and discovered with the hello procedure. Nodes are

included in N1( j) only if they have proper symmetric links. Ev-

ery node j also has a set of two-hop neighbors N2( j) reachable

through some node i ∈ N1( j) with exactly two hops (by con-

struction N1( j) ∩ N2( j) = ∅).

N1( j) and N2( j) are built as follows: every node j period-

ically sends an HELLO message to build the knowledge about

the 1-hop neighborhood. Furthermore, HELLO messages con-

tain the IP addresses of every node in N1( j). Through the HELLO

messages of its neighbors, at steady state, j has the full knowl-

edge of N1( j) and N2( j).

Node j elects, among the nodes in N1( j), a set of MPRs M( j).

M( j) satisfies the following condition: every node in N2( j) must

have at least a symmetric link towards a node in M( j). Thus if

3See www.tp-link.com/en/support/download/?model=TL-WR841ND
4See www.ubnt.com/airmax
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i ∈ M( j) it “covers” some of the nodes in N2( j): M( j) com-

pletely covers N2( j). When j selects one MPR i it informs i

that it has become one of is MPR selectors. Each MPR starts

behaving as follows:

• It periodically generates Topology Control (TC) messages.

A TC contains the list of the IP addresses of its MPR se-

lectors;

• It rebroadcasts the TCs received from its selectors.

TC messages contain an approximation of the local topology

around an MPR and are received by all the nodes, given the

construction procedure of N1( j), N2( j), and M( j). In this way,

each node has enough information to compute the shortest path

route to any other node. Since only MPR nodes retransmit the

TCs, TCs will reach all the nodes in the network using a fraction

of re-transmissions compared to plain flooding. Minimizing the

size of each M( j) is thus important to minimize the union of all

the M( j), which in turn minimizes the number of generated and

forwarded TC messages.

In the network under consideration OLSR is configured to

use a quality metric on links: the Expected Transmission Count

(ETX) metric. ETX estimates the average number of times a

packet needs to be transmitted to reach a neighbor, taking into

account losses due to collisions and interference. Since the

timer used between every HELLO message is known, each node

j estimates the number e of HELLO messages that it should re-

ceive from one neighbor i in a given time window. Node j

counts the number r of HELLO messages actually received from

i in the window and specifies in its HELLO messages the ratio

r/e. The value r/e is called the link quality (LQ) of the link

from i to j. Node i will do the same, so that node j knows

both the LQ value and the reverse value (neighbor link quality,

NLQ). Since any unicast transmission in 802.11 requires a data

frame and an ACK in the opposite direction, the probability of

successfully sending a packet is approximated by LQ × NLQ.

The average number of frames needed to successfully send a

packet is thus estimated as ET X =
1

LQ × NLQ
. MPRs add to

the TC messages the ETX for each of their selectors. If ETX is

used, the minimum cost route is computed with Dijkstra’s al-

gorithm on a weighted graph. Since TC messages contain the

ETX metric only for the links between an MPR and its selec-

tors, j has only an approximated knowledge of the network. In

practice, MPRs hide the presence of some links.

The advantage of using MPRs to reduce overhead, as well

as the utility of the ETX metric is hotly debated among OLSR

users. Without entering the debate, we note that ETX is a very

crude metric and it is estimated on short messages sent in broad-

cast, i.e., at the minimum physical transmission speed, which

means that ETX is hardly representative of the actual quality of

the unicast link between two nodes. It is instead meaningful to

estimate the diffusion of routing signalling messages.

2.3. The Data Gathering Process

The data collection relies on the information exposed by the

OLSRd daemon. For each community network we store snap-

shots of the topology as a weighted non-directed graph G(N ,L)

at regular time intervals. N is the set of all nodes, with super-

nodes counting as a single node, and L is the set of all links li j

as selected by OLSR. The weight cl∀l ∈ L is either 1 for mini-

mum hop routing or the OLSR ETX metric measured on l. Let

Pi, j be the best path from node i to node j as selected by OLSR

and

w(Pi, j) =
∑

l∈Pi, j

cl (1)

be its cost or weight.

In all the networks, OLSR is configured to force each node

to select all its neighbors as MPRs. As a result every node is

an MPR and thus every node has a complete knowledge of the

topology. To know the entire topology, it is sufficient to extract

information from one node. The OLSRd software daemon can

be configured to export the network topology, and all the net-

works publish this information. Appendix A describes in detail

how the data is collected and what pre-processing is applied

to it to make the topological description of the networks more

meaningful.

FFGraz FFWien NNX

first sample 01/07/14 01/07/14 01/14/14

last sample 01/13/14 01/13/14 01/20/14

samples per day 144 288 288

samples time interval 10 min 5 min 5 min

Table 1: Summary of the data-sets collected

The data collection process is performed by a daemon writ-

ten in the Python language that downloads new topologies in

real time and saves them in an SQL database. As we already

mentioned, the source code is published as Open Source, and

the database as Open Data, so that any researcher wishing to

use the data used for this paper is free to access it.

The data has been collected in a period of one week for each

network, in Table 1 we report a summary of the data collected

for each network. The number of samples of FFGraz is smaller

due to the larger sampling period, so that for a one-day obser-

vation we have 288 samples for FFWien and NNX and 144 for

FFGraz.

