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Abstract. We present a weighted version of the Caffarelli-Kohn-Nirenberg
inequality in the framework of variable exponents. The combination of this

inequality with a variant of the fountain theorem, yields the existence of infin-

itely many solutions for a class of non-homogeneous problems with Dirichlet
boundary condition.

1. Introduction

Nonlinear problems with variable exponents are motivated by numerous models in
the applied sciences that are driven by some classes of non-homogeneous partial
differential operators. In some circumstances, the standard analysis based on the
theory of usual Lebesgue and Sobolev function spaces, Lp and W 1,p, is not appro-
priate in the framework of materials that involve non-homogeneities. For instance,
both electro-rheological “smart” fluids and phenomena arising in image processing
are properly described by nonlinear models in which the exponent p is not nec-
essarily constant. The variable exponent describes the geometry of the material
which is allowed to change its hardening exponent at different points. This leads to
the analysis of variable exponent Lebesgue and Sobolev function spaces (denoted
by Lp(x) and W 1,p(x)), where p is a real-valued (non-constant) function. We point
out important contributions of Halsey [21] and Zhikov [31] in strong relationship
with the behavior of strongly anisotropic materials. This is mainly achieved in
the framework of the homogenization and nonlinear elasticity. We refer, e.g., to
Acerbi and Mingione [3] and Ružička [29] (electrorheological “smart” fluids) and
Antontsev and Shmarev [6] (nonlinear Darcy’s law in porous media). A thorough
variational analysis of the problems with variable exponents has been developed in
the recent monograph by Rădulescu and Repovš [28] (see also the survey paper by
Rădulescu [27] and the important contributions of Pucci et al. [12, 26]).

Let Ω ⊂ RN (N ≥ 2) be a bounded domain with smooth boundary. The
following Caffarelli-Kohn-Nirenberg inequality [9] states that given p ∈ (1, N) and
real numbers a, b and q such that

−∞ < a <
N − p
p

, a ≤ b ≤ a+ 1, q =
Np

N − p(1 + a− b)
,
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2 A. BAHROUNI, V.D. RĂDULESCU, AND D.D. REPOVŠ

there is a positive constant Ca,b such that for all u ∈ C1
c (Ω),

(1.1)

(∫
Ω

|x|−bq|u|q dx
)p/q

≤ Ca,b
∫

Ω

|x|−ap|∇u|p dx .

This result goes back to the celebrated Hardy inequality [22], which establishes that
if 1 ≤ p < N , then for all u ∈ C∞0 (RN \ {0})∥∥∥∥u(x)

‖x‖

∥∥∥∥
Lp(RN )

≤ p

N − p
‖∇u‖Lp(RN ),

where ‖x‖ =
√
x2

1 + · · ·+ x2
n and the constant p

N−p is known to be sharp. Inequal-

ity (1.1) has been widely analyzed in many different settings (see, e.g., [1, 2, 5, 10,
11, 14, 15, 16, 19]). Nowadays, there is vast literature on this subject, for example,
the MathSciNet search shows about 5000 research works related to this topic.

The main aim of this paper is to present an analogoue of the Caffarelli-Kohn-
Nirenberg inequality in the framework of variable exponents. To the best of our
knowledge, there are very few results dealing with this topic. For instance, the
following result was established in [24]: there exists a positive constant C such that

(1.2)

∫
Ω

|u(x)|p(x) dx ≤ C
∫

Ω

|−→a (x)|p(x)|∇u(x)|p(x) dx, for all u ∈ C1
c (Ω),

where Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary, while −→a :
Ω→ RN and p : Ω→ R are functions of class C1, satisfying for some a0 > 0

(1.3) div (−→a (x)) ≥ a0 > 0, for all x ∈ Ω,

provided that

(1.4) −→a (x) · ∇p(x) = 0, for all x ∈ Ω.

In this paper, we establish a more involved version of inequality (1.2), which
combines the contributions of several quantities. In order to introduce the main
abstract result of the paper, we assume that Ω ⊂ RN (N ≥ 2) is a bounded domain
with smooth boundary and a, p : Ω→ R are given functions such that the following
hypotheses are fulfilled:

(A) a is a function of class C1 and there exist x0 ∈ Ω, r > 0, s ∈ (1,+∞) such
that

|a(x)| 6= 0, for all x ∈ Ω \ {x0} and |a(x)| ≥ |x− x0|s, for all x ∈ B(x0, r); and

(P) p is a function of class C1 and p(x) ∈ (2, N) for all x ∈ Ω.
The main abstract result of this paper is the following weighted Caffarelli-Kohn-

Nirenberg inequality.

Theorem 1.1. Assume that conditions (A) and (P ) hold. Let Ω ⊂ RN (N ≥ 2)
be a bounded domain with smooth boundary. Then there exists a positive constant
β such that∫

Ω

|a(x)|p(x)|u(x)|p(x)dx ≤ β
∫

Ω

|a(x)|p(x)−1||∇a(x)||u(x)|p(x)dx

+ β

(∫
Ω

|a(x)|p(x)|∇u(x)|p(x)dx+

∫
Ω

|a(x)|p(x)|∇p(x)||u(x)|p(x)+1dx

)
+ β

∫
Ω

|a(x)|p(x)−1|∇p(x)||u(x)|p(x)−1dx.
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for all u ∈ C1
c (Ω).

We point out that, by hypotheses (A) and (P ), the potential ∇a can vanish in
Ω and we do not assume that ∇p(x) · a(x) = 0, for all x ∈ Ω (see assumption (1.4)
related to inequality (1.3)).

