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Abstract. Sea-ice thickness on a global scale is derived from

different satellite sensors using independent retrieval meth-

ods. Due to the sensor and orbit characteristics, such satel-

lite retrievals differ in spatial and temporal resolution as

well as in the sensitivity to certain sea-ice types and thick-

ness ranges. Satellite altimeters, such as CryoSat-2 (CS2),

sense the height of the ice surface above the sea level,

which can be converted into sea-ice thickness. Relative un-

certainties associated with this method are large over thin ice

regimes. Another retrieval method is based on the evaluation

of surface brightness temperature (TB) in L-band microwave

frequencies (1.4 GHz) with a thickness-dependent emission

model, as measured by the Soil Moisture and Ocean Salinity

(SMOS) satellite. While the radiometer-based method looses

sensitivity for thick sea ice ( > 1 m), relative uncertainties

over thin ice are significantly smaller than for the altimetry-

based retrievals. In addition, the SMOS product provides

global sea-ice coverage on a daily basis unlike the altimeter

data. This study presents the first merged product of comple-

mentary weekly Arctic sea-ice thickness data records from

the CS2 altimeter and SMOS radiometer. We use two merg-

ing approaches: a weighted mean (WM) and an optimal inter-

polation (OI) scheme. While the weighted mean leaves gaps

between CS2 orbits, OI is used to produce weekly Arctic-

wide sea-ice thickness fields. The benefit of the data merg-

ing is shown by a comparison with airborne electromagnetic

(AEM) induction sounding measurements. When compared

to airborne thickness data in the Barents Sea, the merged

product has a root mean square deviation (RMSD) of about

0.7 m less than the CS2 product and therefore demonstrates

the capability to enhance the CS2 product in thin ice regimes.

However, in mixed first-year (FYI) and multiyear (MYI) ice

regimes as in the Beaufort Sea, the CS2 retrieval shows the

lowest bias.

1 Introduction

Sea ice affects many climate-related processes, such as heat

transfer between ocean and atmosphere or ocean circulation,

but also marine operations (Meier et al., 2014). For decades,

the variability and changes of the ice-covered region have

been routinely observed by satellite remote sensing of sea-ice

extent and area. However, the thickness of sea ice is a cru-

cial parameter for the ice mass balance and is more difficult

to observe. Recent satellite altimeter missions such as ICE-

Sat or CryoSat-2 (CS2) demonstrated the capability to pro-

vide Arctic sea-ice thickness and volume estimates (Kwok

et al., 2009; Laxon et al., 2013). They are used to measure

freeboard (Fb), the height of the ice or snow surface above

the water level, which can be converted into sea-ice thick-

ness assuming hydrostatic equilibrium. CS2 was launched in

2010 and was primarily designed to measure the thickness of

thick, perennial ice, but can also be used to retrieve first-year

ice (FYI) thickness (Laxon et al., 2013). Nonetheless, the re-

trieval method shows considerable uncertainties over thin ice
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Table 1. Summary of properties of input and output sea-ice thickness products in this study, including CryoSat-2 (CS2), SMOS, the weighted

mean (WM) and the OI product (CS2SMOS).

Product Temporal res. Spatial res. Coverage Notes and applicability

CS2 (monthly) 1 month 25 km Arctic wide For studies of multiyear ice and thick

first-year ice (> 1 m), high uncertainties

for thin ice and in the marginal ice zone,

constraints in regions where a snow cli-

matology is inadequate

CS2 (weekly) 1 week 25 km Gaps between

orbits, sparse at

lower latitudes

For studies of multiyear ice and thick

first-year ice (> 1 m) where measure-

ments are available, high uncertainties

for thin ice (< 1 m) and in the marginal

ice zone, constraints in regions where a

snow climatology is inadequate

SMOS 1 day 12.5 km Arctic wide For studies of thin ice (< 1 m)

WM 1 week 25 km Gaps between

CS2 orbits

For studies of multiyear ice and of thin

ice, where measurements are available

CS2SMOS 1 week 25 km Arctic wide For Arctic-wide studies on the entire

thickness range, uses optimal interpola-

tion

regimes and certainly in the marginal ice zones (Wingham

et al., 2006; Ricker et al., 2014). On the other hand, the Soil

Moisture and Ocean Salinity (SMOS) mission, launched in

2009, provides brightness temperature (TB) observations at

microwave frequencies (L band), which can be exploited for

thin ice thickness retrieval (Kaleschke et al., 2012).

Kaleschke et al. (2010) and Kaleschke et al. (2015)

demonstrated the complementary nature of the relative un-

certainties of CS2 and SMOS ice thickness retrieval meth-

ods. The CryoSat-2 sea-ice thickness product relies on accu-

rate measurements of the height of the sea-ice surface above

the water level, and therefore relative uncertainties are larger

over thin ice (< 1 m). In contrast, the SMOS sea-ice thick-

ness retrieval relies on the sensitivity of the brightness tem-

perature to sea-ice thickness. While accuracy is high over

thin ice, sensitivity gets lost over thick ice (> 1 m). More-

over, both sensor concepts have significantly different swath

widths and revisit times and therefore provide different up-

date rates of sea-ice thickness observations. Kaleschke et al.

(2015) suggest that due to their different spatiotemporal sam-

pling and resolution, and because of the complementary un-

certainty due to the fundamental difference of the radiometric

and altimetric measurement principle, a combination of both

products has the capability to reduce uncertainties in relation

to the individual products.

The spatial and interannual variability of sea-ice thickness

is driven by dynamics and thermodynamics (Zhang et al.,

2000; Kwok and Cunningham, 2016). For an accurate de-

scription of the Arctic sea-ice thickness distribution, it is nec-

essary that thick and deformed ice as well as thin ice regimes

are represented adequately. Moreover, particularly the forma-

tion of new thin ice during the freeze-up characterizes a large

area of the ice cover in autumn. In order to detect changes

and interannual variabilities in such areas, accurate thin ice

thickness estimates with high temporal and spatial resolution

are required.

Wang et al. (2016) evaluate six different sea-ice thickness

products, including SMOS and CS2, and find that all satellite

products as well as the Pan-Arctic Ice-Ocean Modeling and

Assimilation System (PIOMAS) overestimate the thickness

of thin ice compared to airborne laser altimetry retrievals of

NASA’s Operation IceBridge. The smallest bias of 0.26 m

over thin ice has been found when using the SMOS product.

