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Abstract: Multi-level models provide a convenient framework for analyzing data

from survey samples with hierarchical structures. Inferential procedures that take

account of survey design features are well established for single-level (or marginal)

models. However, methods that are valid for general multi-level models are some-

what limited. This paper presents a unified method for two-level models, based

on a weighted composite likelihood approach, that takes account of design features

and provides valid inferences even for small sample sizes within level 2 units. The

proposed method has broad applicability and is straightforward to implement. Em-

pirical studies have demonstrated that the method performs well in estimating the

model parameters. Moreover, this research has an important implication: it pro-

vides a particular scenario to showcase the unique merit of the composite likelihood

method where the likelihood method would not work.

Key words and phrases: Complex sampling design, composite likelihood, design-

based inference, multi-level model, super-population model, variance estimation.

1. Introduction

Multi-stage sampling has been widely used in survey studies. For example,

education surveys often involve two-stage sampling designs. First-stage sampling

units consist of schools which may be selected with probabilities proportional to

school size, and second-stage units include students who may be chosen by strat-

ified random sampling from the selected schools. Multi-level models are natural

and useful tools to analyze survey data with hierarchical structures. In particu-

lar, generalized linear mixed models have been widely employed to accommodate

two-stage sampling: a sample of level 2 units (clusters) is selected according to a

specified design, and then a sample of elements (or level 1 units) is selected from

each sampled level 2 unit according to another specified design. Discussion on

multi-stage sampling methods can be found in Cochran (1977), Rao, Wu, and

Yue (1992), and Rust and Rao (1996), among others.

When carrying out inference about the model parameters of a multi-level

model, it is important to accommodate sampling design features, such as strati-

fication, clustering, and unequal selection probabilities; otherwise, misleading or
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erroneous results may result (e.g., Pfeffermann et al. (1998); Rao and Roberts

(1998); Rao, Verret, and Hidiroglou (2013)). In the case of single-level mod-

els, incorporating selection probabilities into inference procedures has been well

studied by many authors, including Binder (1983) and Skinner (1989). Although

there are some important contributions on multi-level models for survey data (Pf-

effermann et al. (1998); Stapleton (2002); Korn and Graubard (2003); Kovacevic

and Rai (2003); Grilli and Pratesi (2004); Pfeffermann, Moura, and Silva (2006);

Asparouhov (2006); Rabe-Hesketh and Skrondal (2006)), issues in this area re-

main relatively unresolved. Thus, asymptotic properties of proposed methods

are largely unknown, and consistent estimators for general multi-level models

are typically not available (Asparouhov (2006)).

We address the problem by exploring a unified inferential procedure for multi-

level models featuring survey data with sampling probabilities incorporated. Our

method provides valid inferences on model parameters and leads to consistent

estimators under a joint model and design setup. Our approach is based on

the composite likelihood formulation. The composite likelihood method was ini-

tially considered by Besag (1974), and then systematically discussed by Lindsay

(1988). This inference strategy has attracted a wide variety of applications, in-

cluding analysis of longitudinal data (e.g., He and Yi (2011); Yi, Zeng, and Cook

(2011); Li and Yi (2013)), spatial data (e.g., Heagerty and Lele (1998)), and

image data (e.g., Nott and Rydén (1999)). The use of the composite likelihood,

especially pairwise likelihood, has received increasing attention in recent years

due to its advantages, including simplicity in defining the objective function,

computational advantages when dealing with data with complex structures, and

robustness of model specification (Lindsay, Yi, and Sun (2011)). A recent review

can be found in Varin (2008) and Varin, Reid, and Firth (2011). Rao, Verret,

and Hidiroglou (2013) introduced weighted log pairwise likelihood that can han-

dle general multi-level methods and empirically studied the performance of the

method for a simple normal two-level model. Our paper provides extensions and

establishes theoretical properties of the method proposed by Rao, Verret, and

Hidiroglou (2013).

The remainder of the paper is organized as follows. In Section 2, we introduce

notation and the basic framework. General methodology for two-level models is

presented in Section 3. Empirical performance of the proposed method is assessed

under a simple logistic mixed model in Section 4 and a simple linear mixed model

in Section 5. General discussion is in Section 6.