Next, we are concerned with the existence of infinitely many solutions for the
problem

(1.5)

 −div (B(x)|∇u|p(x)−2∇u) + (A(x)|u|p(x)−2 + C(x)|u|p(x)−3)u =

(b(x)|u|q(x)−2 −D(x)|u|p(x)−1)u in Ω,
u = 0 on ∂Ω ,

where the variable exponent q fulfills a subcritical condition (namely, in the sense
of Sobolev-type embeddings for spaces with variable exponent). We assume that
b : Ω→ R and the weighted potentials A, B, C, D are defined by

(1.6)


A(x) = |a(x)|p(x)−1|∇a(x)|
B(x) = |a(x)|p(x)

C(x) = |a(x)|p(x)−1|∇p(x)|
D(x) = B(x)|∇p(x)|.

The potential b is assumed to satisfy the following hypothesis:

(B) b ∈ L∞(Ω) and b > 0 in Ω.

In the final part of this paper, by combining our generalized Caffarelli-Kohn-
Nirenberg inequality with a variant of the fountain theorem, we shall prove that
problem (1.5) has infinitely many solutions.

2. Terminology and the abstract setting

In this section we recall some basic definitions and properties concerning the Lebesgue
and Sobolev spaces with variable exponent. We refer to [17, 28] and the references
therein.

Consider the set

C+(Ω) = {p ∈ C(Ω); p(x) > 1 for all x ∈ Ω}.

For all p ∈ C+(Ω) we define

p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) =

{
u; u is measurable real-valued function such that

∫
Ω

|u(x)|p(x) dx <∞
}
.

This vector space is a Banach space if it is endowed with the Luxemburg norm,
which is defined by

|u|p(x) = inf

{
µ > 0;

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
.

The function space Lp(x)(Ω) is reflexive if and only if 1 < p− ≤ p+ < ∞ and
continuous functions with compact support are dense in Lp(x)(Ω) if p+ <∞.
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Let Lq(x)(Ω) denote the conjugate space of Lp(x)(Ω), where 1/p(x)+1/q(x) = 1.
If u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω) then the following Hölder-type inequality holds:

(2.7)

∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

q−

)
|u|p(x)|v|q(x) .

Moreover, if pj ∈ C+(Ω) (j = 1, 2, 3) and

1

p1(x)
+

1

p2(x)
+

1

p3(x)
= 1

then for all u ∈ Lp1(x)(Ω), v ∈ Lp2(x)(Ω), w ∈ Lp3(x)(Ω)

(2.8)

∣∣∣∣∫
Ω

uvw dx

∣∣∣∣ ≤ ( 1

p−1
+

1

p−2
+

1

p−3

)
|u|p1(x)|v|p2(x)|w|p3(x) .

The inclusion between Lebesgue spaces also generalizes the classical framework,
namely if 0 < |Ω| < ∞ and p1, p2 are variable exponents such that p1 ≤ p2 in Ω
then there exists a continuous embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

Proposition 2.1. If we denote

ρ(u) =

∫
Ω

|u|p(x)dx, ∀u ∈ Lp(x)(Ω),

then
(i) |u|p(x) < 1(= 1;> 1)⇔ ρ(u) < 1(= 1;> 1);

(ii) |u|p(x) > 1⇒ |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x);

(iii) |u|p(x) < 1⇒ |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x).

Proposition 2.2. If u, un ∈ Lp(x)(Ω) and n ∈ N, then the following statements
are equivalent:
(1) lim

n→+∞
|un − u|p(x) = 0;

(2) lim
n→+∞

ρ(un − u) = 0;

(3) un → u in measure on Ω and lim
n→+∞

ρ(un) = ρ(u).

If k is a positive integer and p ∈ C+(Ω), then we define the variable exponent
Sobolev space by

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω); Dαu ∈ Lp(x)(Ω), for all |α| ≤ k}.

Here α = (α1, . . . , αN ) is a multi-index, |α| =
∑N
i=1 αi, and

Dαu =
∂|α|u

∂α1
x1 . . . ∂

αN
xN

.

On W k,p(x)(Ω) we consider the following norm

‖u‖k,p(x) =
∑
|α|≤k

|Dαu|p(x).

Then W k,p(x)(Ω) is a reflexive and separable Banach space if 1 < p− ≤ p+ < +∞.

Let W
k,p(x)
0 (Ω) denote the closure of C∞0 (Ω) in W k,p(x)(Ω).

The Lebesgue and Sobolev spaces with variable exponents coincide with the usual
Lebesgue and Sobolev spaces provided that p is constant. According to Rădulescu
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and Repovš [28, pp. 8-9], these function spaces have some unusual properties, such
as:

(i) Assuming that 1 < p− ≤ p+ < ∞ and p : Ω → [1,∞) is a smooth function,
the following co-area formula∫

Ω

|u(x)|pdx = p

∫ ∞
0

tp−1 |{x ∈ Ω; |u(x)| > t}| dt

has no analogue in the framework of variable exponents.
(ii) Spaces Lp(x) do not satisfy the mean continuity property. More exactly,

if p is nonconstant and continuous in an open ball B(x0), then there is some u ∈
Lp(x)(B(x0)) such that u(x+h) 6∈ Lp(x)(B(x0 +h)) for every h ∈ RN with arbitrary
small norm.

(iii) Function spaces with variable exponent are never invariant with respect to
translations. The convolution is also limited. For instance, the classical Young
inequality

|f ∗ g|p(x) ≤ C |f |p(x) ‖g‖L1

remains valid if and only if p is constant.

3. Weighted Caffarelli-Kohn-Nirenberg inequality for p(x)-Laplacian

We start with the following weighted logarithmic inequality.