3. Main features of the networks

Table 2 shows the key features of the networks. We can note

that the three networks are different, but share some topolog-

ical characteristics. The NNX network is the smallest of the

three, FFGraz is the one with the highest density (the density

of a graph G(N ,L) is defined as δ =
2||L||

||N|| ∗ ||N − 1||
). The

density in a graph with constant connectivity degree decreases

with the number of nodes, so even if NNX has a smaller average

degree compared to FFWien, it has a higher density. The pro-

portion between leaf nodes and non-leaf nodes is similar in the

three networks. Another measure of interest is the average local

clustering coefficient of the network (CC1), that expresses the
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FFGraz FFWien NNX

av. number of nodes 144 236 131

av. number of links 207 421 153

density δ 0.020 0.015 0.017

average degree 2.88 3.63 2.35

leaf nodes 63 (43%) 77 (32%) 51 (38%)

average ETX 2.0 1.46 1.24

average CC1 0.1934 0.2358 0.0347

Table 2: High level features of the networks under analysis

local density of links around a node. The local clustering coef-

ficient of node i with one-hop neighborhood size ni = |N1(i)| is

defined as:

CC1(i) =
2|{lk, j : k, j ∈ N1(i) ∧ lk, j ∈ L}|

ni(ni − 1)
(2)

In average, Ninux has a much smaller CC1 compared to Funk

Feuer Graz and Funk Feuer Wien.

3.1. Time Evolution of the Networks

During the observation on the whole week we measured only

a small fluctuation in the number of nodes and in the number of

links, mainly due to a small subset of leaf nodes with instable

links that periodically exit and enter the main connected com-

ponent of the network. This is reported in Fig. 1 where one

snapshot per hour for the full week is reported. Note that the

fluctuations of leaf nodes/links (the upper plot) have a marginal

impact on topology and routing.

Fig. 2 reports the persistence of each link of the networks,

that is, the fraction of snapshots over the total for which the link

has been present in the network. From this data we removed the

links that have a persistence smaller than 1%. This is to avoid

to consider sporadic links generated by test devices or tempo-

rary changes in the nodes configurations. There is a difference

among the networks, while NNX shows a very high persistence

for the majority of the links, FFWien and FFGraz present more

temporary links. Still, in both cases there is a large core of links

that is present in all the snapshots.

The fluctuation of the number of nodes and links does not

impact the macroscopic routing characteristics of the topology.

The reason is that fluctuations normally happens in marginal

nodes and links, so that the average length and cost of the short-

est paths are not influenced. This observation is reported in

Fig. 3, together with the average ETX, which doesn’t vary sig-

nificantly, either.

Fig. 4 reports the clustering coefficient of each network.

Sect. 5 discusses how CC1 directly influences the robustness of

the networks.

Since the network features are stable, from now on we limit

the analysis to data relative to one day of observation, in order to

reduce the effects of fluctuations and simplify the interpretation

of results. Since the full data-set is available on-line, all the

results are reproducible also for other time-periods. We have

observed some other days obtaining consistent results.
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Figure 1: The number of nodes, leaves and edges for the three networks during

the whole week.
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Figure 2: Persistence of the links for each network

3.2. ETX and Degree Analysis

Fig. 5 shows the average degree distribution of the three net-

works. For each node the degree is averaged over all the snap-

shots and rounded to the closest integer. The figure reports also

the power law and exponential curves that best fit the points

(using minimum mean square error). Since the number of sam-

ples and the dimension of the network are not large enough to

compare it with existing literature on power-law networks, we

do not indulge in the analysis of the degree distribution; we

just observe that qualitatively the distributions are very skewed.

This is not surprising also considering the results on another

WCN presented in [13].

Fig. 6 shows the empirical CDF of ETX for all the links and

all the snapshots. A large portion of the links have an ETX≃ 1.

Independently from the network the distributions have a long

tail of higher values, but the slope is different. Fig. 7 reports the

average ETX for every link computed on all the snapshots. In
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Figure 5: Degree distributions with exponential and power law fitting curves

0 10 20 30 40 50
Snapshot

1.0

1.5

2.0

2.5

ET
X

FFGraz ninux FFWien

4.5

5.0

5.5

6.0

R
ou

te
 L
en

gt
h

5
6
7
8
9
10

R
ou

te
 W

ei
gh

t

Figure 3: Average ETX value, route length, and route weight for the three

networks during the whole week
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Figure 4: Clustering Coefficient for the three networks during the whole week

Ninux it has a smaller range compared to Funk Feuer networks.

In all networks and all links ETX is relatively stable: the av-

0 2 4 6 8 10
ETX

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit
y FFGraz

ninux
FFWien

Figure 6: ECDF of the ETX value for the three networks
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Figure 7: Average ETX of each link in the three networks (links are ranked by

ETX)

erage standard deviation of the ETX on each link is less than

16%, 10% and 7% for Funk Feuer Graz, Funk Feuer Wien and
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Ninux respectively. This actually contradicts the common as-

sumption that in WCNs the links are unstable and their quality

is highly variable.