2. Notation and Framework

We consider an inference framework that pertains to two sources of random-

ness: the probability sampling design for a finite population and the assumed
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model for a super-population. Under this framework, the finite population is

treated as a random sample from the super-population, and the survey sample is

regarded as a random sample from the finite population. To be specific, suppose

there is a super-population model ξ. Assume that a sequence of finite popula-

tions, indexed by ν, is randomly generated from the super-population model ξ,

each of size Mν . For a given ν, a sample of size mν is taken from the finite

population with index ν according to a specified probability sampling design d.

Assume that both Mν and mν tend to infinity as ν → ∞.

This theoretical framework is useful for understanding and developing sub-

sequent statistical properties. In reality, however, only one finite population and

one survey sample from this population are available, so we drop the subscript ν

in the discussion. Here we consider a finite population having a two-level struc-

ture. Let N be the number of level 2 units in the population and Mi be the

number of level 1 units in the level 2 unit i, so that the total number of units

in the population is M =
∑N

i=1Mi. Let Yij be the response variable for level 1

unit j in level 2 unit i, and xij be the associated covariate vector, i = 1, . . . , N ,

and j = 1, . . . ,Mi. Correspondingly, the super-population model from which this

finite population is generated is assumed to match the design two-level structure.

Let xi = (xT

i1, . . . ,x
T

iMi
)T. In the first step, we assume that given covariate

xi for level 2 unit i and random effects ui, the Yij are independently distributed

as

Yij ∼ fy|u(yij |xi,ui;θy), j = 1, . . . ,Mi, (2.1)

where fy|u is a known density function and θy is the associated parameter vector.

We assume that fy|u(yij |xi,ui;θy) = fy|u(yij |xij ,ui;θy) for j = 1, . . . ,Mi, an

assumption that is often made in practice.

In the second step we model random effects by assuming that the ui are

independently, and marginally distributed as

ui ∼ fu(ui;θu), (2.2)

where fu(ui;θu) is a given density function that is indexed by the parameter

θu. The population (or census) log likelihood, based on (2.1) and (2.2), can be

written as

logLc(θ) =
N∑
i=1

logLci(θ) =
N∑
i=1

ℓci(θ) = ℓc(θ), (2.3)

where θ = (θT

y ,θ
T

u)
T is the vector of model parameters and

Lci(θ) =

∫
exp

{ Mi∑
j=1

log fy|u(yij |xij ,ui;θy)
}
fu(ui;θu)dui. (2.4)
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This model formulation covers both linear mixed models and generalized linear

mixed models.

With informative sampling of level 2 units and of elements within sampled

level 2 units, this population model may not hold for the sample. In that case,

standard methods for multi-level models that ignore the design and assume (2.1)

with (2.2) holding for the sample can lead to asymptotically biased estimators of

model parameters θy and θu (Pfeffermann et al. (1998)). To address this issue,

properly incorporating the sampling information into the inference becomes crit-

ical. In Section 3, we tackle this problem using the weighted composite likelihood

framework in order to attain both validity and robustness of results.

3. General Methodology for Two-Level Models

3.1. Overview

Let the sample consist of n level 2 units, denoted s, with mi level 1 units

(elements) from sampled level 2 unit i, denoted s(i), so that the total number

of observations in the sample is m =
∑n

i=1mi. Let πi and πj|i, respectively,

denote the level 2 and level 1 inclusion probabilities associated with level 2 unit

i and element j within level 2 unit i. Then the level 2 and level 1 design weights

are given by wi = π−1
i and wj|i = π−1

j|i , respectively. If the sampling design is

not informative, then the population model also holds for the sample, and the

resulting sample log likelihood is given by

logL(θ) =
∑
i∈s

logLi(θ) =
∑
i∈s

ℓi(θ) = ℓ(θ), (3.1)

where

Li(θ) =

∫
exp

{ ∑
j∈s(i)

log fy|u(yij |xij ,ui;θy)
}
fu(ui;θu)dui. (3.2)

Asparouhov (2006) and Rabe-Hesketh and Skrondal (2006) proposed a

weighted sample log pseudo-likelihood obtained by inserting the design weights

wi and wj|i:

ℓw(θ) =
∑
i∈s

w̃iℓwi(θ), (3.3)

where ℓwi(θ) = logLwi(θ), and

Lwi(θ) =

∫
exp

{ ∑
j∈s(i)

w̃j|i log fy|u(yij |xij ,ui;θy)
}
fu(ui;θu)dui, (3.4)

with normalized weights w̃i = nwi/
∑

i∈swi, and w̃j|i = miwi/
∑

j∈s(i)wj|i such

that
∑

i∈s w̃i = n and
∑

j∈s(i) w̃j|i = mi.