Lemma 3.1. Let condition (P ) be satisfied. Then there exists a positive constant
µ such that∫

supp (u)

|∇p(x)||u(x)|p(x)| log(|u(x)|)|dx ≤ µ
∫

Ω

|∇p(x)|
(
|u(x)|p(x)−1 + |u(x)|p(x)+1

)
dx,

for all u ∈ C1
c (Ω).

Proof. Let u ∈ C1
c (Ω). We define

α1 = sup
0<t≤1

t| log(t)| <∞ and α2 = sup
1<t

t−1 log(t) <∞.

We observe that 0 < α1 < +∞ and 0 < α2 < +∞. Let

Ω1 = {x ∈ supp (u); |u(x)| ≤ 1} and Ω2 = {x ∈ supp (u); |u(x)| > 1}.
Then∫

supp (u)

|∇p(x)||u(x)|p(x)| log(|u(x)|)|dx =

∫
Ω1

|∇p(x)||u(x)|p(x)| log(|u(x)|)|dx

+

∫
Ω2

|∇p(x)||u(x)|p(x)| log(|u(x)|)|dx

≤ α1

∫
Ω1

|∇p(x)||u(x)|p(x)−1dx

+α2

∫
Ω2

|∇p(x)||u(x)|p(x)+1dx

≤ µ(

∫
Ω

|∇p(x)||u(x)|p(x)−1dx

+

∫
Ω

|∇p(x)||u(x)|p(x)+1dx),

where µ = max(α1, α2). This proves the lemma. �
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Proof of Theorem 1.1. We prove in what follows our weighted version of the
Caffarelli-Kohn-Nirenberg inequality with variable exponent.

We define the function W : RN → RN by W (y) = y for all y ∈ RN . We choose
ε > 0 small enough so that

(3.9) 0 < ε <
N

p+‖W‖L∞(Ω)
.

By a straightforward computation we can deduce that for all u ∈ C1
c (Ω) we have

div (|a(x)u(x)|p(x)W (x)) = |a(x)|p(x)|u(x)|p(x)div (W (x))

(3.10)

+ p(x)|a(x)|p(x)|u(x)|p(x)−2u(x)∇u(x) ·W (x)

+ p(x)|u(x)|p(x)|a(x)|p(x)−2a(x)∇a(x) ·W (x)

+ |u(x)a(x)|p(x) log(|a(x)u(x)|)∇p(x).W (x), ∀x ∈ Ω.(3.11)

Now the flux-divergence theorem implies that

∫
Ω

div (|a(x)u(x)|p(x)W (x))dx = 0.

It follows from Lemma 3.1 and conditions (A) and (P ), that∫
Ω

|a(x)u(x)|p(x)div (W (x))dx ≤ p+

∫
Ω

|u(x)|p(x)|a(x)|p(x)−1|∇a(x)||W (x)|dx

+

∫
Ω

|a(x)u(x)|p(x)| log(|u(x)a(x)|)||∇p(x)||W (x)|dx

+ p+

∫
Ω

|u(x)|p(x)−1|a(x)|p(x)|∇u(x)||W (x)|dx

≤ p+‖W‖L∞(Ω)

∫
Ω

|a(x)|p(x)−1||∇a(x)||u(x)|p(x)dx

+ µ‖W‖L∞(Ω)

∫
Ω

|a(x)|p(x)−1|∇p(x)||u(x)|p(x)−1dx

+ µ‖a‖L∞(Ω)‖W‖L∞(Ω)

∫
Ω

|a(x)|p(x)|∇p(x)||u(x)|p(x)+1dx

+ εp+‖W‖L∞(Ω)

∫
Ω

|a(x)|p(x)|u(x)|p(x)dx

+ p+ ‖W‖L∞(Ω)

εp−−1

∫
Ω

|a(x)|p(x)|∇u(x)|p(x)dx.(3.12)

Next, we combine div (W (x)) = N in Ω with relation (3.12) and the following
Young inequality:

ap−1b ≤ εap +
bp

εp−1
, for all a, b, ε ∈ (0,∞), p ∈ (1,∞).

It follows that
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(N − p+‖W‖L∞(Ω)ε)

∫
Ω

|a(x)u(x)|p(x)dx ≤ p+ ‖W‖L∞(Ω)

εp−−1

∫
Ω

|a(x)|p(x)|∇u(x)|p(x)dx

+ p+‖W‖L∞(Ω)

∫
Ω

|a(x)|p(x)−1||∇a(x)||u(x)|p(x)dx

+ c

∫
Ω

|a(x)|p(x)|∇p(x)||u(x)|p(x)+1dx(3.13)

+ µ‖W‖L∞(Ω)

∫
Ω

|a(x)|p(x)−1|∇p(x)||u(x)|p(x)−1dx,(3.14)

with c = µ‖a‖L∞(Ω)‖W‖L∞(Ω). Invoking (3.9), we set

β =
max(c, p+ ‖W‖L∞(Ω)

εp−−1
, p+‖W‖L∞(Ω), µ‖W‖L∞(Ω))

(N − p+‖W‖L∞(Ω)ε)
.

This completes the proof of Theorem 1.1. �

We denote by W
1,p(x)
0,a(x) (Ω) the closure of C1

c (Ω) under the norm

‖u‖ = ||B(x)|
1

p(x)∇u(x)|p(x) + |A(x)
1

p(x)u(x)|p(x) + ||D(x)|
1

p(x)+1u(x)|p(x)+1+

||C(x)|
1

p(x)−1u(x)|p(x)−1,

where the potentials A, B, C, D are defined in (1.6).
(There is no modification since the norm on Lp(x) is denoted by | |p(x). But in the

above equality the first and the fourth bars are for the norm on Lp(x), while the
second and the third bars denote the absolute value of B, A, D, and C.)

