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Abstract. The normal Gauss map of a minimal surface in the model space
Sol of solvegeometry is a harmonic map with respect to a certain singular
Riemannian metric on the extended complex plane.

1. Introduction

Since the discovery of a holomorphic quadratic differential (called a generalized
Hopf differential or an Abresch-Rosenberg differential) for CMC surfaces (constant
mean curvature surfaces) in 3-dimensional homogeneous Riemannian manifolds
with 4-dimensional isometry group, global geometry of constant mean curvature
surfaces in such spaces has been extensively studied [1]–[2].

D. A. Berdinskĭı and I. A. Tăımanov [4] gave a representation formula for minimal
surfaces in 3-dimensional Lie groups in terms of spinors and Dirac operators.

The simply connected homogeneous Riemannian 3-manifolds with 4-dimensional
isometry group have a structure of principal fiber bundle with 1-dimensional fiber
and constant curvature base. More explicitly, such homogeneous spaces are one
of the following spaces: the Heisenberg group Nil, the universal covering S̃L2R of
the special linear group equipped with naturally reductive metric, the the special
unitary group SU(2) equipped with the Berger sphere metric, and the reducible
Riemannian symmetric space S2 × R, H2 × R.

On the other hand, the model spaces of Thurston’s 3-dimensional model geome-
tries [10] are space forms, Nil, S̃L2R with naturally reductive metric, S2×R, H2×R

and the space Sol, the model space of solvegeometry.
Abresch and Rosenberg showed that the existence of a generalized Hopf differ-

ential in a simply connected Riemannian 3-manifold is equivalent to the property
that the ambient space has at least a 4-dimensional isometry group [2, Theorem
5]. Note that if the dimension of the isometry group of a Riemannian 3-manifold
is greater than 3, then the action of the isometry group is transitive.

Thus for the space Sol, one cannot expect an Abresch-Rosenberg-type quadratic
differential for CMC surfaces.
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Thus, another approach for CMC surface geometry in Sol is expected.
The space Sol belongs to the following two parameter family of simply connected

homogeneous Riemannian 3-manifolds:

G(µ1, µ2) = (R3(x1, x2, x3), g(µ1,µ2)),

with group structure

(x1, x2, x3) · (x̃1, x̃2, x̃3) = (x1 + eµ1x3
x̃1, x2 + eµ2x3

x̃2, x3 + x̃3)

and left invariant metric

g(µ1,µ2) = e−2µ1x3
(dx1)2 + e−2µ2x3

(dx2)2 + (dx3)2.

This family includes Sol = G(1,−1) as well as the Euclidean 3-space E
3 = G(0, 0),

hyperbolic 3-space H3 = G(1, 1) and H2 × R = G(0, 1).
In this paper, we study the (normal) Gauss map of minimal surfaces in G(µ1, µ2).

In particular, we shall show that the normal Gauss map of non-vertical minimal
surfaces is a harmonic map with respect to an appropriate metric if and only if
µ2

1 = µ2
2.

As a consequence, we shall give a Weierstrass-type representation formula for
minimal surfaces in Sol.

The results of this article were partially reported at the London Mathematical
Society Durham Conference “Methods of Integrable Systems in Geometry” (Au-
gust, 2006).

2. Solvable Lie group

In this paper, we study the following two-parameter family of homogeneous
Riemannian 3-manifolds:

(2.1)
{
(R3(x1, x2, x3), g(µ1,µ2)) | (µ1, µ2) ∈ R

2
}

,

where the metrics g = g(µ1,µ2) are defined by

(2.2) g(µ1,µ2) := e−2µ1x3
(dx1)2 + e−2µ2x3

(dx2)2 + (dx3)2.

Each homogeneous space (R3, g(µ1,µ2)) is realized as the following solvable matrix
Lie group:

G(µ1, µ2) =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

1 0 0 x3

0 eµ1x3
0 x1

0 0 eµ2x3
x2

0 0 0 1

⎞
⎟⎟⎠

∣∣∣∣∣ x1, x2, x3 ∈ R

⎫⎪⎪⎬
⎪⎪⎭ .

The Lie algebra g(µ1, µ2) is given explicitly by

(2.3) g(µ1, µ2) =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

0 0 0 y3

0 µ1y
3 0 y1

0 0 µ2y
3 y2

0 0 0 1

⎞
⎟⎟⎠

∣∣∣∣∣ y1, y2, y3 ∈ R

⎫⎪⎪⎬
⎪⎪⎭ .