A WEIGHTED COMPOSITE LIKELIHOOD APPROACH 573

Maximizing the weighted sample log pseudo-likelihood ℓw(θ) gives a pseudo

maximum likelihood (PML) estimator of θ. This method, however, results in

asymptotically biased estimators of level 2 model parameters θu. It is noted that

the weighted sample log pseudo-likelihood ℓw(θ) is a design-biased estimator of

the “census” log likelihood (2.3). Basically, consistency with respect to both

design and model of the PML estimators of variance components in the model

requires both the number of sample clusters, n, and the within cluster sample

sizes, mi, to be large (Rao, Verret, and Hidiroglou (2013)).

Under simple random sampling of both level 1 and level 2 units, we have

wi = N/n and wj|i = Mi/mi, so that w̃i = 1 and w̃j|i = 1. Hence, under this

noninformative sampling design, ℓw(θ) reduces to the unweighted log likelihood

ℓ(θ). In this case, the PML estimates are identical to the customary estimates

based on the unweighted log likelihood given by (3.1) and (3.2).

3.2. “Census” composite likelihood

Instead of performing the estimation procedure based on estimating the cen-

sus full log likelihood, we propose to conduct estimation using the composite

likelihood method. Let Lij = f(yij |xi) be the probability density or mass func-

tion of Yij , determined by

Lij =

∫
fy|u(yij |xij ,ui)fu(ui)dui.

For j ̸= k, let Lijk = f(yij , yik|xi) be the joint probability density or mass

function for paired responses (Yij , Yik); this is determined by

Lijk =

∫
fy|u(yij |xij ,ui)fy|u(yik|xik,ui)fu(ui)dui.

The dependence on the parameter θ is suppressed in the notation.

A “census” composite likelihood can be formulated based on the marginal

pairwise distributions,

C(θ) =
N∏
i=1

∏
j<k

L
Bjk

ijk L
Bj

ij LBk
ik ,

where Bjk, Bj , and Bk are weights that can be user-specified to enhance efficiency

or to facilitate some specific features of the formulation. For instance, letting

Bjk = 1 andBj = Bk = 0 leads to the pairwise likelihood
∏N

i=1

∏
j<k f(yij , yik|xi);

setting Bjk = 2 and Bj = Bk = −1 leads to the conditional pairwise likelihood∏N
i=1

∏
j<k f(yij |yik,xi)f(yik|yij ,xi). Taking Bjk = 0 and Bj = Bk = 1 results in

the product of marginal distributions
∏N

i=1

∏Mi
j=1 f(yij |xi) with possible associa-

tion among response components ignored, and setting Bjk = 1 and Bj = Bk =
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−1 yields the so-called Hoeffding formulation
∏N

i=1

∏
j<k[f(yij , yik|xi)/{f(yij |xi)

f(yik|xi)}] (Lindsay, Yi, and Sun (2011)). Some discussion on choosing weights

is given by Joe and Lee (2009), and Lindsay, Yi, and Sun (2011).

3.3. Point estimation

A “census” log pairwise likelihood under the assumed two-level model given

by (2.1) and (2.2) is obtained as

ℓc(θ) =

N∑
i=1

∑
1≤j<k≤Mi

(Bjkℓijk +Bjℓij +Bkℓik), (3.5)

where ℓij = logLij , and ℓijk = logLijk. Here we consider the case with Bj = 0

and Bk = 0. Extensions to accommodating other weights are discussed later.

We consider a “census” log all-pairwise likelihood

ℓc(θ) =

N∑
i=1

∑
1≤j<k≤Mi

Bjkℓijk.

Using the within-cluster joint inclusion probabilities, πjk|i, we consider a weighted

“sample” log all-pairwise likelihood

ℓwc(θ) =
∑
i∈s

wi

∑
j<k,j,k∈s(i)

wjk|iBjkℓijk, (3.6)

where wjk|i = π−1
jk|i.

There is an important difference in the pairwise likelihood and the full like-

lihood formulations. In the formulation of the weighted “sample” version corre-

sponding to the full likelihood formulation (3.3) and (3.4) in Section 3.1, the two-

stage sampling weights appear in a non-linear form. Therefore, the design-based

expectation of the weighted sample version ℓw(θ) cannot recover the census full

log likelihood ℓ(θ). However, when using the “census” log pairwise likelihood

(3.5), the two-stage sampling weights enter (3.5) in a linear fashion to form a

weighted “sample” version (3.6), hence ℓwc(θ) is design unbiased for the census

ℓc(θ).