As a corollary of Theorem 1.1, we prove the following compactness property.

Lemma 3.2. Assume that conditions (A) and (P ) hold. Furthermore, assume

that p− > 1 + s. Then W
1,p(x)
0,a(x) (Ω) is compactly embedded in Lq(Ω) for each q ∈

(1, Np−

N+sp+ ). Moreover, the same conclusion holds if we replace Lq(Ω) by Lq(x)(Ω),

provided that q+ < Np−

N+sp+ .

Proof. Fix q ∈ (1, Np−

N+sp+ ). Let (un) be a bounded sequence in W
1,p(x)
0,a(x) (Ω). Since

x0 ∈ Ω, it follows that there exists ε0 > 0 such that

0 < ε0 < min(1, r) and B(x0, ε0) ⊂ Ω.

Fix ε > 0 so that ε < ε0. From condition (A), there exists a0 > 0 such that
a(x) ≥ a0, for all x ∈ Ω \ B(x0, ε). Hence, by invoking Theorem 1.1 we deduce
that the sequence (un) is bounded in Lp(x)(Ω \ B(x0, ε)). Consequently, (un) is

bounded in W 1,p(x)(Ω\B(x0, ε)). Since W 1,p(x)(Ω\B(x0, ε)) ⊂W 1,p−(Ω\B(x0, ε))

we deduce that (un) is bounded in W 1,p−(Ω \ B(x0, ε)). For all s > 0 we have
Np−/(N−p−) > Np−/(N+sp+). Thus, since 1 < q < Np−/(N+sp+), the classical
compact embedding theorem shows that there exists a convergent subsequence of
(un), still denoted by (un), in Lq(Ω \ B(x0, ε)). Thus, for any large enough n and
m we have

(3.15)

∫
Ω\B(x0,ε)

|un − um|qdx < ε.
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Now the Hölder inequality for variable exponent spaces implies∫
B(x0,ε)

|un − um|qdx =

∫
B(x0,ε)

|a(x)|q|a(x)|−q|un − um|qdx

≤ c‖|a(x)|−qχB(x0,ε)‖( p(x)
q )′
‖|a(x)|q|un − um|q‖ p(x)

q
,(3.16)

where c is a positive constant and (p(x)
q )′ = p(x)

p(x)−q . By Theorem 1.1 and Proposition

2.1, there exist positive constants c1 and c2 such that

‖|a(x)|q|un − um|q‖ p(x)
q
≤ c1(

∫
Ω

|a(x)|p(x)|un − um|p(x)dx)
q

p−

+ c1(

∫
Ω

|a(x)|p(x)|un − um|p(x)dx)
q

p+

≤ c2.(3.17)

Taking into account relations (3.16) and (3.17) we deduce that

(3.18)

∫
B(x0,ε)

|un − um|qdx ≤ c2‖|a(x)|−qχB(x0,ε)‖( p(x)
q )′

.

By invoking Proposition 2.1, we obtain

‖|a(x)|−qχB(x0,ε)‖( p(x)
q )′
≤ (

∫
Ω

|a(x)|
−qp(x)

(p(x)−q)χB(x0,ε)dx)((
p(x)
q )′)+

+ (

∫
Ω

|a(x)|
−qp(x)

(p(x)−q)χB(x0,ε)dx)((
p(x)
q )′)− .(3.19)

Using condition (A) and ε < 1, we infer that∫
B(x0,ε)

|a(x)|
−qp(x)

(p(x)−q) dx ≤
∫
B(0,ε)

|x|
−sqp+

(p−−q) dx

= wn

∫ ε

0

rN−1r
−sqp+

(p−−q) dr(3.20)

= wn
εα

α
,(3.21)

where α = N − sqp+

(p−−q) > 0 and wN is the area of the unit ball in RN . Thus, it

follows from (3.15), (3.18) and (3.20) that∫
Ω

|un − um|qdx ≤ c(ε+ εα1 + εα2),

where c is a positive constant, α1 = ((p(x)
q )′)−α, and α2 = ((p(x)

q )′)+α. We conclude

that (un) is a Cauchy sequence in Lq(Ω).
The same proof still applies if we replace Lq(Ω) by Lq(x)(Ω). The conclusion of

the lemma is now evident. �

4. A multiplicity property for a problem with variable exponent

In this section, we work under conditions introduced in Lemma 3.2. We investigate
the existence of infinitely many solutions of problem (1.5), where b ∈ L∞(Ω) and

(4.22) q(x) ∈
(

1,min

{
Np−

N + sp+
, p− − 1

})
for all x ∈ Ω.
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We say that u ∈W 1,p(x)
0,a(x) (Ω) is a weak solution of problem (1.5) if∫

Ω

B(x)|∇u(x)|p(x)−2∇u(x)∇v(x)dx+

∫
Ω

A(x)|u(x)|p(x)−2u(x)v(x)dx

+

∫
Ω

D(x)|u(x)|p(x)−1u(x)v(x)dx+

∫
Ω

C(x)|u(x)|p(x)−3u(x)v(x)dx

−
∫

Ω

b(x)|u(x)|q(x)−2u(x)v(x)dx = 0,

for all v ∈W 1,p(x)
0,a(x) (Ω).

Standard argument can be used to show that (W
1,p(x)
0,a(x) (Ω), ‖.‖) is a reflexive

Banach separable space. Then, by [20], there exist (en) ⊂ W
1,p(x)
0,a(x) (Ω) and e∗n ⊂

(W
1,p(x)
0,a(x) (Ω))∗ such that

e∗n (em) = 1 if n = m and e∗n (em) = 0 if n 6= m.