Then we can take the following orthonormal basis {E1, E2, E3} of g(µ1, µ2):

E1 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , E2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ , E3 =

⎛
⎜⎜⎝

0 0 0 1
0 µ1 0 0
0 0 µ2 0
0 0 0 0

⎞
⎟⎟⎠ .
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Then the commutation relation of g is given by

[E1, E2] = 0, [E2, E3] = −µ2E2, [E3, E1] = µ1E1.

Left-translating the basis {E1, E2, E3}, we obtain the following orthonormal frame
field:

e1 = eµ1x3 ∂

∂x1
, e2 = eµ2x3 ∂

∂x2
, e3 =

∂

∂x3
.

One can easily check that every G(µ1, µ2) is a non-unimodular Lie group except
µ1 + µ2 = 0.

The Levi-Civita connection ∇ of G(µ1, µ2) is described by

(2.4)
∇e1e1 = µ1e3, ∇e1e2 = 0, ∇e1e3 = −µ1e1,
∇e2e1 = 0, ∇e2e2 = µ2e3, ∇e2e3 = −µ2e2,
∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

Example 2.1 (Euclidean 3-space). The Lie group G(0, 0) is isomorphic and iso-
metric to the Euclidean 3-space E3 = (R3, +).

Example 2.2 (Hyperbolic 3-space). Take µ1 = µ2 = c �= 0. Then G(c, c) is a
warped product model of the hyperbolic 3-space:

H3(−c2) = (R3(x1, x2, x3), e−2cx3
{(dx1)2 + (dx2)2} + (dx3)2).

Example 2.3 (Riemannian product H2(−c2) × E1). Take (µ1, µ2) = (0, c) with
c �= 0. Then the resulting homogeneous space is R

3 with metric:

(dx1)2 + e−2cx3
(dx2)2 + (dx3)2.

Hence G(0, c) is identified with the Riemannian direct product of the Euclidean
line E

1(x1) and the warped product model

(R2(x2, x3), e−2cx3
(dx2)2 + (dx3)2 )

of H2(−c2). Thus G(0, c) is identified with E
1 × H2(−c2).

Example 2.4 (Solvmanifold). The model space Sol of the 3-dimensional solve-
geometry [10] is G(1,−1). The Lie group G(1,−1) is isomorphic to the Minkowski
motion group

E(1, 1) :=

⎧⎨
⎩

⎛
⎝ ex3

0 x1

0 e−x3
x2

0 0 1

⎞
⎠ ∣∣∣∣∣ x1, x2, x3 ∈ R

⎫⎬
⎭ .

The full isometry group is G(1,−1) itself.

Example 2.5. Since [e1, e2] = 0, the distribution D spanned by e1 and e2 is
involutive. The maximal integral surface M of D through a point (x1

0, x
2
0, x

3
0) is the

plane x3 = x3
0. One can see that M is flat of constant mean curvature (µ1 + µ2)/2

(see (2.4)).

(1) If (µ1, µ2) = (0, 0), then M is a totally geodesic plane.
(2) If µ1 = µ2 = c �= 0, then M is a horosphere in the hyperbolic 3-space

H3(−c2).
(3) If µ1 = −µ2 �= 0, then M is a non-totally geodesic minimal surface.
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3. Integral representation formula

Let M be a Riemann surface and (D, z) be a simply connected coordinate region.
The exterior derivative d is decomposed as

d = ∂ + ∂̄, ∂ =
∂

∂z
dz, ∂̄ =

∂

∂z̄
dz̄,

with respect to the conformal structure of M . Take a triplet {ω1, ω2, ω3} of (1,0)-
forms which satisfies the following differential system:

∂̄ωi = µiωi ∧ ω3, i = 1, 2,(3.1)

∂̄ω3 = µ1ω
1 ∧ ω1 + µ2ω

2 ∧ ω2.(3.2)

Proposition 3.1 ([5]). Let {ω1, ω2, ω3} be a solution to (3.1)-(3.2) on a simply
connected coordinate region D. Then

ϕ(z, z̄) = 2
∫ z

z0

Re
(
eµ1x3(z,z̄) · ω1, eµ2x3(z,z̄) · ω2, ω3

)
is a harmonic map of D into G(µ1, µ2). Conversely, any harmonic map of D into
G(µ1, µ2) can be represented in this form.