In the past, due to the unavailability and price of devices, the

networks were set-up using omnidirectional antennas, and ad-

hoc wireless mode. This allowed maximum flexibility, almost

no planning, but it also yielded poor performance and high in-

terference. Today, a large number of nodes are equipped with

directional antennas, and the super-node configuration (see Ap-

pendix A) is used to enlarge the coverage angle of each node.

In some cases the original firmware is not changed on the radio

device, and master-client configurations are used. This requires

some effort in network planning, but it also allows the use of

proprietary extensions that further increase the performance of

each link. In the case of Ninux we verified these assumptions

directly with people from the WCNs that confirmed that the

majority of the nodes are configured to have one link per each

radio.

We note some differences. Ninux has the best average qual-

ity, and more than 90% of the links have ETX≤ 2, while Funk

Feuer Graz has the highest average ETX and the highest stan-

dard deviation per link; it is the one with the highest density,

suggesting that in Funk Feuer Graz it is more common to to use

the same device for more than one link.

4. The Routing Layer

Once the weighted network graph is known, we can compute

all the shortest paths from any couple of nodes in the network.

Since every node is an MPR this is the same information that a

node in the network uses to compute its routing table.

Fig. 8 reports the distribution of the paths’ weight w(Pi, j)

computed both with a simple hop-count metric (cl = 1 ∀l ∈ L)

and considering the ETX metric as OLSR does. The graph is

based on all the routes computed on all the snapshots of a one-

day data-set. w(Pi, j) is quantized to integer values for readabil-

ity.

Funk Feuer networks have the mode at 5 hops, while Ninux

despite being the smallest of the three has the mode at 6 hops

(this can be explained observing that it is the network with the

smallest average degree). The difference between the curves

representing length and weight can be better appreciated look-

ing at the cumulative distribution. In Funk Feuer Wien and

Ninux the curves are very close to each other, while in Funk

Feuer Graz the difference is much more evident. This shows

that the highest quality of the links in Funk Feuer Wien and

Ninux is directly reflected in the paths’ weight w(Pi, j) computed

on ETX. Notice that Funk Feuer Graz features a very different

distribution of w(Pi, j) computed on ETX compared to the other

networks. The reason lies in the particular topology that leads

to some nodes with high centrality but bad links and will be

more clear after the discussion in Sect. 5. Fig. 10 shows a snap-

shot of the Funk Feuer Graz topology where, albeit only with a

trained eye, this somewhat pathologic situation can be seen.

Fig. 9 reports boxplots of w(Pi, j) ∀i, j based on ETX grouped

by number of hops, and computed in each network, for each

Figure 10: Compressed Funk Feuer Graz topology, the number in circles indi-

cates the number of attached leaves. The density of the link color is proportional

to its goodness (light blue = bad link). 3 clusters can be identified, two of them

connected with weak links.

snapshot. The boxplots show some intuitive but interesting re-

sults. For the FFWien and NNX networks the median of the

weights (the red line in the box) is very close to the minimum

value (the bottom whisker). Also, the first and third quartile (the

boxes) are close to each other, which means that more than 75%

of the routes of the same length have a very similar behaviour.

In FFWien with routes longer than 6 hops the upper whisker

starts diverging from the median, indicating a higher variance

of w(Pi, j). This is not evident in the Ninux network. In FF-

Graz there are two separate effects, the first one is that even for

shorter paths the boxes are much wider than for the other net-

works, the second is that, due to the particular topology of the

network, the variance of w(Pi, j) is not monotonic.

As a concrete application of this analysis, imagine that a cer-

tain service is placed on a single node i in the network, and

must be reached by any other node j, for instance, a VoIP Bor-

der Media Gateway. The weight w(Pi, j) influences the service

quality since it is an estimate of the average number of wireless

frames that need to be sent along the path for the packet deliv-

ery. In Ninux if i is chosen to be at an average distance of 6 hops

from any j (the mode of the route length as seen in Fig. 8c) the

perceived quality of the service will be similar for the large ma-

jority of nodes since the boxplots for length 6 is narrow. This

is not true for FFGraz, for which, among the routes that have a

length 5 (the mode for FFGraz) the distribution of the weights

is much wider. Thus the perceived quality of the service will

largely differ depending on the position of j. Since the average

distance of i from any node j can not be arbitrarily reduced, the

only solution to have a more homogeneous quality is, if possi-

ble, to use two servers, thus doubling the effort. Other similar

issues will be discussed in Sect. 5.

4.1. Analysis of the Multi-Point Relays

The distinctive feature of OLSR, and one of the most de-

bated, is the way MPRs are selected [16]. We introduce some
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Figure 8: Empirical distribution (solid lines, left y axis) and ECDF (dashed lines, right y axis) w(Pi, j) based on hop count (green/thin line) and ETX (blue/thick line)
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Figure 9: Boxplots of the distribution of w(Pi, j) vs the number of hops in the path; boxes represent the 1st and 3rd quartile, the whiskers are set to 1.5 times the Inter

Quantile Range. X axis reports also the percentage of routes with the corresponding length

notation to further discuss this subject. Let j be a node of the

network, N1( j) is its neighbors’ set and M( j) ⊆ N1( j) is the set

of MPRs chosen by j, Mg is the union of all M( j); S g = ||Mg||.