Considering the complementarity of CS2 and SMOS re-

trievals and the need for a better representation of thin ice

regimes in global-scale sea-ice thickness data products, the

goal of this study is to provide a merged product of CS2 and

SMOS sea-ice thickness retrievals, which has the capabil-

ity to provide Arctic sea-ice thickness distributions over the

entire thickness range with reduced uncertainties. We also

aim for a weekly update rate of the merged product. This

ensures that we obtain a sufficient coverage of CS2 obser-

vations over perennial sea ice, while, at the same time, we

benefit from the daily update rates of SMOS observations

in order to capture ice growth rates in thin ice regions dur-

ing the freeze-up. We apply two different merging schemes.

The first is represented by a weighted mean (WM), based on

the individual uncertainties, which only provides estimates at

grid cells where weekly observations are available. The sec-

ond approach uses an optimal interpolation (OI) scheme for
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Arctic-wide estimates. Table 1 summarizes the input thick-

ness products and the merged products, their temporal and

spatial resolution, and coverage and applicability depending

on study purposes. In order to assess the improvement of the

merged products, we use airborne sea-ice thickness data and

compare them with co-located data of the merged products.

This paper is outlined as follows: in Sect. 2, we first

present the individual sea-ice thickness products derived

from CS2 and SMOS measurements, including a detailed de-

scription of input data and highlighting the complementar-

ity of both thickness products. Then, we present methods to

merge both sea-ice thickness data sets, based on a weighted

mean and an optimal interpolation approach. In Sect. 3, the

merged products are evaluated by a comparison with input

products and by a cross-validation experiment. In Sect. 4,

the merged products are evaluated using airborne electro-

magnetic (AEM) thickness sounding measurements. Finally,

conclusions are drawn in Sect. 5.

2 Data and methods

This section is structured as follows: first, the input data

(Sect. 2.1) are presented, and then the merging of weekly

CS2 and SMOS data by applying a weighted mean based on

the individual uncertainties with the product referred to as

WM is described (Sect. 2.2). Finally, the merging of weekly

CS2 and SMOS data by applying an OI scheme with the

product referred to as CS2SMOS is explained (Sect. 2.3).

2.1 Input data

We use the Alfred Wegener Institute CS2 product (proces-

sor version 1.2; Ricker et al., 2014; Hendricks et al., 2016)

and the SMOS sea-ice thickness retrieval from the University

of Hamburg (processor version 3.1; Tian-Kunze et al., 2014;

Kaleschke et al., 2016) as input ice thickness data. Auxiliary

data of ice concentration and ice type were obtained from the

Ocean and Sea Ice Satellite Application Facility (OSI SAF).

2.1.1 CryoSat-2 weekly sea-ice thickness retrieval

In the first step we use CS2 SIRAL level-1b orbit data files

that are provided by ESA. They contain geolocation infor-

mation and time of the Doppler beam formed radar echoes.

SIRAL is operated in two different modes over sea ice. The

synthetic aperture radar (SAR) mode covers major parts of

the ice-covered area, while the interferometric mode (SIN)

is applied mostly in coastal areas. Both modes serve for re-

trieving ice thickness but must be processed separately, as

we discard the phase information of SIN waveforms (Kurtz

et al., 2014).

The radar echoes (waveforms) are processed for each CS2

orbit according to Hendricks et al. (2016) and Ricker et al.

(2014). A 50 % threshold-first-maximum retracker (Ricker

et al., 2014; Helm et al., 2014) is used to obtain ellipsoidal

Figure 1. Example of weekly input data grids for November 2015

and March 2016. (a) Gridded weekly CryoSat-2 retrievals. (b) Grid-

ded weekly mean SMOS retrievals derived from daily data. SMOS

data are rejected over multiyear ice and when uncertainties are more

than 1 m. The background fields indicate first-year and multiyear ice

coverage.

surface elevations (L), which are corrected for geophysical

perturbations like tides and atmospheric effects (Ricker et al.,

2016). Geoid undulations and the mean sea-surface height

(MSS) are removed by subtracting the Danish Technical Uni-

versity version 2015 (DTU15) MSS height:

LMSS = L − MSS. (1)

Ice and water are spatially separated by the pulse peakiness

of the CryoSat waveforms. This is based on the fact that

radar returns from surfaces that contain open water leads,

i.e., openings in the ice pack, appear as specular echoes and

can be separated from diffuse echoes that contain reflections

from sea ice only (Laxon et al., 2003). The lead elevations are

used to derive the instantaneous sea-surface height anomaly

(SSHA) by interpolation. Finally, the SSHA is subtracted

from the ice surface elevations to retrieve the freeboard (Fb):

Fb = LMSS − SSHA. (2)

Fb is corrected for a lower wave propagation speed inside the

snow layer and can be converted into sea-ice thickness (Z) by

assuming hydrostatic equilibrium (Laxon et al., 2003):

Zcs2 = Fb ·
ρW

ρW − ρI
+ S ·

ρS

ρW − ρI
, (3)

www.the-cryosphere.net/11/1607/2017/ The Cryosphere, 11, 1607–1623, 2017
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Figure 2. (a) Typical monthly sea-ice thickness uncertainty maps

of the CryoSat-2 and SMOS retrievals from November 2015 and

March 2016. The SMOS thickness uncertainty is masked where un-

certainty is > 1 m. (b) Relative uncertainties from November 2015

and March 2016.

where S is the snow depth and ρS, ρI and ρW are the densities

of snow, sea ice and sea water. S and ρS are represented by

the modified Warren snow climatology (W99; Warren et al.,

1999), meaning that S is reduced by 50 % over first-year ice

to accommodate the recent change towards a seasonal Arctic

ice cover (Kurtz and Farrell, 2011). FYI and multiyear ice

(MYI) are separated by adopting the daily OSI SAF ice type

product (Eastwood, 2012). We exclude CS2 measurements

over the Hudson Bay and Baffin Bay as they are not located

within the domain of the W99 climatology, referred to the

area, which is constrained by in situ measurements from So-

viet drifting stations and airborne landings from the 1950s to

1990 (Warren et al., 1999). In areas where no observations

are available, the W99 polynomial fit is not reliable, being

based only on extrapolation. We use ice densities of 916.7

and 882.0 kg m−3 for FYI and MYI (Alexandrov et al., 2010)

and 1024 kg m−3 for the sea water density. Z is calculated

for each individual CS2 measurement along each orbit. All

these retrievals are averaged on a 25 km Equal-Area Scalable

Earth Grid version 2.0 (EASE2; Brodzik et al., 2012) within

one calendar week (Fig. 1a).

CS2 sea-ice thickness uncertainties can be separated into

observational uncertainties and systematic or bias uncertain-

ties (Ricker et al., 2014). While observational uncertainties

of individual measurements can be reduced due to spatial

averaging, biases remain. The observational uncertainties of

ice thickness retrievals from individual measurements con-

tain uncertainties caused by speckle noise, sea-surface height

estimation and densities of ice and snow (Ricker et al., 2014).