Equivalently, the resulting harmonic map ϕ(z, z̄) is defined by the following data:

(3.3) ω1 = e−µ1x3
x1

zdz, ω2 = e−µ1x3
x2

zdz, ω3 = x3
zdz,

where the coefficient functions are solutions to

xi
zz̄ − µi(x3

zx
i
z̄ + x3

z̄x
i
z) = 0 (i = 1, 2),(3.4)

x3
zz̄ + µ1e

−2µ1x3
x1

zx
1
z̄ + µ2e

−2µ2x3
x2

zx
2
z̄ = 0.(3.5)

Corollary 3.1 ([5]). Let {ω1, ω2, ω3} be a solution to

∂̄ωi = µiωi ∧ ω3, i = 1, 2,(3.6)
ω1 ⊗ ω1 + ω2 ⊗ ω2 + ω3 ⊗ ω3 = 0(3.7)

on a simply connected coordinate region D. Then

ϕ(z, z̄) = 2
∫ z

z0

Re
(
eµ1x3(z,z̄) · ω1, eµ2x3(z,z̄) · ω2, ω3

)
is a weakly conformal harmonic map of D into G(µ1, µ2). Moreover ϕ(z, z̄) is a
minimal immersion if and only if

ω1 ⊗ ω1 + ω2 ⊗ ω2 + ω3 ⊗ ω3 �= 0.

4. The normal Gauss map

Let ϕ : M → G(µ1, µ2) be a conformal immersion. Take a unit normal vector
field N along ϕ. Then, by the left translation we obtain the following smooth map:

ψ := dL−1
ϕ · N : M → S2 ⊂ g(µ1, µ2).

The resulting map ψ takes value in the unit 2-sphere S2 in the Lie algebra g(µ1, µ2).
Here, via the orthonormal basis {E1, E2, E3}, we identify g(µ1, µ2) with the Eu-
clidean 3-space E3(u1, u2, u3).

The smooth map ψ is called the normal Gauss map of ϕ.
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Let ϕ : D → G(µ1, µ2) be a weakly conformal harmonic map of a simply con-
nected Riemann surface D determined by the data (ω1, ω2, ω3). Express the data
as ωi = φidz. Then the induced metric I of ϕ is

I = 2(
3∑

i=1

|φi|2)dzdz̄.

Moreover these three coefficient functions satisfy

∂φ3

∂z̄
= −

2∑
i=1

µi|φi|2, ∂φi

∂z̄
= µi φi φ3, i = 1, 2,

(φ1)2 + (φ2)2 + (φ3)2 = 0.(4.1)

The harmonic map ϕ is a minimal immersion if and only if

(4.2) |φ1|2 + |φ2|2 + |φ3|2 �= 0.

Here we would like to remark that φ3 is identically zero if and only if ϕ is a
vertical plane x3 = constant. (See Example 2.5). As we saw in Example 2.5, the
vertical plane ϕ is minimal if and only if µ1 + µ2 = 0.

Hereafter we assume that φ3 is not identically zero. Then we can introduce two
mappings f and g by

(4.3) f := φ1 −
√
−1φ2, g :=

φ3

φ1 −
√
−1φ2

.

By definition, f and g take values in the extended complex plane C = C ∪ {∞}.
Using these two C-valued functions, ϕ is rewritten as

ϕ(z, z̄) = 2
∫ z

z0

Re
(

eµ1x3 1
2
f(1 − g2), eµ2x3

√
−1
2

f(1 + g2), fg

)
dz.

The normal Gauss map is computed as

ψ(z, z̄) =
1

1 + |g|2
(
2Re (g)E1 + 2Im (g)E2 + (|g|2 − 1)E3

)
.

Under the stereographic projection P : S2\{∞} ⊂ g(µ1, µ2) → C := RE1+RE2,
the map ψ is identified with the C-valued function g. Based on this fundamental
observation, we call the function g the normal Gauss map of ϕ. The harmonicity
together with the integrability (3.4)–(3.5) are equivalent to the following system for
f and g:

∂f

∂z̄
=

1
2
|f |2g{µ1(1 − ḡ2) − µ2(1 + ḡ2)},(4.4)

∂g

∂z̄
= −1

4
{µ1(1 + g2)(1 − ḡ2) + µ2(1 − g2)(1 + ḡ2)}f̄ .(4.5)

Theorem 4.1 ([6]). Let f and g be C-valued functions which are solutions to the
system (4.4)–(4.5). Then

(4.6) ϕ(z, z̄) = 2
∫ z

z0

Re
(

eµ1x3 1
2
f(1 − g2), eµ2x3

√
−1
2

f(1 + g2), fg

)
dz

is a weakly conformal harmonic map of D into G(µ1, µ2).
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Example 4.1. Assume that µ1 �= 0. Take the following two C-valued functions:

f =
√
−1

µ1(z + z̄)
, g = −

√
−1.

