
A Weight-based Map Matching Method in Moving Objects Databases1

Huabei Yin Ouri Wolfson

Department of Computer Science
851 South Morgan (M/C 152)

Chicago, IL 60607, USA
{hyin, wolfson}@cs.uic.edu

Abstract

In location management, the trajectory represents the

motion of a moving object in 3D space-time, i.e., a
sequence of (x, y, t). Unfortunately, location technologies,
cannot guarantee error-freedom. Thus, map matching
(a.k.a. snapping), matching a trajectory to the roads on
the map, is necessary. We introduce a weight-based map
matching method, and experimentally show that, for the
offline situation, on average, our algorithm can get up to
94% correctness depending on the GPS sampling interval.

1. Introduction

We view location management, i.e., the management of

transient location information, as the problem of managing
a set of spatio-temporal points of the form (x, y, t). Such a
point indicates that a moving object m was at geographic
location with coordinates (x, y) at time t. These spatio-
temporal points may be generated, for instance, by a GPS
receiver on board m. We will call such point a GPS point,
although it may be generated by other means.

The important problem arising in location management
is that GPS receivers are imprecise. Indeed, a data point of
a typical GPS receiver has an error that ranges from
several feet to tens of meters. In most cases, the motion of
a vehicle occurs on a road network, and thus the error of a
GPS point can be corrected by matching the GPS point
onto the road network. Indeed, it is impossible to answer
many queries precisely if the locations of moving objects
are off-the-road, i.e., "retrieve the number of vehicles that
are between exits 48A and 52A of I90 in the last hour".
Thus, snapping, namely matching a trajectory to the
streets/roads on the map, is necessary.

Currently, the prevalent map matching method available
is a straightforward one which snaps each GPS point to the

 1 Researches supported by NSF Grants ITR-0086144,
NSF-0209190, 0330342, 0326284.

closest road segment. However, this method will often
produce incorrect results. For example, Figure 1 illustrates
a road network and several GPS points. Clearly the vehicle
traveled on road segment A, but this is deduced only by
examining the entire sequence of GPS points, and
snapping GPS points a, b onto the closest road segment
will produce an incorrect result.

Figure 1. A trajectory snapping example

There are two kinds of snapping. One is called the
offline snapping problem, which finds the overall route
(i.e., a sequence of arcs in the map) of a vehicle after the
trip is over. The other is called the online snapping, which
during a trip, in real time, determines the road segment on
which the vehicle currently is located. In this paper we
concentrate only on the offline snapping problem due to
the space limitation, and propose a new weight-based
method for the offline situation.

The rest of the paper is organized as follows. Section 2
presents our offline snapping approach and the experiment.
Section 3 discusses relevant literature. Section 4 concludes
this paper.

2. Offline Snapping

Let us introduce our snapping approach first.

Remember that, given a trajectory Tr from a source
location to a destination location, the objective of
trajectory snapping is to find a sequence of arcs in the map
that is most resemble to the correct route of Tr. Our offline
approach views the similarity as the distance between the
trajectory Tr and the snapped route R, which is in turn to
be defined as the sum of the distances between Tr and
every arc of R. So, given a map M, and a trajectory Tr, we
can compute the distances between Tr and every arc e in M
in the offline environment. Consider each distance as the
weight of the respective arc, the smallest weight path
between the start arc and the end arc is the snapped route

of Tr. Here, we apply Dijkstra's shortest path algorithm to
get such smallest weight path.

To compute the weight of each arc, we have the
following observations: (1) the possible route of the
trajectory should be close to the geometry of the arc; (2)
each arc of the possible route of the trajectory is in the
same or similar direction to that of the corresponding
subtrajectory. These observations are two factors
contributing to the weight for each arc. However, the
relative contribution of each factor is unclear and
impossible to determine precisely a priori. So, we propose
a 3D-view (3D for short) weight algorithm to compute the
weight of each arc. Our 3D weight algorithm doesn't need
to fine-tune the coefficients of these factors. Intuitively, the
motion on the snapped route should be close to the motion
of the trajectory in 3D. Given an arc e, e can be raised from
its 2D polyline to 3D as follows. First find the time-points
ti, tj of the closest locations on Tr to the start vertex and
end vertex of e respectively. Then use linear interpolation
of the 2D polyline between these times, to raise the 2D
polyline to 3D. Then the weight of e is defined as the
integral of Euclidean distance between the subtrajectory
from ti to tj and the 3D arc, divided by |tj – ti|.