They can easily reach values of > 1 m but will be reduced

to the range of centimeters by spatial averaging. Figure 2a

shows typical CS2 observational uncertainty maps for au-

tumn and spring, mainly ranging between 0.1 and 1 m. Here,

data points are averaged on a 25 km grid. The latitudinal de-

pendency results from the denser orbit coverage towards the

pole. In the marginal ice zones, when ice concentration de-

creases, many openings in the sea-ice cover can lead to an

underrepresentation of sea ice. Moreover, when the sea-ice

cover is characterized by many openings, so-called snagging

leads to increased uncertainties in the range measurements

(Armitage and Davidson, 2014). Biases mainly occur due to

waveform processing and the lack of representation of in-

terannual variability in the W99 snow climatology (Ricker

et al., 2014).

2.1.2 SMOS weekly sea-ice thickness retrieval

Thin sea-ice thickness has been retrieved from the 1.4 GHz

(L-band) brightness temperatures measured by SMOS for the

winter seasons (15 October–15 April) from 2010 to present

(Mecklenburg et al., 2016). The retrieval method consists of

a thermodynamic sea-ice model and a one-ice-layer radiative

transfer model (Tian-Kunze et al., 2014). The resulting plane

layer thickness is multiplied by a correction factor assuming

a log-normal thickness distribution. The algorithm has been

used for the operational production of an SMOS-based sea-

ice thickness data set from 2010 on (Tian-Kunze et al., 2014).

In this study we use the most up-to-date version (v3.1) of the

ice thickness data set, which has been produced operationally

since October 2016. The v3.1 data for the previous winter

seasons had been reprocessed using the same algorithm.

The v3.1 SMOS ice thickness data are based on v620 L1C

brightness temperature data. Brightness temperatures used in

the algorithm are the daily mean intensities averaged over

incidence angles from 0 to 40◦. The intensity is the average

of horizontally and vertically polarized brightness tempera-

tures, equal to 0.5 (TBh + TBv). Over sea ice, the intensity is

almost independent of incidence angle. By using the whole

incidence angle range of 0–40◦, we can reduce the brightness

temperature uncertainty to about 0.5 K.

The Cryosphere, 11, 1607–1623, 2017 www.the-cryosphere.net/11/1607/2017/



R. Ricker et al.: CS2SMOS 1611

SMOS measurements are strongly influenced by radio fre-

quency interference (RFI), especially in the first 2 years after

its launch. In the previous processor RFI-contaminated snap-

shots have been discarded using a threshold value of 300 K,

applied either to TBh or TBv. The new quality flags given

in the v620 L1C data have been implemented to identify the

data contaminated by RFI, by sun or by geometric effects to

improve the quality of the radiometric data used for version

3.1.

To estimate the bulk ice temperature (Tice) and bulk ice

salinity (Sice), which are the important input parameters in

the radiation model, we need surface air temperature and

sea-surface salinity (SSS) data as a boundary condition. The

2 m surface air temperature is extracted from JRA-25 atmo-

spheric reanalysis (Onogi et al., 2007). SSS data used in the

retrieval results from an integration of the MIT General Cir-

culation Model (Marshall et al., 1997), including interannu-

ally varying surface forcing. From the daily surface salinity

outputs from the model for the years 2002–2009, a weekly

climatology was produced (Tian-Kunze et al., 2014).

Brightness temperatures over sea ice are simulated with

the sea-ice radiation model adapted from Menashi et al.

(1993), Kaleschke et al. (2010) and Kaleschke et al. (2012).

The TB depends on the dielectric properties of the ice layer,

which are a function of brine volume (Vant et al., 1978).

The brine volume is a function of Sice and Tice (Cox and

Weeks, 1983). For a thin ice layer, the ice temperature gra-

dient within the ice can be assumed to be linear. The pen-

etration depth of L band in the sea ice depends on the ice

temperature and ice salinity. The retrieval algorithm works

only under cold conditions. For the cold and less saline ice,

the maximum retrievable ice thickness from SMOS can be

up to 1.5 m.

The SMOS uncertainty given in the v3.1 product is esti-

mated based on the uncertainty in the input parameters in

the thermodynamic and radiation model as well as in the

thickness distribution function (Tian-Kunze et al., 2014). At

present, the estimation was carried out for each parameter

– brightness temperature, ice temperature and ice salinity re-

spectively, by keeping the other parameters constant. The un-

certainty given in the product is then the sum of uncertainties

caused by each parameter. In v3.1, we also varied the sigma

in the log-normal ice thickness distribution function, which

is used to convert plane layer ice thickness into heterogenous

layer mean ice thickness in the retrieval. The average ice

thickness uncertainty caused by the distribution function is

less than 10 cm. This uncertainty is then added to the overall

uncertainties caused by the brightness temperature, ice tem-

perature and ice salinity. Errors caused by the assumptions

about fluxes and snow thickness have not yet been included.

The 100 % ice coverage assumption made in the retrieval can

cause underestimation of ice thickness if the condition is not

met.

For the merging, daily SMOS retrievals are averaged

weekly and are projected on an EASE2 25 km grid to be co-

located with the CS2 retrievals. Here, we only allow SMOS

thickness values with a corresponding uncertainty < 1 m,

which corresponds to a maximum theoretical thickness of

about 1.1 m. Furthermore we expect strong biases for the

SMOS ice thickness in thicker MYI regimes. Therefore, we

use the OSI SAF ice type product (Eastwood, 2012) to dis-

card any SMOS grid cells that are indicated as MYI. The

weekly composites are shown in Fig. 1b.

2.1.3 Complementarity of CryoSat-2 and SMOS

sea-ice thickness products

The two main factors that drive the complementarity between

the CryoSat-2 and SMOS sea-ice thickness products are the

data coverage on the one hand and the sea-ice thickness un-

certainties on the other hand.

Figure 2 shows typical uncertainty maps and the relative

uncertainties of CS2 and SMOS monthly mean thickness re-

trievals from November 2015 and March 2016. While with

SMOS relative uncertainties are lowest for thin ice (< 1 m),

CS2 relative thickness uncertainties are smaller over thick

ice and rise asymptotically towards thinner ice less than 1 m

thick. This is due to the fact that CS2 thickness estimates

over thin ice rely on the retrieval of small surface elevations

slightly higher than sea level, while freeboard of thicker ice

is much larger (Ricker et al., 2014). As a consequence, the

relative uncertainty increases over thin ice, as measurement

uncertainties do not decrease over thinner ice. Note that the

CS2 uncertainties shown here represent observational uncer-

tainties only. Systematic errors as associated with the usage

of a snow climatology or due to variable snow penetration

will increase the uncertainty of altimetry-based thicknesses

(Ricker et al., 2014, 2015; Kwok, 2014; Armitage and Rid-

out, 2015).