S (i) is the selector set of MPR i and the symbol j → i means

j ∈ S (i).

As a general policy, S g should be small, since every MPR

generates signalling that is propagated to all nodes. The heuris-

tic proposed in the OLSR RFC tries to minimize each M(i),

and it has been shown that it produces results close to the lo-

cal optimum in dense scenarios [20, 21]. Minimizing also the

intersection of each M(i) reduces S g even further [19]. Com-

pletely decoupling the choice of M(i) from the links’ quality

may lead i to choose an MPR j even if the ETX on the link is

high (bad link). This has two drawbacks. The first is the poten-

tial computation of sub-optimal paths. As each node has only

an approximated view of the network based on HELLO and TC

messages, an Mg built ignoring quality metrics may hide (as we

explained in Sect. 2.2) links with high quality, and lead to com-

pute sub-optimal routes (we call this conjecture [A], as it is one

of the assumptions upon which many decisions and choices are

taken in tuning OLSR, but rarely verified). The second is that

the robustness of the diffusion of signalling may be reduced. In

fact, i may not receive TCs from j and thus have outdated infor-

mation on the network topology (conjecture [B], also this one

an assumption often made, but rarely verified).

The OLSRd community has initially implemented its own

quality-aware MPR selection algorithm that chooses for each

2-hop neighbor the 1-hop neighbor that maximizes the quality

on the two-hop path, an idea initially introduced in [22]. Con-

sequently Mg in a dense network constantly changes, since it

doesn’t depend on the links availability, that is assumed to be

slowly changing, but on the link quality that can be much more

variable. A fast changing Mg can have two bad consequences.

The first one is that also the routing may be changing frequently.

When Pi, j changes, even if w(Pi, j) remains similar, other quality

parameters of the route can vary (for instance, ETX doesn’t esti-

mate the capacity of a link). The protocols and the applications

at the upper layers can be highly impacted by such variations.

The second one is that every time there is a change in Mg the

network needs some time to propagate this information with

7



HELLO and TC messages. When the information propagation

time becomes comparable to the time between changes there is

a high risk of network instability. The result of a large period of

trial and error [23] was that the developers of OLSRd, as a de-

fault configuration, force every node to select all its neighbors

as MPR, in practice renouncing to the optimization introduced

by the MPRs. As said, this is also the approach used in the three

networks under evaluation.

With the data-set available we can evaluate the impact of

different choices of MPRs. The introduction of quality-aware

MPRs selection raises many issues and gives many choices,

which are often used arbitrarily. We want to study if conjec-

tures [A] and [B] justify the use of quality metrics or not and

how different MPRs selection influences the topology quality.

We call M
q
g the set of MPRs chosen with the link-quality maxi-

mization metric, and S
q
g its size.

4.2. Overhead reduction

Since we have the full topology and all cl we can compute

off-line Mg and M
q
g reproducing both metrics. Figure 11a and

11b report S g and S
q
g vs time (snapshots) for a one-day subset

and show two relevant facts: i) S
q
g largely exceed S g; and ii) S g

for FFGraz is smaller compared to NNX, but this is the opposite

for S
q
g. The reason for ii is that FFGraz is larger and denser

NNX, so that the S g reduction achievable on FFGraz is higher

(the MPR choice with the RFC heuristic is more efficient in

dense networks). In Ninux the physical topology and the low

density strongly influences the choice of Mg, and S g cannot be

reduced.

To quantify how this impacts the signalling overhead,

Fig. 11c reports Lt, which estimates the normalized load per

link per generated TC:

Lt = El

[

ρl
t

]

; l ∈ L (3)

where El[·] is the average over all links and ρl
t is the total num-

ber of TCs transmitted on link l in each TC interval. It is clear

that reducing S g is fundamental to reduce the signalling over-

head. FFGraz has an average of 10% more nodes than NNX,

but also 35% links more than NNX, this explains why FFGraz

has less TC messages per link.

This estimation does not consider TC aggregation or fish-eye

strategies, that can reduce the global amount of TC messages re-

gardless of MPR selection strategy. Note also that Fig. 11c only

reports TC messages, but MPRs are used to re-broadcast any

other signalling messages, such as HNA messages, or messages

needed to spread the association between a node and a list of its

available services. Thus, it is of paramount importance to re-

duce the number of MPRs to keep the signalling bearable when

the network size grows.

4.3. Route quality

Let’s now analyze the impact of MPR selection on route cal-

culation. The base of conjecture [A] is that a node i receives

topology information from HELLO and TC messages. Thus, it

has only an approximated view of the network. We want to

quantify how much this can negatively influences routing.
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Figure 11: a) S g and S
q
g. c): TC load Lt (LSR is OLSR without MPR optimiza-

tion, lq uses link-quality based MPR computation)
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Define Gi(N ,L
′) as the approximated view of the network

graph G by node i. Gi has the same number of nodes of the

original graph G but has a smaller number of edges. L′ ⊆ L

contains the edges lk j for which at least one of the following

condition holds:

1. k = i, or j = i

2. k ∈ N1(i) or j ∈ N1(i)

3. k ∈ Mg and j→ k or j ∈ Mg and k → j

In practice, each node i knows only the links to its neighbors,

the links between its 1-hop neighbors and its 2-hop neighbors

and the link between any MPR in the network and its selectors.