Now, let us present our experiment.
In our experiments, we used a map of the Chicago

metropolitan area. We actually drove in this area and
collected 28 real trajectories as the experimental data. The
GPS sampling interval is one second. The correct route of
each trajectory is recorded manually by the traveler. For
each trajectory, we considered sampling every k seconds,
where k = 2, 4, 6, 8, 10, 20, 30, 40, 50, 60, 120, 300, 600,
or 900. We use the correct matching percentage to evaluate
the routes produced by the offline snapping algorithm.
Consider a route R' that is obtained by applying the offline
snapping algorithm on Tr. We compute the edit distance
between R' and the correct route R of Tr, where edit
distance is the smallest number of insertions, deletions,
and substitutions required to change R' to R. We use the
dynamic programming method [2] to compute the edit
distance. The correct matching percentage of R' is
calculated by the following equation:

OFFcorrect = 100×(1 – ed/n) (1)
ed is the edit distance, and n is the number of arcs in the
correct route.

The straightforward closest-block snapping maps the
trajectory vertices to the closest arc in the map. If two
consecutive trajectory vertices are snapped to the same arc
e, e is recorded once in the resulting route. Thus, no two
consecutive arcs in the snapped route are the same.

On average, our algorithm is correct up to 94% of the
time, depending on the GPS sampling interval. It is always
superior to the straightforward closest-block snapping, and
the superiority is up to 92%. In addition, for the offline
situation, it's difficult to correctly snap the trajectory to the
streets when GPS sampling intervals are larger than 120

seconds – the average correctness of both snapping
methods is less than 60%.

3. Related Works

In the literature of map matching, surprisingly few

works have been done considering the importance of the
problem. The existing methods [1][3][4] use a GPS
receiver to track the moving objects. Compared with our
weight-based snapping algorithm, these techniques have
following drawbacks: (1) they do not discuss the role of
the time-interval between two consecutive GPS samples,
whereas we do so. The resulting route for the offline
situation may be disconnected when the GPS sampling
interval is large. (2) It is difficult to decide the relative
significance of parameters of the similarity in [3]. This
relative significance is captured by the coefficients of these
parameters, which are required as input. Whereas our 3D
view weight algorithm successfully avoids this decision. (3)
Their algorithms are aimed at the online situation. (4) One
kind of the input data, the errors associated with the map,
is required by [3] but it is not usually available for ordinary
users; in contrast, it is easy to obtain the input data for our
weight-based method.

4. Conclusion

In this paper we addressed the problem of snapping a

trajectory to the road network after the trip is over. We
introduced the weight-based snapping algorithm for this
purpose, and compared it with the straightforward method
which snaps a GPS point to the closest road segment. We
showed that for the offline situation the weight-based
snapping algorithm outperforms the straightforward
method by tens of percentage points.

Our weight-based snapping algorithm can be easily
extended to solve the online problem by returning the last
arc of the offline snapped route as the online result.

References

[1] D. Bernstein, A. Kornhauser, "An introduction to map
matching for personal navigation assistants". New Jersey TIDE
Center, 1996. http://www.njtude.org/reports/mapmatching.pdf

[2] http://www.merriampark.com/ld.htm

[3] M.A. Quddud et al, "A General Map Matching Algorithm
for Transport Telematics Applications". Centre for Transport
Studies, Imperial College London, 2002: http://www.cts.cv.ic.ac.
uk/documents/publications/iccts00271.pdf

[4] C.E. White, D. Bernstein, A.L. Kornhauser, "Some map
matching algorithms for personal navigation assistants".
Transportation Research Part C, 8, pp 91-108, 2000.