Due to the different update rates of sea-ice thickness obser-

vations, CS2 grids are usually based on data composites from

1 month, while SMOS-based retrievals provide daily com-

plete coverage of the ice-covered ocean up to about 85◦ N.

Figure 1 compares weekly means of CS2 and SMOS for

November 2015 and March 2016. While valid SMOS ice

thickness estimates are found mostly in the marginal ice

zones, the CS2 ice thickness retrieval covers major parts of

the Arctic MYI. In November, during the freeze-up, SMOS

retrievals cover major parts of the Beaufort Sea, Chuckchi

Sea and East Siberian Sea. Towards spring, due to continued

ice growth in these regions, the regions with SMOS retrievals

retreat southwards, covering major parts of the Bering Sea

and the Sea of Okhotsk (Fig. 1b).

Figure 3 illustrates the number of valid grid cells of the

weekly means as shown in Fig. 1. The number of grid cells

with co-located SMOS and CS2 estimates is less than 2000,

while the number of grid cells that contain thickness esti-

mates from CS2 or SMOS only is about 5000, highlighting

the complementary data coverage of both sensors.

www.the-cryosphere.net/11/1607/2017/ The Cryosphere, 11, 1607–1623, 2017
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Figure 3. (a) Numbers of valid 25 km grid cells each month from

November 2015 to April 2016. Here, “valid” grid cells are grid cells

that contain a valid thickness estimate. (b) Spatial distribution of

valid weekly thickness retrievals by CryoSat-2 and SMOS.

2.1.4 OSI SAF ice concentration and type

We use the OSI SAF sea-ice concentration (OSI-401-b) and

type (OSI-403-b) products (Eastwood, 2012) in order to

identify grid cells that contain ≥ 15 % sea ice and to clas-

sify them as FYI or MYI. The products are delivered daily,

projected on a 10 km polar stereographic grid. To combine

these data with the CS2 and SMOS thickness grids, we cal-

culate weekly means that are projected on the EASE2 25 km

grid (Brodzik et al., 2012) to be co-located with the thick-

ness retrievals. The original ice type product contains grid

cells that are flagged as ambiguous. We apply an inverse dis-

tance interpolation to those grid cells to obtain FYI or MYI

flags for all ice-covered grid cells, because it is needed for

further processing steps.

2.2 Weighted mean

We compute the weighted mean sea-ice thickness Z using

weekly CS2 and SMOS ice thickness grids during the target

week:

Z =
Zcs2/σ

2
cs2 + Zsmos/σ

2
smos

1/σ 2
cs2 + 1/σ 2

smos

, (4)

where σ represents the observational uncertainty of the in-

dividual products. Figure 4 shows the weighted means for

weeks in November 2015 and March 2016. In contrast to

the OI approach, presented in the next section, the weighted

mean only provides thickness estimates where observations

are available during the target week, leaving data gaps in

the CS2 domain. In the following we refer to the weekly

weighted mean product as WM.

2.3 Optimal interpolation

To achieve complete spatial coverage, we use an OI scheme

similar to Böhme and Send (2005) and McIntosh (1990)

that enables the merging of data sets from diverse sources

Figure 4. Weighted means of CryoSat-2 and SMOS weekly means

during the target week, produced from fields shown in Fig. 1.

on a predefined, so-called analysis grid. The input data are

weighted based on their individual uncertainties and the

modeled spatial covariances. OI minimizes the total error of

observations and provides ideal weighting for the observa-

tions at each grid cell in the least square sense. In this sec-

tion we present the processing methods, on which our OI

approach is based. Figure 5 shows the processing scheme,

which will be described in more detail in the following.

The OI scheme is used to get an objective estimate of val-

ues at observed or unobserved locations. The basic equation

is

Za = Zb + K[Zo − H(Zb)], (5)

where the vector Za is the analysis field, i.e., each element

represents a grid cell of the merged CS2SMOS ice thickness

retrieval to be produced. Zb is a background field vector,

and Zo is the vector that contains all SMOS and CS2 ob-

servations. Here we use already gridded, weekly mean CS2

and SMOS thickness estimates as observations, as shown in

Fig. 1 and as described above. Using gridded data as observa-

tions reduces their observational uncertainties and provides

equally distributed observations, which improves the perfor-

mance of the OI. In addition, gridding of raw data reduces the

number of available observations used for the OI, increasing

the efficiency of the OI routine. We assume that the obser-

vations are static, i.e., remain temporally coherent within a

week and do not change due to ice deformation and mo-

tion. Therefore, we neglect any temporal correlations. H is

an operator that transforms the background field into the ob-

servation space. To be more specific, this is realized by an

inverse distance interpolation method. K represents a weight

matrix and is derived from error covariances. We aim to re-

trieve weekly analysis fields, based on calendar weeks from

Monday to Sunday. Wet and warm snow or ice prevent the

retrieval of summer sea-ice thickness estimates from CS2 or

SMOS. Hence, the CS2SMOS product is limited to the pe-

riod from end-of-October to April.

The Cryosphere, 11, 1607–1623, 2017 www.the-cryosphere.net/11/1607/2017/
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Figure 5. Optimal interpolation processing scheme. Week [i] represents the target week. The cycle is repeated for each week.

Figure 6. (a) The scheme illustrates how the background field and

the observation field are generated from weekly input grids. Week

[i] represents the target week. (b) Typical interpolated and low-pass-

filtered background field as it is used for the optimal interpolation.

2.3.1 The background field

The weekly CS2 ice thickness composite possesses large

gaps resulting from the limited orbital coverage (Fig. 1a).

But for the OI approach, an Arctic-wide coverage is required

for the background field. Therefore, we use a composite of

retrievals from adjacent weeks to create a background field

with nearly complete coverage for the Central Arctic at a cer-

tain target week (Fig. 6a). Here we combine data from the

2 weeks before and after the target week. Therefore, in con-

trast to CS2 near real-time sea-ice thickness retrievals (Till-

ing et al., 2016), products can only be released 2 weeks after

data acquisition. In order to ensure independence between

the observations and background field, CS2 data from the

target week are not included in the background field. For the

same reason, we use an SMOS weekly mean from 1 week

before and after the target week. The initial background field

is computed by a weighted mean using Eq. (4). Gaps in the

weighted average are interpolated by using a nearest neigh-

bor scheme. In order to reduce noise, the background field is

low-pass filtered with a smoothing radius of 25 km before it

is applied in the OI algorithm (Fig. 6b).