It follows that

W
1,p(x)
0,a(x) (Ω) = span {en, n ≥ 1} and (W

1,p(x)
0,a(x) (Ω))∗ = span {e∗n, n ≥ 1} .

For any integer k ≥ 1, denote

Ek = span {ek} , Yk = ⊕kj=1Ej and Zk = ⊕∞j=kEj .

The main result of this section is the following multiplicity property.

Theorem 4.1. Assume that p− > 1 + s and that conditions (A), (B) and (P ) are
fulfilled. Then problem (1.5) has infinitely many solutions.

Remark 4.2. The main problem in treating equation (1.5) is the presence of the
indefinite potential a(x), which can vanish at x0. To overcome this difficulty, we
have proved a new type of the Caffarelli-Kohn-Nirenberg inequality, Theorem 1.1,
which is very useful to prepare the variational framework of equation (1.5), for
example Lemma (3.2). Moreover, we remark that the functions A, B, C, and D
that appear in equation (1.5) are strongly related to our Caffarelli-Kohn-Nirenberg
type theorem. To the best of our knowledge, there are no known results on the
existence of solutions to problem (1.5). Hence, in order to prove Theorem 4.1, we
use the previous section in relationship with some technical lemma related to the
critical point theorem established by Zou.

In order to prove Theorem 4.1 we define the functional I : W
1,p(x)
0,a(x) (Ω)→ R by

I(u) =

∫
Ω

B(x)

p(x)
|∇u(x)|p(x)dx+

∫
Ω

A(x)

p(x)
|u(x)|p(x)dx+

∫
Ω

C(x)

p(x)− 1
|u(x)|p(x)−1dx

+

∫
Ω

D(x)

p(x) + 1
|u(x)|p(x)+1dx−

∫
Ω

b(x)
|u(x)|q(x)

q(x)
dx.
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Standard arguments show that I ∈ C1(W
1,p(x)
0,a(x) (Ω),R) and

〈I ′(u), v〉 =

∫
Ω

B(x)|∇u(x)|p(x)−2∇u(x)∇v(x)dx+

∫
Ω

A(x)|u(x)|p(x)−2u(x)v(x)dx

+

∫
Ω

D(x)|u(x)|p(x)−1u(x)v(x)dx+

∫
Ω

C(x)|u(x)|p(x)−3u(x)v(x)dx

−
∫

Ω

b(x)|u(x)|q(x)−2u(x)v(x),

for all u, v ∈ W 1,p(x)
0,a(x) (Ω). Thus, in order to find weak solutions of problem (1.5) it

suffices to find critical points of the associated energy I.
Consider the functional

Iλ(u) = J(u)− λK(u),

where

J(u) =

∫
Ω

B(x)

p(x)
|∇u(x)|p(x)dx+

∫
Ω

C(x)

p(x)− 1
|u(x)|p(x)−1dx

+

∫
Ω

A(x)

p(x)
|u(x)|p(x)dx+

∫
Ω

D(x)

p(x) + 1
|u(x)|p(x)+1dx

and

K(u) =

∫
Ω

b(x)
|u(x)|q(x)

q(x)
dx.

Then any critical point of I1 is a weak solution of problem (1.5).
An important ingredient of the proof of Theorem 4.1 is the following version of

the fountain theorem, see Zou [32].

Theorem 4.3. Suppose that the functional Iλ defined above satisfies the following
conditions:
(T1) Iλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2]. Furthermore,

Iλ(−u) = Iλ(u) for all (λ, u) ∈ [1, 2]× E, where E := W
1,p(x)
0,a(x) (Ω);

(T2) B(u) ≥ 0, B(u) → ∞ as ‖u‖ → ∞ on any finite-dimensional subspace of
E; and
(T3) there exist ρk > rk > 0 such that

ak(λ) := inf
u∈Zk,‖u‖=ρk

Iλ(u) ≥ 0 > bk(λ) = max
u∈Yk,‖u‖=rk

Iλ(u) for λ ∈ [1, 2] ,

dk(λ) = inf
u∈Zk,‖u‖≤ρk

Iλ(u)→ 0 as k →∞ uniformly for λ ∈ [1, 2].

Then there exist a sequence of real numbers (λn) converging to 1 and u(λn) ∈ Yn
such that I ′λn

|Yn (uλn
) = 0 and (Iλn

) (u (λn)) → ck ∈ [dk(2), bk(1)], as n → ∞. In
particular, for fixed k ∈ N, if (u(λn)) has a convergent subsequence to uk, then I1
has infinitely many nontrivial critical points (uk) ⊂ E\ {0} satisfying I1 (uk)→ 0−

as k →∞.

We start with the following auxiliary property.

Lemma 4.4. Assume that condition (B) holds. Then we have

βk = sup
u∈Zk,‖u‖=1

∫
Ω

b(x)
|u(x)|q(x)

q(x)
dx→ 0 as k → +∞.
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Proof. It is clear that (we keep ”0 <” since b > 0 and ‖u‖ = 1) 0 < βk+1 ≤ βk, so
that βk → β ≥ 0 as k → +∞. For every k ≥ 0, by definition of βk, there exists

uk ∈ Zk such that ‖uk‖ = 1 and

∫
Ω

b(x)
|uk|q(x)

q(x)
dx >

βk
2

. Since uk ∈ Zk, it follows

that uk ⇀ 0 in W
1,p(x)
0,a(x) (Ω). Lemma 3.2 implies that, up to a subsequence,∫

Ω

b(x)
|uk|q(x)

q(x)
dx→ 0 as k → +∞.