Solving

Uwc(θ) =
∂ℓwc(θ)

∂θ
=

∑
i∈s

wiUiwc(θ) = 0 (3.7)

for θ leads to the weighted composite likelihood estimator, θ̂w, of θ, where

Uiwc(θ) =
∑

j<k,j,k∈s(i)

wjk|iBjksijk
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with sijk = ∂ℓijk/∂θ.

One notices from (3.6) and (3.7) that to implement the proposed method, we

need not only the inclusion probabilities πi = w−1
i but also the within level 2 unit

joint inclusion probabilities πjk|i = w−1
jk|i. This information is often available in

such settings as simple random or stratified random sampling within level 2 units,

or when the within level 2 unit sampling fraction is small. If such information is

not available, one may employ an approximation to πjk|i. When sampling within

level 2 units is based on unequal probability sampling, then approximations to

πjk|i depending only on the marginal inclusion probabilities πj|i can be utilized;

see Haziza, Mecatti, and Rao (2008) for details.

Now we show that EξEd{Uwc(θ)} = 0, where Eξ and Ed stand for the ex-

pectation taken with respect to model ξ and sampling design d, respectively.

By the nature of the two-stage design weights wj|i and wi, the inner expectation

Ed{Uwc(θ)} recovers the census composite score function,Uc(θ)=(∂/∂θ){ℓc(θ)}.
Then the unbiasedness of the latter function ensures zero expectation of the

weighted composite score function taken with respect to the design and the

model. As a result, the weighted composite likelihood estimator θ̂w is consis-

tent from the perspective of the joint model and design. In particular, θ̂w is

design-model consistent for θ as the number n of level 2 units in the sample ap-

proaches ∞, even when the within-level 2 unit sizes, mi, are small. In Appendix

B, we prove the proof of the following theorem.

Theorem 1. Under regularity conditions stated in Appendix A,

θ̂w
p→ θ as n → ∞,

where “p” denotes convergence in probability with respect to joint model ξ and

sampling design d.

3.4. Variance estimation

To evaluate the precision of the estimator θ̂w, we need to accommodate two

types of variability induced from sampling. The first type of variability arises

from a census fit to the super-population model using data of an entire finite

population, while the other comes from using observations of a sample taken

from this finite population according to a given sampling design. To be precise,

the covariance matrix of the estimator θ̂w is given by

covξd(θ̂w) = covξ{Ed(θ̂w)}+ Eξ{covd(θ̂w)}.

If θU = Ed(θ̂w), then θU can be viewed as a finite population (or census)

quantity that is unbiasedly estimated by the estimator θ̂w. As discussed by
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Demnati and Rao (2010), and Carrillo, Chen, and Wu (2010), if covξ(θU ) has

the order of 1/N and the sampling fraction n/N is small, then we approximate

covξd(θ̂w) with Eξ{covd(θ̂w)},

covξd(θ̂w) ≈ Eξ{covd(θ̂w)}, (3.8)

which suggests that an estimator of covd(θ̂w) can be approximately taken as a

design-model based estimator of the covariance matrix covξd(θ̂w).

We discuss an approach to estimate the design-based covariance covd(θ̂w)

using a Taylor series expansion, similar to Binder (1983). Let θN denote the

solution to the census composite score equation Uc(θ) = ∂ℓc(θ)/∂θ = 0; we call

θN the census parameter. Noting thatUwc(θ̂w) = 0 and expandingUwc(θ̂w) = 0

at θ = θN by a Taylor series expansion leads to

0 =Uwc(θ̂w)

=Uwc(θN ) +
∂Uwc(θN )

∂θT
(θ̂w − θN ) + op(

1√
n
).