Since we use CS2 and SMOS retrievals for the background

field beyond the target week and because the SMOS compos-

ite contains artifacts in coastal regions, we additionally use a

weekly mean of the daily OSI SAF ice concentration product

to determine the ice coverage during the target week. Here,

we apply a threshold of 15 % and only grid cells that exceed

this value will be considered as ice covered, which corre-

sponds to the ice extent products provided by OSI SAF and

the National Snow and Ice Data Center (NSIDC).

2.3.2 Correlation length scale estimation

The correlation length scale ξ controls the impact of a data

point on the analysis grid point depending on their distance.

Considering the grid resolution of 25 km, correlation length
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Figure 7. Scheme for the estimation of the correlation length scale

ξ for a single grid cell for the target week 3–9 November 2014.

(a) Background field with indicated area of interest (white box).

(b) Adjacent ice thickness grid cells within a radius of 375 km are

binned into annuli of distance and four quadrants. (c) Binned thick-

ness estimates are used to calculate the structure function of each

quadrant. ξ is estimated by fitting an exponential function. (d) Con-

tour map of estimated correlation length scales for the considered

area.

here is used in the sense of large-scale thickness gradients.

For example, the correlation length scale estimate is large in

the center of a certain ice type regime with similar ice thick-

ness (i.e., level FYI). On the other hand, we expect a low ξ

value at locations with strong thickness gradients, where dis-

tant observations are not representative of local conditions.

Figure 7 illustrates the estimation of ξ for a certain grid cell

Z′
0 in the Lincoln Sea during a week in November. In order

to estimate ξ , we consider the unfiltered background field

Zb (Fig. 7a) and define a structure function ǫ2. The structure

function can be used to assess the change of ice thickness

with distance and is related to the normalized auto correla-

tion function R(d,Q) as follows (Böhme and Send, 2005):

ǫ2(d,Q) = (Z′
0 − Z′

Q,d)2 = 2σ 2
Z′ − 2σ 2

Z′R(d,Q),

R(d,Q) = 1 −
ǫ2(d,Q)

2σ 2
Z′

. (6)

Quadrants Q are defined to accommodate the anisotropy of

the spatial ice thickness distribution (Fig. 7b). ǫ2(d,Q) rep-

resents the square differences between ice thickness of the

grid cell and the ice thickness of the grid cells of binned

25 km distances d in a quadrant Q. Z′
Q,d is the background

thickness, binned according to d and Q. Figure 7b illustrates

the annuli of distance and the four quadrants. σ 2
Z′ values are

the corresponding mean variances of a certain quadrant. With

Eq. (6) we then obtain the auto correlation function R(d,Q),

which is computed up to a radius of 750 km (30 bins). In the

next step, we fit a function of the form

C(d,ξ) =

(

1 +
d

ξ

)

exp

(

−d

ξ

)

(7)

to R(d,Q), using a least squares scheme, and obtain an es-

timate for ξ . Figure 7c shows the calculated auto correlation

function R(d,Q) and the functional fit (Eq. 7). A stronger

decay of R(d,Q) occurs with rising deviation between Z0

and the thickness at a certain distance in a certain quad-

rant. R(d,Q) can also become negative if ǫ2(d,Q)/2σ 2
Z′ be-

comes > 1. In order to improve the fitting performance, we

set R(d,Q) = 0 if R(d,Q) becomes < 0. Furthermore, ξ is

rejected if the computation fails. Finally, we average the ξ

values from the four quadrants, as we do not use anisotropic

weighting in the OI. In order to remove outliers and noise, the

derived ξ grid is low-pass filtered with a smoothing radius of

25 km. Grid cells with failed computation are interpolated by

a nearest neighbor scheme afterwards. Figure 7d shows the

spatial correlation length scales ξ for 3–9 November 2014. It

highlights the sensitivity to changing thickness gradients as

ξ decreases towards the coast of the Canadian Archipelago,

where higher sea-ice thickness gradients likely occur due to

increased deformation.

2.3.3 Retrieving the analysis grid

In order to minimize the error covariances, the background

error covariance matrix B in the observation space is multi-

plied by the inverted total error covariance matrix, leading to

the optimal weight matrix K (McIntosh, 1990; Böhme and

Send, 2005):

K = BHT (R + HBHT )−1, (8)

where R is the error covariance matrix of the observations.

In order to reduce computation expense we assume the fol-

lowing:

1. We neglect correlations of observation errors, which

means that R is a matrix with nonzero elements only

on the diagonal. These variances are represented by the

respective SMOS and CS2 product uncertainties.

2. We assume that the influence of observations that are

located far away from the analysis grid point can be ne-

glected. Therefore, instead of computing the entire co-

variance matrix, we only consider observations within a

radius of influence. This radius is set to 250 km to gather

just enough observations in regions with large gaps, for
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example over MYI between two CS2 orbits where valid

SMOS observations are not available.

3. To further reduce computation expense we limit the

number of matched observations to 120, meaning that,

in the case of more matches, only the 120 closest obser-

vations are considered.

4. We generally assume that all observations are unbiased.

For practical reasons, we apply an iterative computation

instead of applying the general matrix formulation in Eqs. (5)

and (8). We iteratively calculate each element zam,n of the

analysis field. Vector elements (bhT )i and matrix elements

(hbhT )i,j are estimated using the correlation function in

Eq. (7),

(bhT )i =

(

1 +
d(xoi

,xam,n)

ξm,n

)

exp

(

−d(xoi
,xam,n)

ξm,n

)

,

(hbhT )i,j =

(

1 +
d(xoi

,xoj
)

ξm,n

)

exp

(

−d(xoi
,xoj

)

ξm,n

)

, (9)

with the Euclidian distance function:

d(x,y) = ‖x − y‖. (10)

Here, xoi
and xoj

represent the locations of the matched ob-

servations within the radius of influence. xam,n refers to the

location of the analysis grid cell. As a consequence of Eq. (9),

the impact of a data point decreases with increasing distance.

Computing BHT and HBHT allows the computation of

the K weights that minimize the error covariances. When

the analysis field is calculated iteratively, K will be a vector,

containing the corresponding weights for the matched obser-

vations within the radius of influence, while in the general

OI formulation K is a matrix. Thus, we retrieve the second

part of Eq. (5), which is called innovation the difference be-

tween the observation field and the background field. This

procedure is accomplished iteratively for each grid cell of the

analysis field. The corresponding analysis error covariances

are derived by

σ
2
Za

= (I − KH)B, (11)

where I is the identity matrix. Since we consider variances

exclusively, we only calculate the diagonal elements of σ
2
Za

.