For this analysis the MPR are chosen using the heuristic from

the RFC, without considering link qualities.

Given Gi we can compute the routing table Ri( j) for every

node i, and hence, for every (i, j) in N × N compute the effec-

tive path P′
i j
= {i = p0, p1 = Rp0

( j), p2 = Rp1
( j) . . . j} that pack-

ets follows from i to j. Comparing w(P′
i j

) with w(Pi, j) gives a

measure of the real impact of conjecture [A].

Figs. 12a, 12b, and 12c report w(P′
i j

) with w(Pi j) for all pairs

(i, j) averaged on all the snapshots and ranked by their weight.

Surprisingly enough, the difference is extremely limited, in

98% of the samples the same routes are chosen and the curves

overlap. This can be explained observing that even if node i

doesn’t have enough information to compute the globally best

route, it has enough information to send the packet to the most

convenient next-hop. Then, at any hop, the node that is rout-

ing the packet has a full knowledge the graph up to its 2-hop

neighborhood, and can choose again the most convenient next

hop.

This result is particularly relevant considering that OLSR2

[24], which is currently in its final stage of standardization

distinguishes between MPRs used to broadcast signalling and

MPRs used for routing. This choice was taken because of con-

jecture [A]. At least for these three networks, and we believe

for WCNs and meshes in general, this difference doesn’t hold:

maintaining two sets of MPRs may be an unjustified overhead.

OLSR is still one of the most used protocol in WCNs, even if

the communities tried to mitigate its limitations creating new

protocols, such as BATMAN, that is also widely used [23].

BATMAN, being a distance-vector protocol generates smaller

signalling messages, but it doesn’t give a full view of the net-

work to each node. We believe that the data we gathered show

that a correct implementation of OLSR can greatly reduce the

overall signalling, while maintaining stability properties. We

also believe that, even if this information is currently not used,

the knowledge of the full network topology (or at least of an

approximated one) can be beneficial to fine-tune the protocol

properties. For instance, the frequency of the signalling could

be raised for nodes that prove to be central in the topology, and

lowered for nodes that are in the periphery. The next Section

shows how to compute centrality metrics within OLSR, some-

thing that would be much more difficult to do with a distance-

vector routing protocol.
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Figure 12: Route weights with and without the approximation due to MPRs
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5. Centrality and Robustness Metrics

In graph theory, centrality metrics have been largely used to

identify the properties of nodes. In particular, in social science

the centrality of a node is often used to determine the influence

that a person has on the other participants of the social network.

In the context of wireless networks, centrality has not received

much attention up to recent times [14, 15].

The concept of centrality in a specific graph is not unique, in

this paper two definitions of centrality are considered, shortest

path group betweenness centrality Csp, or simply betweenness,

and group closeness centrality Cc (definitions can be found

in [25]). Computing group centrality is a hard task, so that

heuristics must be used for networks of the size we are con-

sidering.

Robustness metrics are used, instead, to study the robustness

of the network against nodes or link failures. We will quantify

the robustness of the network graph, but also introduce an ini-

tial evaluation of how the introduction of MPRs can impact the

diffusion of TC messages.

5.1. Centrality Metrics

The Csp(k) of node k is defined as the fraction of shortest

paths Pi, j ∀i, j ∈ N passing through k. If the traffic matrix

is uniform or unknown, Csp(k) is an unbiased estimator of the

fraction of traffic that a node will route. If one wants to place

a traffic analyzer in the network (for instance an Intrusion De-

tection System (IDS)), the node with the highest Csp is the best

choice to intercept the highest fraction of the overall traffic.

The closeness centrality Cc(k) of node k, instead, is an esti-

mation of the cost needed to spread an information from k to

all the nodes in the network. The definition that best serves the

purposes of this paper is that Cc(k) is the average distance from

k to any other node i in the network5. If one wants to place a ser-

vice in the network (a web server, a streaming server, etc.) the

node with the lowest Cc is the best choice to minimize its dis-

tance to any node in the network. For both centrality measures

the weighted graph is used, so that distances are weighted us-

ing ETX; thus, Cc(k) is the average number of wireless frames

that will be needed to successfully send one IP packet from any

node i to the service placed on k (or vice versa).

The definition of both metrics can be extended to groups of

nodes. The group betweenness of a group γ of nodes is defined

as the fraction of Pi, j ∀i, j ∈ N passing through at least one

node of γ. Again, if one wants to place an IDS on a group

γ of nodes in order to maximize the overall fraction of traffic

analyzed, the group with the highest Csp(γ) is the best choice.

The closeness group centrality of γ is the average of the min-

imum shortest path from any node i to any of the nodes in γ.

Among all the groups of the same size, the more central one is

the one with the lowest Cc(γ).

5Closeness centrality is generally defined as the inverse of Cc(k). We prefer

to use Cc(k) since coupled with the ETX metric, its value has a direct correspon-

dence with the average number of wireless frames sent along the path from any

node i to k.