Thus, β = 0 and the proof is complete. �

The next result establishes that B is coercive on finite-dimensional subspaces of

W
1,p(x)
0,a(x) (Ω).

Lemma 4.5. Assume that hypotheses of Theorem 4.1 are fulfilled. Then K(u)→
+∞ as ‖u‖ → +∞ on any finite-dimensional subspace of W

1,p(x)
0,a(x) (Ω).

Proof. Let F be a finite-dimensional subspace of W
1,p(x)
0,a(x) (Ω). Put

b̃(x) =
b(x)

q(x)
, for all x ∈ Ω.

We start by showing that there exists ε1 > 0 such that

(4.23) m
{
x ∈ Ω; b̃(x) |u|q(x) ≥ ε1 ‖u‖q(x)

}
≥ ε1, for all u ∈ F\ {0}.

Otherwise, for any positive integer n, there exists un ∈ F\ {0} such that

(4.24) m

{
x ∈ Ω; b̃(x) |un|q(x) ≥ 1

n
‖un‖q(x)

}
<

1

n
.

Set vn(x) = un(x)
‖un‖ ∈ F\ {0}. Then ‖vn‖ = 1 for all n ∈ N and

m

{
x ∈ Ω; b̃(x) |vn|q(x) ≥ 1

n

}
<

1

n
.

Passing to a subsequence, we may assume that vn → v0 in W
1,p(x)
0,a(x) (Ω) for some

v0 ∈ F . Then ‖v0‖ = 1 and, by Lemma 3.2,

(4.25)

∫
Ω

b̃(x) |vn − v0|q(x)
dx→ 0 as n→ +∞.

We claim that there exists γ0 > 0 such that

(4.26) m
{
x ∈ Ω; b̃(x) |v0|q(x) ≥ γ0

}
≥ γ0.

Indeed, arguing by contradiction, we have

m

{
x ∈ Ω; b̃(x) |v0|q(x) ≥ 1

n

}
= 0, for all n ∈ N.

It follows that

0 ≤
∫

Ω

b̃(x) |v0|q(x)+1
dx <

‖v0‖1
n
→ 0, as n→ +∞.

Hence v0 = 0, which contradicts ‖v0‖ = 1.
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Set

Ω0 =
{
x ∈ Ω; b̃(x) |v0|q(x) ≥ γ0

}
, Ωn =

{
x ∈ Ω; b̃(x) |vn|q(x)

<
1

n

}
and

Ωcn =

{
x ∈ Ω; b̃(x) |vn|q(x) ≥ 1

n

}
.

By (4.24) and (4.26), we obtain

m (Ωn ∩ Ω0) = m (Ω0\ (Ωcn ∩ Ω0))

≥ m (Ω0)−m (Ωcn ∩ Ω0)

≥ γ0 −
1

n
>
γ0

2

for large enough n. Consequently, (the inequality is correct since q(x) > 1, yq(x) is
convex and we write |v0| = |v0 − vn + vn|)∫

Ω

b̃(x) |vn − v0|q(x)
dx ≥

∫
Ωn∩Ω0

b̃(x) |vn − v0|q(x)
dx

≥ 1

2q+−1

∫
Ωn∩Ω0

b̃(x) |v0|q(x)
dx−

∫
Ωn∩Ω0

b̃(x) |vn|q(x)
dx

≥
(

γ0

2q+−1
− 1

n

)
m (Ωn ∩ Ω0)

≥ γ2
0

2q++1
> 0,

for all large n, which is a contradiction to (4.25). Therefore (4.23) holds. For the
ε1 given in (4.23), let

Ωu =
{
x ∈ Ω; b̃(x) |u|q(x) ≥ ε1 ‖u‖q(x)

}
, for all u ∈ F\ {0} .

Then

(4.27) m (Ωu) ≥ ε1 for all u ∈ F\ {0} .

From (B) and (4.27), for any u ∈ F\ {0} with ‖u‖ ≥ 1, we get

K(u) =

∫
Ω

b̃(x) |u|q(x)
dx ≥

∫
Ωu

b̃(x) |u|q(x)
dx

≥ ε1 ‖u‖q
−
m (Ωu) ≥ ε21 ‖u‖

q−
.

This implies that K(u)→∞ as ‖u‖ → ∞ on any finite-dimensional subspace of E
and this completes the proof. �

Lemma 4.6. Suppose that the conditions of Theorem 4.1 are satisfied. Then there
exists a sequence ρk → 0+ as k → +∞ such that

ak(λ) = inf
u∈Zk,‖u‖=ρk

Iλ(u) ≥ 0, for all k ≥ k1

and

dk(λ) = inf
u∈Zk,‖u‖≤ρk

Iλ(u)→ 0 as k → +∞ uniformly for all λ ∈ [1, 2].
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Proof. By Proposition 2.1 and Lemma 3.2, we deduce that for any u ∈ Zk with
‖u‖ < 1, we have

(4.28)

Iλ(u) ≥ 1

p+

(∫
Ω

B(x)|∇u(x)|p(x)dx+

∫
Ω

A(x)|u(x)|p(x)dx

)
+

1

p+ + 1

∫
Ω

D(x)|u(x)|p(x)+1dx

+
1

p+ − 1

∫
Ω

C(x)|u(x)|p(x)−1dx− λ
∫

Ω

b(x)

q(x)
|u(x)|q(x)dx

≥ 1

4p++2(p+ + 1)
‖u‖p

++1 − λ‖u‖q
−
∫

Ω

b(x)

q(x)
(
|u(x)|
‖u‖

)q(x)dx

≥ 1

4p++2(p+ + 1)
‖u‖p

++1 − 2βk
q−
‖u‖q

−
.