Then f and g are solutions to (4.4)–(4.5). By the integral representation formula,
we can see that the minimal surface determined by the data (f, g) is a plane x2 =
constant. Note that this plane is totally geodesic in G(1,−1).

From (4.4)–(4.5), we can eliminate f and deduce the following PDE for g:

gzz̄ −
2g{µ1(1 − ḡ2) − µ2(1 + ḡ2)}gzgz̄

µ1(1 + g2)(1 − ḡ2) + µ2(1 − g2)(1 + ḡ2)
(4.7)

+
4ḡ(1 − g4)(µ2

1 − µ2
2)|gz̄|2

(µ2
1 + µ2

2)|1 − g4|2 + µ1µ2{(1 + g2)2(1 − ḡ2)2 + (1 + ḡ2)2(1 − g2)2}
= 0.

Theorem 4.2. Equation (4.7) is the harmonic map equation for a map g : D −→
C(w, w̄) if and only if µ2

1 = µ2
2.

(1) If µ1 = µ2 �= 0, then equation (4.7) becomes

(4.8)
∂2g

∂z∂z̄
+

2|g|2ḡ
1 − |g|4

∂g

∂z

∂g

∂z̄
= 0.

The differential equation (4.8) is the harmonic map equation for a map g

from D into
(

C̄(w, w̄), dwdw̄
|1−|w|4|

)
. The singular metric dwdw̄

|1−|w|4| is called the
Kokubu metric ([3], [8]).

(2) If µ1 = −µ2 �= 0, then (4.7) becomes

(4.9)
∂2g

∂z∂z̄
− 2g

g2 − ḡ2

∂g

∂z

∂g

∂z̄
= 0.

The differential equation (4.9) is the harmonic map equation for a map g

from D into
(

C(w, w̄), dwdw̄
|w2−w̄2|

)
.

Proof. Consider a possibly singular Riemannian metric λ2dwdw̄ on the extended
complex plane C(w, w̄). Denote by Γw

ww the Christoffel symbol of the metric with
respect to (w, w̄). Then for a map g : M −→ C̄(w, w̄), the tension field τ (g) of g is
given by

(4.10) τ (g) = 4λ−2 (gzz̄ + Γw
wwgzgz̄) .

By comparing the equations (4.7) and τ (g) = 0, one can readily see that (4.7) is a
harmonic map equation if and only if µ2

1 = µ2
2.

In order to find a suitable metric on C̄(w, w̄) with which (4.7) is a harmonic map
equation, one simply needs to solve the first order PDE:⎧⎪⎪⎨

⎪⎪⎩
Γw

ww =
2|w|2w̄
1 − |w|4 if µ1 = µ2 �= 0,

Γw
ww = − 2w

w2 − w̄2
if µ1 = −µ2 �= 0,

whose solutions are λ2 = 1/|1 − |w|4| and λ2 = 1/|w2 − w̄2|, respectively. �
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Corollary 4.1. Let g : D →
(
C(w, w̄), dwdw̄

|w2−w̄2|

)
be a harmonic map. Define a

function f on D by

f =
2ḡz

g2 − ḡ2
.

Then

ϕ(z, z̄) = 2
∫ z

z0

Re
(

ex3 1
2
f(1 − g2), e−x3

√
−1
2

f(1 + g2), fg

)
dz

is a weakly conformal harmonic map of D into Sol.

Remark 1. Direct computation shows the following formulas:

(1) The sectional curvature of (C(w, w), dwdw̄/|1 − |w|4|) is
−8|w|2/|1 − |w|4|.

(2) The sectional curvature of (C(w, w), dwdw̄/|w2 − w̄2|) is
−8|w|2/|w2 − w̄2|.

Remark 2. The normal Gauss map of a non-vertical minimal surface in the Heisen-
berg group Nil is a harmonic map into the hyperbolic 2-space. See [7].

Aiyama and Akutagawa [3] studied the Dirichlet problem at infinity for proper
harmonic maps from the unit disc to the extended complex plane equipped with
the Kokubu metric. To close this paper we propose the following problem:

Problem 4.1. Study the Dirichlet problem at infinity for harmonic maps into
the extended complex plane with metric dwdw̄/|w2 − w̄2| and apply it for the
construction of minimal surfaces in Sol.
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