Figure 8 illustrates how the analysis thickness is derived at a

certain analysis grid point, considering distant grid cells with

ice thickness estimates of CS2 and SMOS. The K weights

decrease with increasing distance to the analysis grid point

as a consequence of Eq. (9). In addition, the individual un-

certainties affect the weighting according to Eq. (8). The con-

sidered grid cell is located at the boundary between the CS2

and SMOS domain. In the following, we use domain as the

regions where CS2 or SMOS data predominate. SMOS ice

thicknesses of about 1 m reveal higher uncertainties than cor-

responding CS2 estimates (Fig. 2), and hence the K weights

Figure 8. Example for CS2 and SMOS sea-ice thickness observa-

tions and their weighting to compose the CS2SMOS thickness es-

timate based on optimal interpolation at a grid cell in the Central

Arctic first-year ice in November 2016. The x axis represents the

distance of observations from the analysis grid cell. Normalized K

weights are represented by the area of the circles.

of CS2 estimates exceed the SMOS weights for higher ice

thicknesses. Figure 9 shows the innovation field, the merged

CS2SMOS product and the analysis error field, which is

the square root of the error variance (Eq. 11), for weeks in

November 2015 and March 2016. The analysis error is a rel-

ative quantity with values between 0 and 1. It increases where

the weekly CS2 retrieval leaves gaps and where valid SMOS

observations are not available, for example at the North Pole

or over MYI. In this case the analysis depends on the accu-

racy of the background field, leading to increased uncertain-

ties.

3 Evaluation of the optimal interpolation

In this section, we aim to evaluate the CS2SMOS product

derived from the OI scheme by a comparison with the indi-

vidual satellite products. In addition, we carry out a cross-

validation experiment by omission of random data to test the

OI method.

3.1 Comparison with input products

Figure 10 illustrates the differences between CS2SMOS and

the CS2 and SMOS retrievals from November 2015 to April

2016. The difference between CS2SMOS and SMOS weekly

grids is shown in Fig. 10a, limited to grid cells with SMOS

observations in the target week. Positive anomalies of up to

1 m occur mostly in the transition zone between the SMOS

and the CS2 domain where the thick ice in the CS2 retrieval

leads to an increase of ice thickness in these grid cells with

respect to the SMOS data (Fig. 10a). However, the general

pattern remains the same during the season. Subtracting the

CS2 monthly mean sea-ice thickness from the CS2SMOS
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Figure 9. Optimal interpolation output grids for weeks in November 2015 and March 2016: the innovation field (left column) shows the

difference between background field and the CS2SMOS ice thickness (center column). The right column shows the relative uncertainty

associated with the optimal interpolation.

Figure 10. (a) Difference between CS2SMOS and weekly SMOS

retrieval for weeks in November 2015 and March 2016. (b) Differ-

ence between CS2SMOS thickness for weeks in November 2015

and March 2016 and the corresponding monthly CryoSat-2 thick-

ness retrieval.

product, represented by 1 week within each month, reveals

substantial scattering between −1 and 1 m within the CS2

domain (Fig. 10b). This is mainly caused by the fact that the

monthly retrieval is compared with the weekly product. Dur-

ing the different time spans, the regional sea-ice thickness

distribution is subject to ice drift, convergence, and diver-

gence, as well as thermodynamic ice growth. In addition, the

OI algorithm evokes a low-pass filtering of the spatial thick-

ness distribution due to the impact of distant grid cells, reduc-

ing the noise compared to the original CS2 product. Within

the SMOS domain we find consistently negative anomalies,

indicating a reduction of the CS2 ice thickness representation

due to the impact of the coincident SMOS retrieval.

Figure 11a shows ice thickness distributions of monthly

means of CS2 and weekly SMOS and CS2SMOS ice thick-

ness retrievals for November 2015 and March 2016, illus-

trating the different thickness ranges of CS2 and SMOS re-

trievals. Table 2 presents the corresponding statistics for the

entire winter season, including the mean and the standard

deviation of each month or week respectively. The CS2 re-

trieval lacks sensitivity for thin ice (< 0.5 m) over the en-

tire season. The gap in this thickness range can be closed

by the SMOS retrieval. While the mean thickness of the

CS2 retrieval consistently grows from 1.46 m in November to

1.90 m in April, the SMOS thickness mean remains at about

0.5 m after an increase from November to December. Due

to the increasing uncertainties of the SMOS product towards

thick ice, the distribution frequency steeply drops at about

1 m for each month. Therefore, the SMOS mean thickness
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Figure 11. (a) Sea-ice thickness distributions of CryoSat-2, SMOS

and CS2SMOS retrievals for November 2015 and March 2016.

CS2SMOS is represented by 1 week in the middle of a month,

while the CryoSat-2 and SMOS retrievals are monthly means.

(b) Scatter diagrams illustrating the ice thickness differences be-

tween CS2SMOS and the individual satellite retrievals of CS2 and

SMOS, for November 2015 and March 2016.

is mostly affected by the boundary condition at about 1 m in

conjunction with thermodynamic ice growth and the newly

formed ice (< 0.1 m). The thickness distributions show the

capability of the CS2SMOS product to combine the comple-

mentary ice thickness ranges. As a consequence, the standard

deviation of the merged product ranges between 0.8 m (De-

cember) and 0.99 m (April) and therefore exceeds the stan-

dard deviations of the individual products that reach maxi-

mum values of 0.78 (CS2) and 0.38 (SMOS) in April. The

scatter diagrams in Fig. 11b illustrate the thickness differ-

ences between CS2SMOS and the two individual products,

with respect to the maps shown in Fig. 10. Using the SMOS

data reduces the thickness in the CS2SMOS product below

1 m compared to the CS2 retrieval. The comparison between

CS2SMOS and SMOS shows increasing scattering with ris-

ing thickness. As shown in Fig. 10, this originates from the

transition zone between the CS2 and SMOS domain.

Table 2. Arctic-wide mean and standard deviation (SD) of the

merged product (CS2SMOS), the individual CryoSat-2 (CS2) and

Soil Moisture and Ocean Salinity (SMOS) retrievals for the winter

season 2015–2016.