Following the previous example, if a service can be repli-

cated on a set γ of nodes, then the group with lowest Cc(γ) is

the best choice. As a further example imagine that Cc(γ) can be

used as a metric to place Internet gateways. The group with the

lowest Cc(γ) is the group that will give the best average Internet

connectivity to the nodes in the network. Since the ETX metric

of a link is an estimation of the number of frames needed to

successfully deliver an IP packet on that link, Cc(γ) is directly

proportional to the average load (in terms of number of frames)

on the network generated by the traffic directed to the Internet.

This is of particular importance also for a commercial Wireless

ISP that needs to design a mesh network to deliver internet con-

nectivity. The number and the position of the gateways in the

network must be decided in order to distribute the load on the

whole topology and reduce the chances of creating bottlenecks.

5.1.1. Computing Group Centrality

Finding the group γ with the highest group betweenness has

been shown to be an NP hard problem while a brief analysis of

the literature did not produce any complexity estimation for the

closeness group centrality as we defined it.

The size of the networks under consideration does not al-

low the use of an exhaustive search on all the groups of size

k to find the global optimum, thus we implemented a greedy

algorithm we call GR1 to estimate the best group. At each

step h, given the solution computed at the previous step γh−1,

for every i in N , GR1 composes a new set γi
h
= γh−1 ∪ {i}

and computes µi = Csp(γi
h
) − Csp(γh−1). It ranks all the γi

h
for

the corresponding µi and selects the one with highest µi. The

difference from the optimal Csp(γo) and Csp(γk) produced by

GR1 has been shown to be lower bounded by a constant in the

general case [26], moreover GR1 performs particularly well on

scale free networks [27]. Some of our networks show a scale

free behaviour, so we chose this greedy algorithm to compute

the best centrality measures. Nevertheless, since our between-

ness centrality measure is slightly different from the one used in

[26] and closeness centrality was not considered in that work,

we validated the greedy algorithm with a GRASP (Greedy Ran-

domized Adaptive Search Procedure) approach, and in partic-

ular, with a parallel multiple-walk independent-thread proce-

dure [28] that we called GR2. GR2 works as GR1, but instead

of always choosing the γi
h

with highest µi it selects a restricted

candidate list of the first 5 and randomly picks one of them,

with probability proportional to µi. We ran GR2 with 16 in-

dependent parallel processes for each network graph and chose

the best solution. If the problem we want to solve has many

local optimum values far from the global one, GR2 should per-

form substantially better GR1. Instead we verified that GR2

produces a negligible improvement in both centrality metrics,

less than 1% on average compared to GR1. This confirms that

on the topologies of our data-set GR1 produces solutions very

close to the optimum.

Fig. 13a shows the group betweenness centrality of groups

up to size 5. It is clear that a motivated attacker, controlling

a few nodes is able to sniff a very large portion of the traffic.

In light of the recent Datagate privacy scandal, WCNs have at-

tracted the attention of mainstream media as a bottom-up alter-
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Figure 13: Group Betweenness and closeness Centrality of the best groups with

size from 1 to 5

native to avoid privacy infringement6. Our analysis on real net-

works shows instead that using a peer-to-peer technology does

not guarantee by itself to have networks that are robust to inter-

ception.

6See the New York Times, “Home Wireless Network Keeps the Snoops

Away”

http://www.nytimes.com/2013/11/14/technology/personaltech/

homemade-wireless-networks-keep-the-snoops-away.html?smid=

pl-share&_r=0

The other side of the coin is that a distributed monitoring sys-

tem placed on a small subset of nodes will be able to intercept

and analyze the majority of the traffic of the network, and also

to counter external attacks to privacy.

Fig. 13b instead shows that with a careful choice of γ the

average network load generated by traffic directed to the gate-

ways or to a set of servers can be cut down significantly. Re-

call that with OLSR, each node exposes the private networks

it is connected to using specific messages (HNA messages). By

extension, it can also export the offered services (as in [29]).

OLSR thus offers an easy and efficient way (since it exploits

the MPR system) to spread the knowledge that a particular ser-

vice is present in a set γ of nodes. Every other node is thus able

to use the service on the host in γ that is more convenient to

reach.

5.2. Robustness

The robustness of a graph is an estimation of the impact of

failures on the graph connectivity, and can be measured with

metrics introduced in [30] and based on percolation theory.

Given a connected graph G(N ,L) we remove a set F made

of f random edges and we call G′(N ′,L′) the main connected

component of the resulting graph. When an edge is removed

the connectivity of the graph may change, meaning that some

nodes can be isolated. The robustness of G(N ,L) is the ra-

tio
||N ′ ||

||N||
, averaged over a sufficient number of random choices

of F. The rationale behind this metric is that if the robustness

stays close to 1, the network is still functionally behaving as

a network when subject to f uncorrelated failures. Instead, if

it drops to values close to 0, the network is fragmented into a

multitude of isolated networks. In practice, there is no network

anymore. The same measure is repeated for growing values of

f .