If Γwc(θN ) = −∂Uwc(θN )/∂θT, then by Uwc(θN ) = Uc(θN ) + Op(N/
√
n), we

obtain

θ̂w − θN = {Γwc(θN )}−1Uwc(θN ) + op(
1√
n
)

= {Γc(θN )}−1Uwc(θN ) + op(
1√
n
),

where the finite population quantity Γc(θN ) = −∂Uc(θN )/∂θT is used to replace

the sample quantity Γwc(θN ). As a result, we obtain

covd(θ̂w) ≈ {Γc(θN )}−1covd{Uwc(θN )}{Γc(θN )}−1T. (3.9)

The middle term covd{Uwc(θN )} in (3.9) is viewed as a finite population

quantity that incorporates sampling design features, and can be expressed in

terms of the between- and within-level 2 units variabilities associated with the

sampling design. We write

covd{Uwc(θN )} = covd

{∑
i∈s

wiEd(Uiwc|s)
}
+Ed

{
covd(

∑
i∈s

wiUiwc|s)
}

= covd

(∑
i∈s

wiUi

)
+ Ed

{∑
i∈s

w2
i covd(Uiwc|s)

}
, (3.10)

where Ui = Ui(θN ) =
∑

j<k Bjksijk|θ=θN
is the “census” version corresponding

to the sample version Uiwc = Uiwc(θN ).
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To evaluate the second term Ed{
∑

i∈sw
2
i covd(Uiwc|s)}, we define an inclu-

sion indicator variable

Rij =

{
1, if i ∈ s, j ∈ s(i),

0, otherwise,

so that Ed{RijRikwjk|i|s is chosen} = 1. Then, conditional on that i ∈ s, we

write

covd(Uiwc) = covd

{ ∑
j<k,j,k∈s(i)

wjk|iBjksijk

}
= covd

{ ∑
1≤j<k≤Mi

RijRik(wjk|iBjksijk)
}
.

As a result, to precisely calculate covd(Uiwc), the level 1 inclusion probabilities

of quadruples (j, k, s, t) are needed, which is often feasible in practice.

Precise evaluation of (3.10) leads to difficulties of requiring fourth order

within-level 2 unit inclusion probabilities, and hence the estimation of (3.10) is

also complex. We follow the customary practice of treating the sample level 2

units as if they were selected with replacement with probabilities pi, where pi is

a size measure and πi = npi. For example, the Rao-Sampford method of unequal

probability sampling ensures that πi = npi (Rao (1965); Sampford (1967)). As

a result, we write

Uwc(θ) = n−1
∑
i∈s

Ũiwc(θ),

where Ũiwc(θ) = Uiwc(θ)/pi are independent with the same mean and the same

variance from the design perspective, andUiwc(θ) =
∑

j<k,j,k∈s(i)wjk|iBjksijk(θ).

Consequently, we estimate covd{Uwc(θN )} as

ĉovd{Uwc(θN )} = {n(n− 1)}−1
∑
i∈s

(Ũiwc −Uwc)(Ũiwc −Uwc)
T

evaluated at the estimator θ̂w. As Uwc(θ̂w) is zero, we then obtain

ĉovd{Uwc(θN )} = {n(n− 1)}−1
∑
i∈s

(Ũiwc −Uwc)(Ũiwc −Uwc)
T

= {n(n− 1)}−1
∑
i∈s

ŨiwcŨ
T

iwc

= {n(n− 1)}−1
∑
i∈s

(Uiwc

pi

)(UT

iwc

pi

)
=

n

(n− 1)

∑
i∈s

w2
iUiwcU

T

iwc, (3.11)
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where wi = 1/πi and Uiwc = Uiwc(θ̂w). It now follows from (3.8), (3.9) and

(3.11) that an approximate estimator of covξd(θ̂w) is given by

ĉovξd(θ̂w) = {Γwc(θ̂w)}−1ĉovd{Uwc(θN )}{Γwc(θ̂w)}−1T. (3.12)

The estimator (3.12) should perform well in estimating covξd(θ̂w) if n/N is suf-

ficiently small.

4. Simulation Study: Logistic Mixed Model

In this section we report the results of a simulation study to assess the

performance of the proposed method under the logistic mixed model. Let Yij be

a binary response with conditional mean µij = E(Yij |xi, ui), given covariate xi

and random effects ui. Response measurements are generated from the model

logit (µij) = β0 + β1Xij + ui,

where the Xij are generated from the standard normal distribution and held

fixed over simulation runs, the ui are independent and identically distributed

(i.i.d.) as N(0, σ2) with σ2 = 3, and we let β0 = 0.5 and β1 = 3. We evaluated

the performance of the proposed method under two different sampling strategies:

(A). N = n = 400, and (B). N = 4,000, n = 400. In Case A, level 2 units are

equivalent to strata because all level 2 units are sampled. In Case B, level 2 units

are selected via simple random sampling.