We denote ρk = ( 4p++3(p++1)βk

q− )
1

p++1−q− . By invoking Lemma 4.4 we can deduce

that ρk → 0 as k → +∞. Then there exists k1 ∈ N such that ρk ≤ 1

4p++3(p++1)
for

all k ≥ k1. Relation (4.28) implies that

ak(λ) = inf
u∈Zk,‖u‖=ρk

Iλ(u) ≥ 1

2.4p++3(p+ + 1)
ρp

++1
k , for all k ≥ k1.

Furthermore, by (4.28), we have

inf
u∈Zk,‖u‖≤ρk

Iλ(u) ≥ −2βk
q−
‖u‖q

−
, for all k ≥ k1.

Having in mind Iλ(0) = 0, then

inf
u∈Zk,‖u‖≤ρk

Iλ(u) ≤ 0, ∀k ≥ k1.

Using the fact that βk, ρk → 0 as k → +∞ and the above inequalities, we deduce
that

dk(λ) = inf
u∈Zk,‖u‖=ρk

Iλ(u)→ 0 as k → +∞ uniformly for all λ ∈ [1.2].

This completes the proof. �

Lemma 4.7. Assume that hypotheses of Theorem 4.1 are fulfilled. Then, for the
sequence obtained in Lemma 4.6, there exists 0 < rk < ρk for all k ∈ N such that

bk(λ) = max
u∈Yk,‖u‖=rk

Iλ(u) < 0 for all λ ∈ [1, 2].

Proof. Let u ∈ Yk with ‖u‖ < 1 and λ ∈ [1, 2]. By (A), (P ) and (4.23), there exists
εk > 0 such that

Iλ(u) =

∫
Ω

B(x)

p(x)
|∇u(x)|p(x)dx+

∫
Ω

A(x)

p(x)
|u(x)|p(x)dx+

∫
Ω

C(x)

p(x)− 1
|u|p(x)−1dx

+

∫
Ω

D(x)

p(x) + 1
|u(x)|p(x)+1dx− λ

∫
Ω

b(x)
|u(x)|q(x)

q(x)
dx

≤ (
2

p−
+

1

p− + 1
+

1

p− − 1
)‖u‖p

−−1 − εk‖u‖q
−
m(Ωu)

≤ (
2

p−
+

1

p− + 1
+

1

p− − 1
)‖u‖p

−−1 − ε2k‖u‖q
−
.
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Since 0 < q− < q+ < p− < p+, we deduce that for small ‖u‖ = rk we have

bk(λ) < 0, for all k ∈ N.

This concludes the proof of Lemma 4.7. �

4.1. Proof of Theorem 4.1 completed. Evidently, condition (T1) in Theorem
4.3 holds. By Lemmas 4.5, 4.6 and 4.7, conditions (T2) and (T3) in Theorem 4.3
are satisfied. Then, by Theorem 4.3 there exist λn → 1 and u(λn) ∈ Yn such that

I ′λn
|Yn(u(λn)) = 0, Iλn

(u(λn))→ ck ∈ [dk(2), bk(1)]

as n→ +∞.
For the sake of notational simplicity, we always set in what follows un = u (λn)

for all n ∈ N.

Claim: the sequence (un) is bounded in W
1,p(x)
0,a(x) (Ω).

Arguing by contradiction, we suppose that (un) is unbounded in W
1,p(x)
0,a(x) (Ω).

Without loss of generality, we can assume that ‖un‖ > 1 for all n ≥ 1.
Observe first that there exists c > 0 such that for large enough n,

(4.29) 〈I ′λn
(un), un〉 ≤ ‖un‖ and |Iλn

(un)| ≤ c.

Using relation (4.29), we have

(4.30)

c ≥ Iλn
(un) ≥ 1

p+
(

∫
Ω

B(x)|∇un(x)|p(x)dx+

∫
Ω

A(x)|un(x)|p(x)dx)

+
1

p+ − 1

∫
Ω

C(x)|un|p(x)−1dx

+
1

p+ + 1

∫
Ω

D(x)|un(x)|p(x)+1dx− 2

q−

∫
Ω

b(x)|un(x)|q(x)dx.

Combining Proposition 2.1, relation (4.30) and since q+ < p− − 1 < p− < p+ <

p+ + 1, it follows that (un) is bounded in W
1,p(x)
0,a(x) (Ω). This shows that our claim is

true. So, by Lemma 3.2 and up to a subsequence, we can assume that

un ⇀ u0 in W
1,p(x)
0,a(x) (Ω)

and

un → u0 in Lq(x)(Ω).

In what follows, we show that

un → u0 in W
1,p(x)
0,a(x) (Ω).

Having in mind that (un) is a bounded sequence, we get

(4.31) lim
n→+∞

〈I ′λn
(un)− I ′λn

(u0), un − u0〉 = 0.
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Hence, (4.31) and Lemma 3.2 give as n→ +∞
o(1) = 〈I ′λn

(un)− I ′λn
(u0), un − u0〉

=

∫
Ω

B(x)(|∇un(x)|p(x)−2∇un(x)− |∇u0(x)|p(x)−2∇u0(x))(∇un(x)−∇u0(x))dx

+

∫
Ω

A(x)(|un(x)|p(x)−2un(x)− |u0(x)|p(x)−2u0(x))(un(x)− u0(x))dx

+

∫
Ω

D(x)(|un(x)|p(x)−1un(x)− |u0(x)|p(x)−1u0(x))(un(x)− u0(x))dx

+

∫
Ω

C(x)(|un(x)|p(x)−3un(x)− |u0(x)|p(x)−3u0(x))(un(x)− u0(x))dx.