We compute the robustness of each snapshot with 30 ran-

dom choices of F and growing value for f . Instead of express-

ing the robustness against the absolute number of failures, it is

convenient to express it against relative number of failed links,

so that different networks can be compared. Since the number

of edges in each snapshot (even of the same network) lightly

varies, we quantize the relative number of failures to a percent-

age: k = ⌈100 ∗ f /||L||⌉. Then for each network we call r(k) the

robustness averaged over every snapshot.

Since ETX expresses the reliability of a link, instead of

choosing the edges with an uniform distribution the probabil-

ity of being removed is proportional to the normalized value of

ETX.

We choose to compute the robustness in four different ways:

1. On the full graphs;

2. On the full graphs, but choosing the links to purge only

within the core network, i.e., only the links that connect

non-leaf nodes;

3. On the MPR sub-graph Gm(N ,Lm) in which a link exists

only from a selector to its MPR. MPRs are chosen with the

RFC heuristic;

4. On the MPR graph G
q
m(N ,Lq) built as the previous one

but with MPRs chosen based on link quality.
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The last two ways affect the signalling network only. To better

explain this we refer to Gm but the considerations are the same

for G
q
m. When a node m that is not an MPR generates an HELLO

packet to show its presence, this information is distributed to

the whole network by at least one MPR i for which m → i.

Similarly, when a TC message is produced by i, the information

it carries moves from i to any other MPR j for which i → j,

and this is repeated at every hop. If one link is broken, TCs can

still arrive to every destination using alternative paths. But, if

one or multiple failures make Gm disconnected, the network is

logically broken. If this condition is not transitory, the routing

needs to be reconfigured and temporarily some routes will be

missing. Computing r(k) on Gm, we give an estimation of how

robust is the delivery of routing information on Gm that directly

depends on S g and S
q
g.

Fig. 14a shows the robustness of the network and of the net-

work core. First of all we can observe that all the networks

are quite robust. If we remove 10% of links, that is a relevant

portion of the links, robustness is higher than 0.9. Second, ro-

bustness is higher for networks with higher average degree, and

this is particularly evident between FFGraz and NNX. Even if

their size is similar, in NNX, the choice of minimizing the num-

ber of links per device increasese the average quality per link,

but decreases the robustness.

There is a visible difference between the robustness of the full

graph and of the core graph. In all three cases, for low values

of k the core network is more robust that the full network, then

the two curves intersect. To understand this, consider that if we

remove a random link, if this link connects a leaf node ||N ′||

decreases by one unit. Instead, if the core network is well con-

nected, removing one link does not necessarily decrease ||N ′||.

Since FFGraz and FFWien have a higher degree than NNX the

intersection happens for higher values of links removed.

Fig. 14b presents the robustness of the MPR sub-graphs. It

is intuitive that Gm will be less robust than G
q
m since it has

a smaller Mg. For this reason we normalize the number of

failed links to the number of MPRs. Thus, we plot r(k′) where

k′ = ⌈100 × f /S g⌉, and r(k′′) where k′′ = ⌈100 × f /S
q
g⌉ in-

stead of r(k) respectively. This metrics express the robustness

normalized to the respective sizes S
q
g and S g, notice that k′ and

k′′ can be larger than 100, so that they are not normalized pa-

rameters strictly speaking, as they are referred to a number of

nodes and not to a number of links. As a result we see that

the curve referring to quality-based MPR selection (solid lines,

marked with “lq” in the figure legend) stays below the curve

referring to the standard RFC implementation. This is relevant

with respect to conjecture [B]: we can finally say that using the

RFC heuristic produces a small reduction in terms of robust-

ness, which is largely compensated, from a global management

point of view, by the reduction of MPRs, and consequently of

signalling, making quality-based MPR selection questionable.

Similarly, robustness can be evaluated against the failure of

nodes, simply considering a random set of f nodes, normalized

on the size of N . Fig. 15a and Fig. 15b show the robustness

of the network graph to the failure of nodes. We evaluate the

robustness against random failures and targeted attacks. In the

first case, the nodes are randomly removed from the networks,
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Figure 14: Robustness metric for link failures on the network graphs and on the

MPR sub-graphs with both RFC and ETX based heuristics

in the second, we start removing nodes from the one that have

the highest degree. This second case resembles the actions of

a rational attacker that wants to provoke the highest damage to

the network.

The graphs show that due to the high skewness of the degree

distribution, the networks are quite resistant to random failures,

but are pretty weak against targeted attacks.
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Figure 15: Robustness metric for node failures

6. Conclusions

Wireless Community Networks represent a thriving mix of

technical solutions and social participation. Their open nature

allows users and researchers to participate, experiment and col-

lect information on how the networks work. In this paper we

used the data collected on three large WCNs to study their main

topology features, the centrality of their nodes and their robust-

ness. We also used the data-set to investigate on the role of

MPRs in an OLSR-based network, something that, to the best

of our knowledge, has never been done on such a large scale.

The results show that, even with some differences, WCNs are

pretty stable networks, the average quality of the links is good,

and thus, the weights on the routes are close to their length in

terms of hops. We also showed that the use of MPRs can re-

duce the signalling, without a strong impact on the quality of

the routes.

WCNs are often perceived as a tool that users can build to

escape control and protect their privacy. We showed that the

structural properties of the networks alone do not make them

more robust against coordinated attacks, since the traffic is con-

centrated on a few important nodes (as we showed using cen-

trality metrics) and the connectivity relies on a few important

nodes (as we showed using robustness metrics).