We selected mi = m = 5 level 1 units from each level 2 unit, using the Rao-

Sampford method of sampling without replacement with probability proportional

to specified size measures zij (Pfeffermann, Moura, and Silva (2006); Sampford

(1967)). Following Asparouhov (2006), we took

zij =

{
δB if Yij = 1,

1 if Yij = 0,
(4.1)

where 0 < δB ≤ 1. This selection mechanism over samples zero outcomes at a

rate of 1/δB. When δB = 1/2 and δB = 1/3, the over-sampling rates are 2 and

3, respectively. When δB = 1, one and zero outcomes are sampled with equal

probabilities, so that w̃j|i = 1.

We used the design-model approach to simulate R = 2,500 samples for each

specified δB. In particular, we generated a population for Case A with N =

n = 400 and Mi = 100 for i = 1, . . . , N from the model, then selected all

the level 2 units and a sample of mi = 5 units from each sampled level 2 unit

using the Rao-Sampford method with size measures zij . To be specific, letting

zi+ =
∑Mi

j=1 zij gives the inclusion probability πj|i = mi(zij/zi+). The pairwise
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Table 1. Simulation results for estimation of β0 under the logistic mixed
effect model in Case B.

δB
UML∗ PML

BR∗∗ RRMSE 100AVE 100MSE∗∗∗ BR RRMSE 100AVE 100MSE
1/3 -958.40 237.69 1.46 141.30 -273.07 88.87 2.24 19.75
1/2 -635.88 150.00 1.33 56.28 -169.21 48.64 1.51 5.92
1 2.46 24.08 1.35 1.45 2.46 24.08 1.35 1.45

δB
WPL

BR RRMSE 100AVE 100MSE
1/3 -1.39 25.80 1.61 1.67
1/2 0.68 23.92 1.44 1.43
1 2.57 24.27 1.37 1.47

∗: UML denotes the unweighted maximum likelihood method; PML denotes the pseudo maximum
likelihood approach; WPL denotes our weighted pairwise likelihood method.
∗∗: BR and RRMSE represent bias ratio (%) and relative root mean square error, respectively.
∗ ∗ ∗: 100AVE and 100MSE represent 100 times of average variance estimates and mean square error,
respectively.

inclusion probability πjk|i is calculated using the R package pps. For Case B, we

generated a population with N = 4,000 and Mi = 100 for i = 1, . . . , N from the

model, and selected n = 400 level 2 units by simple random sampling and mi = 5

level 1 units from each level 2 unit in the same manner as in Case A.

We studied the weighted pairwise likelihood method (WPL) with sampling

weights taken into account as described in Section 3, where Bjk is set as 1. As the

integrals involved in pairwise likelihood functions Lijk do not have closed forms

for the logistic mixed model, we used adaptive Gaussian quadratures to approx-

imate the integrals with 9 quadrature points (Molenberghs and Verbeke (2005)).

As a comparison, we also studied the PML method using the log likelihood (3.3)

in Section 3.1. We discussed the customary approach based on maximizing the

unweighted log likelihood (labeled as UML) in (3.1).

We report the simulation results in terms of bias ratio (BR), defined as

bias/(square root of variance), and relative root mean square error (RRMSE),

defined as (square root of mean square error)/(true parameter value). In Case

B, the level 2 sampling fraction is not large and hence we approximate the vari-

ance estimator using (3.12). We report the average of the approximate variance

estimates (AVE) over simulation runs as well as the mean square error of the

estimators (MSE).

Simulation results for Case B are reported for β0 and σ in Tables 1 and 2. The

results for β1 are reported in Section 3.1 of the web-appendix. The differences

among the PML method, the UML method, and the WPL method are striking.

The proposed WPL method generally outperforms the PML and UML methods
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Table 2. Simulation results for estimation of σ under the logistic mixed effect
model in Case B.