Mean (m) Nov Dec Jan Feb Mar Apr

CS2SMOS 1.16 1.19 1.23 1.29 1.34 1.35

CS2 1.46 1.53 1.65 1.66 1.83 1.90

SMOS 0.45 0.58 0.51 0.49 0.48 0.47

SD (m)

CS2SMOS 0.88 0.81 0.81 0.92 0.97 0.99

CS2 0.76 0.76 0.72 0.73 0.75 0.78

SMOS 0.33 0.36 0.38 0.37 0.36 0.38

3.2 Cross-validation experiment

In order to test the robustness of the OI algorithm, we carry

out a cross validation. We randomly remove grid cells of ob-

servations from the target week (see Figs. 5 and 6), with ex-

periments for exclusion of 10 % (Fig. 12a), 25 % (Fig. 12b)

and 50 % (Fig. 12c) of both CS2 and SMOS input grid cells.

In the fourth case, all data contained in a box in the west-

ern Arctic are withdrawn (Fig. 12d). The box intentionally

covers both the SMOS and the CS2 domain. After the data

omission, the OI algorithm is applied using the reduced tar-

get week data set. The maps show the difference between

the retrieved CS2SMOS sea-ice thickness and the withdrawn

thickness data for each case. Compared to the SMOS do-

main, the ice thickness in the CS2 domain in the Central

Arctic (Fig. 1) reveals a higher level of noise with deviations

of up to 1 m. On the other hand, the SMOS domain shows

a slightly negative shift of up to 10 cm in some areas. This

can be explained by the different data coverages. We truncate

the SMOS retrieval over thick ice, since the method does not

apply for thick ice. On the other hand, the CS2 retrieval is

used over the entire thickness range, but with higher uncer-

tainties over thin ice. Therefore, CS2 thickness over thin ice

is mostly reduced by the SMOS retrieval, while, in contrast,

this is barely the case for SMOS data over thick ice, since it is

cropped there. Hence, due to the optimal interpolation, there

will be always a negative bias in the SMOS domain when

doing the cross-validation experiment with the original input

data from CS2 and SMOS.

The general pattern remains the same in all cases, indepen-

dent of the fraction of data that are withdrawn in advance.

The shape of the histograms of the differences indicates a

normal distribution with similar standard deviations between

14 and 18 cm. The mean differences are −3 cm for the first

three cases where data points have been withdrawn randomly

and 1 cm where a box has been separated. The root mean

square deviation (RMSD) is 23–25 cm for the first three cases

and 17 cm for the last case. Here, the smaller RMSD is likely

caused by the lack of thicker ice in the chosen box, which
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Figure 12. Cross-validation experiment for November 2015, showing the difference between CS2SMOS ice thickness, gridded CryoSat-

2 and SMOS observations (OBS) that have been separated in advance as different fractions/areas of withdrawn data: (a) 10 %, (b) 25 %,

(c) 50 % and (d) box. The maps show the withdrawn data subtracted from the CS2SMOS product. The histograms show the differences

according to the maps, indicating the mean and standard deviation (SD) of the differences. Scatter diagrams indicate the root mean square

deviation (RMSD).

does not contain sea ice thicker than about 2 m. This experi-

ment demonstrates the performance of the applied algorithm.

In particular, it shows that the background field mostly con-

serves the mean values even when co-located observations

are missing.

4 Validation of the merged products with airborne EM

For validation of WM and CS2SMOS, we use sea-ice thick-

ness measurements obtained during the SMOS-ice 2014

campaign east of the Spitsbergen archipelago and during the

Canadian Arctic Sea Ice Mass Balance Observatory cam-

paign in the Beaufort Sea in April 2016. Surveys have been

carried out with an airborne electromagnetic induction thick-

ness sounding device (EM-bird; Pfaffling et al., 2007; Haas

et al., 2009; Hendricks, 2009) and are projected and averaged
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Table 3. Statistics of the comparison of satellite retrievals with

airborne EM thickness measurements (AEM), corresponding to

Fig. 13. For each case we consider both the AEM modal thickness

(AEM mode) and the AEM mean thickness (AEM mean). For the

mean bias, AEM measurements are subtracted from the satellite re-

trievals. RMSD represents the root mean square deviation and r the

Pearson correlation coefficient.

Beaufort Sea RMSD Mean bias r

(m) (m)

CS2SMOS AEM mean 1.57 −0.86 0.48

AEM mode 1.03 0.11 0.36

WM AEM mean 1.49 −0.57 0.35

AEM mode 1.13 0.30 0.26

SMOS AEM mean 1.16 −0.38 0.37

AEM mode 0.75 0.19 0.46

CS2 AEM mean 1.27 −0.17 0.52

AEM mode 1.33 0.80 0.39

Barents Sea RMSD Mean bias r

CS2SMOS AEM mean 0.31 −0.25 0.61

AEM mode 0.27 −0.11 0.56

WM AEM mean 0.27 −0.17 0.73

AEM mode 0.27 −0.05 0.63

SMOS AEM mean 0.30 −0.24 0.7

AEM mode 0.27 −0.11 0.67

CS2 AEM mean 0.97 0.82 −0.35

AEM mode 1.11 0.95 −0.35

on a 25 km EASE2 grid as given by the satellite products. In

addition to the mean AEM thickness in each grid cell, we

also calculated the modal AEM thickness. The AEM data

set represents total thickness, comprising snow and sea-ice

thickness. Therefore, we add the climatological snow depth

(modified W99) to the satellite products. Figure 13 shows the

comparison between AEM ice thickness measurements and

four satellite products at the two validation sites, the Beau-

fort Sea (Fig. 13a) and Barents Sea (Fig. 13b). The four satel-

lite products are represented by CS2SMOS, WM, SMOS and

CS2. The scatter diagrams illustrate the difference between

the satellite products and the corresponding mean and modal

AEM thickness. Statistics resulting from Fig. 13 are given in

Table 3.

4.1 Beaufort Sea, April 2016

On 9 and 10 April, two AEM flights were carried out with

a fixed wing DC3-T aircraft (Fig. 13a). The AEM mea-

surements indicate high mean ice thickness variability rang-

ing between 0.2 m and more than 5 m. Comparing the mean

(2.2 m) and modal thickness (1.2 m) of the entire data set in-

dicates substantial deformation. Thickness distribution and

OSI SAF ice type data suggest two ice types. First-year

ice, reaching a modal thickness of up to 1 m, and multi-

year ice with a modal thickness ranging between 2 and 4 m.