We have for all n ∈ N∫
Ω

B(x)(|∇un(x)|p(x)−2∇un(x)−|∇u0(x)|p(x)−2∇u0(x))(∇un(x)−∇u0(x))dx ≥ 0,∫
Ω

A(x)(|un(x)|p(x)−2un(x)− |u0(x)|p(x)−2u0(x))(un(x)− u0(x))dx ≥ 0,∫
Ω

C(x)(|un(x)|p(x)−3un(x)− |u0(x)|p(x)−3u0(x))(un(x)− u0(x))dx ≥ 0,

and ∫
Ω

D(x)(|un(x)|p(x)−1un(x)− |u0(x)|p(x)−1u0(x))(un(x)− u0(x))dx ≥ 0.

Therefore
(4.32)

lim
n→+∞

∫
Ω

B(x)(|∇un(x)|p(x)−2∇un(x)−|∇u0(x)|p(x)−2∇u0(x))(∇un(x)−∇u0(x))dx = 0,

(4.33)

lim
n→+∞

∫
Ω

A(x)(|un(x)|p(x)−2un(x)− |u0(x)|p(x)−2u(x))(un(x)− u0(x))dx = 0,

(4.34)

lim
n→+∞

∫
Ω

C(x)(|un(x)|p(x)−3un(x)− |u0(x)|p(x)−3u(x))(un(x)− u0(x))dx = 0,

and
(4.35)

lim
n→+∞

∫
Ω

D(x)(|un(x)|p(x)−1un(x)− |u0(x)|p(x)−1u0(x))(un(x)− u0(x))dx = 0.

Let us now recall the Simon inequalities [30, formula 2.2] (see also [18, p. 713])
(4.36)|x− y|

p ≤ cp
(
|x|p−2

x− |y|p−2
y
)
.(x− y) for p ≥ 2

|x− y|p ≤ Cp
[(
|x|p−2

x− |y|p−2
y
)
.(x− y)

] p
2

(|x|p + |y|p)
2−p

2 for 1 < p < 2,

for all x, y ∈ RN , where cp and Cp are positive constants depending only on p.
Combining (4.32), (4.33), (4.35), (4.35) and (4.36), we conclude that

lim
n→+∞

‖un − u0‖ = 0.

Now, invoking Theorem 4.3, we complete the proof of Theorem 4.1. �
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Remark 4.8. We point out that the multiplicity property described in Theorem 4.1
is somehow related with Theorem 1.1 established in Bahrouni [4]. However, there
are several differences between problem (1.5) studied in this paper and problem (1.1)
considered in [4]. For instance, the main result in [4] is concerned with the existence
of infinitely many solutions (as in our case) but for a class of semilinear elliptic
equations driven by the Laplace equation and with a reaction term defined by the
sum of two power-type concave terms. Problem (1.5) in the present work has a
much more complicated structure. For instance, the non-homogeneous differential
operator is perturbed by two power-type terms with variable exponent. Moreover, in
the present work we are concerned with competition effects between several variable
exponents and indefinite potentials. A crucial role in the analysis developed in the
present paper is played by the main abstract result established in the first part of
this paper, namely the weighted version of the Caffarelli-Kohn-Nirenberg inequality
for variable exponents. Such an abstract result (even for constant exponents) is not
used in [4]. The analysis carried out in this paper includes the degenerate case,
which corresponds to a potential that can vanish in one or more points. Finally, it
is worth pointing out that this potential is assumed to be indefinite and not positive,
as in [4].

4.2. Perspectives and open problems. The methods developed in this paper
can be extended to more general variational integrals. We mainly refer to energy
functionals associated to non-homogeneous operators of the type−div (φ(x, |∇u|)∇u),
which extend the standard p(x)-Laplace operator. These operators have been in-
troduced by Kim and Kim [23]; see also Baraket, Chebbi, Chorfi, and Rădulescu
[7] for recent advances in this new abstract setting.

We believe that a valuable research direction is to generalize the abstract ap-
proach developed in this paper to the framework of double-phase variational inte-
grals studied by Mingione et al. [8, 13]. We expect that a related Caffarelli-Kohn-
Nirenberg inequality can be established for energies of the type

(4.37) u 7→
∫

Ω

[
|∇u|p(x) + a(x)|∇u|q(x)

]
dx

or

(4.38) u 7→
∫

Ω

[
|∇u|p(x) + a(x)|∇u|q(x) log(e+ |x|)

]
dx,

where p(x) ≤ q(x), p 6= q, and a(x) ≥ 0. In the case of two different materials that
involve power hardening exponents p(x) and q(x), the coefficient a(x) describes
the geometry of a composite of these two materials. When a(·) > 0 then the q(·)-
material is present. In the opposite case, the p(·)-material is the only one describing
the composite. We also point out that since the integral energy functional defined
in (4.38) has a degenerate behavior on the zero set of the gradient, it is natural to
study what happens if the integrand is modified in such a way that, also if |∇u| is
small, there exists an imbalance between the two terms of the integrand.
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[24] M. Mihăilescu, V. Rădulescu, and D. Stancu, A Caffarelli-Kohn-Nirenberg type inequality
with variable exponent and applications to PDE’s, Complex Variables Elliptic Eqns. 56

(2011), 659-669.
[25] J. Musielak, Orlicz spaces and Modular Spaces, Lecture Notes in Mathematics, Vol. 1034,

Springer, Berlin, 1983.

[26] P. Pucci and Q. Zhang, Existence of entire solutions for a class of variable exponent elliptic
equations, J. Differential Equations 157 (2014), no. 5, 1529-1566.



18 A. BAHROUNI, V.D. RĂDULESCU, AND D.D. REPOVŠ
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