A preliminary version of the data-set and of the code used

for the analysis is already available for public use and the pos-

sible falsification of our results. We are actively documenting

the code used and improving its usability and the access to the

database as full Open Data7.

Many further research topics can be explored on the data-set,

for instance, we plan to study the properties of the most cen-

tral nodes, verify how much they change with time and how

we can use heuristics to avoid the complex algorithms we have

used in our analysis. Central nodes may behave differently (for

instance, their signalling can be more frequent) and the rout-

ing protocol could take advantage of the knowledge of the full

topology, contrarily to what happens now.
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Appendix A. Data Collection Details

The OLSR topology can be biased by the choice of using

multiple devices per super-node. We call a device an embedded

system that includes at least a wireless and a wired interface.

A super-node is composed of multiple devices connected to the

same switch via the Ethernet interface.

Two example configurations of a super-node deserve to be

described, in order to better understand the data collection
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Outdoor
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192.168.1.1

10.1.0.5

192.168.0.3192.168.0.2
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Figure A.16: Two example super-node configurations, each super-node is made

of two devices.

phase. WCNs generally use two different addressing schemes

for the mesh network and for the home LANs inside each user’s

house. In Fig. A.16 we used 10.X.X.X/8 for the mesh network

and the classes 192.168.X.X/24 for the home LANs. In the

simplest case, each wireless and wired interface of a device in a

super-node is assigned an IP address in the class 10.X.X.X, and

wired interfaces also have an IP address in the 192.168.X.X

class. Each device runs its own instance of the OLSR rout-

ing protocol that manages both devices, making it practically

an independent node. The 192.168.X.X addresses are treated

from OLSR as private networks, that is, the OLSR protocol is

not running on those networks, but OLSR generates special sig-

nalling packets to let each subnet reach the others. The wired

interfaces are connected to a switch (normally placed directly

in the rooftop) that is also connected to a device in the home

of the user. This makes it easy to extend a super-node adding

further devices since no change needs to be done on the existent

ones. This configuration is used in node A in Fig. A.16.

Another configuration for super-nodes is to cable all the de-

vices to the same router. The devices are configured as stan-

dard 802.11 APs/clients and do not run OLSR. The traffic

coming from each device is isolated in the router using sep-

arated VLANs terminated on virtual interfaces on the router

which runs OLSR. This entirely masks the super-node structure

from the network. This configuration, at the cost of increased

configuration complexity, has two advantages: i) signalling is

reduced since only the router runs OLSR, and ii) the original

firmware can be left on the devices as long as it supports bridg-

ing and VLAN tagging. This configuration is used in Node B

in Fig. A.16.

From a routing point of view, there is difference in the two

configurations; in the first case, the super-node corresponds to

two different IP addresses in the network, with a wired link con-

necting them (thus, ETX will be fixed to 1). The resulting graph

G(N ,L) includes a clique of nodes with distinct IP addresses

and edge weights constantly set to 1. In the second, each super-
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node corresponds to only one host (with two different IPs).

We decided to merge super-nodes in one single logical node

as this is functional to our analysis and also more representative

of the network itself, for several reasons:

• The devices of a super-node all belong to the same person.

If he is an attacker he will intercept traffic from all of them;

• They are powered via the same source, connected to the

same switch and they share the physical installation, so

that failures due to physical damage, power outage or hu-

man errors are correlated;

• Since the first configuration (Node A in Fig. A.16) of

super-nodes is extremely inefficient, there are ongoing ef-

forts to gradually migrate to the configuration with an ex-

ternal router (Node B in Fig. A.16).

The process of merging super-node’s devices can not be ap-

plied using only data from the OLSRd daemon. Further infor-

mation must be gathered from distinct sources, and this pro-

cess was aided by the participants to the communities. For the

FFGraz network the naming style of each device is a domain-

like convention in the form “phisical-interface.device.node”.

This means that wifi0.device0.node0 and wifi1.device0.node0

are the first and second wireless interfaces of the first device of

the same node. Every 10 minutes FFGraz publishes the topol-

ogy using this naming convention. We are thus able to group

the interfaces and the devices corresponding to the same node.

FFWien instead exposes a JSON interface to the internal node

database. The presence of a centralized node database is com-

mon to many WCNs. It is used to monitor the evolution of

the topology and to publish the network map on the commu-

nity web server. Using the JSON interface we were able to map

each IP address to each node, and compact the devices on the

same node. For the FFWien network the data gathering process

is split in two phases, one is the collection (every 5 minutes) of

the OLSRd topology, and the second, once a day, is the access

to the JSON interface to do node merging. The Ninux network

currently does not expose a JSON interface but we had direct

access to the node database updated every 5 minutes. Directly

from the database we can access the topology, merge the nodes

and collect the ETX values for each link.

Currently, we are not able to access information on the po-

sition of nodes for all the networks. The interested reader can

find maps of the physical topology on the website of the three

networks8.

8See http://map.ninux.org/

https://karte.ffgraz.net/

https://map.funkfeuer.at/wien/
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