The presence of two ice types and the drift along the Beau-

fort Gyre (Petty et al., 2016) make this region challenging

for satellite observations, which are limited in spatial and

temporal resolution. Especially scattered thick multiyear ice

floes that drift along the Beaufort Gyre might not be cap-

tured by the OSI SAF ice type product, allowing for SMOS

thickness estimates in MYI. Therefore, CS2SMOS, WM and

SMOS underestimate the mean ice thickness by up to 0.86 m

(CS2SMOS). On the other hand, the modal ice thickness is

slightly overestimated by up to 0.3 m (WM). It is impor-

tant to note that WM and SMOS do not provide a full data

coverage. The SMOS data, for example, usually only cover

first-year ice. This is also the reason why SMOS exhibits

the smallest RMSD for mean and modal thickness (1.16 and

0.75 m). However, scatter diagrams show good agreement of

AEM data and CS2SMOS, WM and SMOS retrievals within

the first-year ice, up to about 1.2 m thickness (Fig. 13). CS2

shows the lowest bias (−0.17 m) for the mean ice thickness

but the highest for the modal thickness. The scatter diagrams

also indicate that CS2 is not able to capture high thickness

gradients due to the presence of scattered heavily deformed

multiyear ice, which is transported along with the Beau-

fort Gyre. As discussed above, the usage of SMOS data in

CS2SMOS and WM leads to a stronger underestimation of

mean ice thickness of deformed multiyear sea ice, compared

to CS2. But it substantially improves the representation of

first-year ice thickness. The comparison between WM and

CS2SMOS shows that in areas where weekly observations

are available, both retrievals show similar agreement with

AEM measurements.

4.2 Barents Sea, March 2014

Between 19 and 26 March, eight AEM flights were carried

out by a helicopter based on the Norwegian research vessel

Lance (Fig. 13b; King et al., 2017). In contrast to the Beau-

fort Sea data, these data contain first-year ice only. More-

over, the degree of deformation is lower, indicated by only

0.1 m difference between mean and modal thickness of the

entire data set. For CS2, the RMSD is 0.97 m for the AEM

mean thickness and 1.11 m for the AEM modal thickness,

indicating a slightly better representation of the mean thick-

ness in the CS2 product. However, scattering is high and the

mean bias of 0.82 m with respect to the mean AEM thick-

ness suggests a strong bias towards thicker ice. Such errors

might originate from erroneous sea-surface height interpo-

lation along the CS2 orbits as well as from off-nadir lead

ranging and retracker limitations (Ricker et al., 2014). The

SMOS and CS2SMOS retrievals are almost identical for that

region, which is caused in part by the better coverage of the

SMOS retrieval in that region. In addition, this area is domi-

nated by thin ice, leading to a higher weighting of the SMOS

retrieval due to the lower uncertainties (Fig. 2). The scatter

diagrams reveal a significantly better agreement of the AEM

mean thickness measurements with the CS2SMOS, WM
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Figure 13. Comparison of satellite retrievals with airborne EM thickness measurements (AEM) over a mixed first-year and multiyear ice

regime in the Beaufort Sea in April 2016 (a) and over thin ice in the Barents Sea east of Spitsbergen in March 2014 (b). AEM data are

compared with the optimal interpolation product (CS2SMOS), the weighted mean (WM), the SMOS retrieval and the monthly CryoSat-2

thickness retrieval (CS2). AEM measurements are averaged on the 25 km EASE2 grid, providing mean and modal total thickness within a

grid cell. AEM measurements in the scatter plots are capped at 5 m, while in (a) one mean AEM grid value exceeds the limit.

and SMOS retrievals (RMSD = 0.27–0.31 m, r = 0.61–0.73)

than with the CS2 retrieval (RMSD = 0.97, r = −0.35).

Hence, the reduction in RMSD considering CS2SMOS or

WM compared to CS2 is roughly 0.7 m. The observed bias

with respect to the mean AEM thickness is −0.25 m for

CS2SMOS, −0.17 for WM and −0.24 m for SMOS, suggest-

ing a bias towards thinner ice. The maps and scatter diagrams

indicate that the CS2SMOS, WM and SMOS retrievals cap-

ture small thickness gradients visible in the AEM thickness

data. This comparison provides evidence that using SMOS

data in areas with a thin ice regime will reduce the RMSD

and the mean bias when compared to the CS2 product.

5 Conclusions

We presented methods to carry out the first joint data merg-

ing of CryoSat-2 sea-ice thickness fields and thin ice thick-

ness estimates obtained from the L-band radiometer onboard

the Soil Moisture and Ocean Salinity satellite. While CS2

lacks the capability to observe thin ice, SMOS is restricted to

ice regimes thinner than about 1 m. We used two approaches
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for merging CS2 and SMOS ice thickness data: a weighted

mean and an optimal interpolation scheme based on weekly

CS2 and SMOS ice thickness grids. While the weighted

mean product only provides estimates at grid cells where

observations are available, the OI product (CS2SMOS) pro-

vides weekly Arctic-wide sea-ice thickness estimates with

corresponding uncertainty estimates. We have shown that

the merged products have the capability to allow for weekly

thickness estimates that are sensitive to the entire thickness

range, using the complementary sensitivity of the individ-

ual products to different thickness regimes. Moreover, the

weekly merged products benefit from increased coverage

at lower latitudes in conjunction with higher temporal res-

olution compared to the CS2 retrieval, which is important

for observing ice growth during the freeze-up. In particu-

lar, the usage of the combined product will improve thick-

ness retrievals in all areas with thin ice, which we have

demonstrated using case studies from the Barents Sea dur-

ing spring 2014 and Beaufort Sea during spring 2016. Com-

parisons with airborne electromagnetic thickness measure-

ments reveal a reduction in root mean square deviation of

about 0.7 m for CS2SMOS and WM, compared to the CS2

thickness retrieval in the Barents Sea. Moreover, the compar-

ison shows that retrievals that use SMOS data seem to cap-

ture small thickness gradients in thin ice regimes, whereas

the CS2 retrieval is very noisy. In the Barents Sea, the CS2 re-

trieval overestimates mean thin ice thickness by 0.8 m, while

CS2SMOS, WM and SMOS underestimate it by about 0.2 m.

The comparison with the AEM data has also revealed that

WM represents a good estimate in regions where weekly

data of SMOS and CS2 are available. For the observation

of thicker multiyear ice (> 1 m) and mixed ice regimes as

in the Beaufort Sea 2016, the CS2 product has the lowest

bias, although limitations in capturing high thickness gradi-

ents due to heavily deformed ice exist. CS2SMOS, however,

exclusively provides weekly ice thickness estimates cover-

ing the entire Arctic and combining CS2 and SMOS data.

The OI approach used in this study can be adopted to merge

sea-ice thickness or freeboard data sets derived from other

satellite missions, such as the recently launched European

Space Agency mission Sentinel-3, which carries a Ku-band

radar altimeter similar to SIRAL onboard CS2.
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