δB UML∗ PML
BR∗∗ RRMSE 100AVE 100MSE∗∗∗ BR RRMSE 100AVE 100MSE

1/3 11.96 9.57 2.71 2.75 304.21 36.38 3.83 39.72
1/2 5.62 8.89 2.47 2.37 115.95 14.72 2.91 6.51
1 -0.14 8.89 2.39 2.37 -0.14 8.89 2.39 2.37

δB
WPL

BR RRMSE 100AVE 100MSE
1/3 -1.14 10.32 3.15 3.19
1/2 0.89 9.32 2.73 2.61
1 0.38 9.19 2.54 2.54

∗: UML denotes the unweighted maximum likelihood method; PML denotes the pseudo maximum
likelihood approach; WPL denotes our weighted pairwise likelihood method.
∗∗: BR and RRMSE represent bias ratio (%) and relative root mean square error, respectively.
∗ ∗ ∗: 100AVE and 100MSE represent 100 times of average variance estimates and mean square error,
respectively.

under informative sampling (δB < 1). On the other hand, under noninformative

sampling (δB = 1), the PML method is identical to the “optimal” UML method

based on the customary loglikelihood (3.1), and hence it performs well in terms

of BR and RRMSE. However, the WPL method (which reduces to the customary

pairwise likelihood method) also performs well but exhibits a small increase in

RRMSE relative to the PML and UML methods, as expected. Results on the

estimators for Case A, not reported here, exhibit a similar pattern.

Turning to the performance of the variance estimator (3.12) for the WPL

method, Table 2 shows that it tracks the MSE for all δB. On the other hand, the

variance estimators for the PML method (Rabe-Hesketh and Skrondal (2006))

and the UML method perform very poorly for δB < 1 because they lead to

severe underestimation. For δB = 1, the PML and UML methods perform well

in tracking the MSE, as expected.

5. Simulation Study: Linear Mixed Model

5.1. Skew normal random effects

Rao, Verret, and Hidiroglou (2013) studied the performance of the WPL

method under a nested error linear regression method Yij = β0+Xijβ1+ui+ eij
with normally distributed level 2 random effects ui and random errors eij . In

this section, we relax the normality assumption on ui by using a skew-normal

(SN) family which includes a wide variety of skewed distributions as well as the

normal.
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We consider the model given by

Yij = β0 +Xijβ1 + ui + eij ; eij ∼iid N(0, σ2
e), (5.1)

where the random level 2 effects ui are assumed to be i.i.d and have a common

skew normal distribution SN(0, σ2
u, α) with density function 2ϕ(ui;σ

2
u)Φ(αui/σu).

Here α is a skewness parameter, ϕ(.;σ2
u) is the normal density with zero mean

and variance σ2
u, and Φ(t) =

∫ t
−∞ ϕ(u; 1)du is the N(0, 1) distribution function.

This model fits into our two-level model setup with dependence on covariates

included. Its more general form was discussed by Lin and Lee (2008). In imple-

menting model (5.1), Xij is generated from N(0, 1) and held fixed over simulation

runs.

For inference connected to a skew-normal distribution, Azzalini and Capi-

tanio (1999) and Arellano-Valle and Azzalini (2008) pointed out that singularity

arises in the information matrix when the skewness parameter approaches 0, thus

breaking down estimation procedures. As a remedy, they suggested to adopt the

so-called centered parameterization.

In our simulation studies, we specifically employed the following reparame-

terization:

θ1 = β0 +

√
2

π
σu

α√
(1 + α2)

, β1 = β1, σ2
e = σ2

e ,

θ2 = σ2
u(1−

2α2

π(1 + α2)
), and γ1 =

4− π

2

(
√

2/πα)3

[1 + (1− 2/π)α2]3/2
,

leading to a one-to-one correspondence between (β0, β1, σ
2
e , σ

2
u, α) and (θ1, β1, σ

2
e ,

θ2, γ1). With this reparameterization, the Newton-Raphson procedure is imple-

mented to obtain the maximum likelihood estimates of the model parameters.

5.2. Simulation setup and results

We conducted a simulation study to evaluate the performance of the pro-

posed method under the skew normal model. Analogous to Section 4, we used

the Rao-Sampford method to select level 1 units from each level 2 unit, but size

measures zij are specified differently. Following Asparouhov (2006) and Rao,

Verret, and Hidiroglou (2013), we considered both invariant and non-invariant

selections as defined below. For invariant selection, we take

z−1
ij = 1 + exp

[
− 0.5

{eij
δC

+ e∗ij(1− δ−2
C )1/2

}]
,

where e∗ij is independent of eij but with the same distribution, N(0, σ2
e). In the

case of non-invariant selection, we replaced eij and e∗ij in zij by ui+eij and u∗i+e∗ij ,
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Table 3. Simulation results for estimation of θ1 under the linear mixed effect
regression model in Case B.

Invariant

δC
UML∗ PML

BR∗∗ RRMSE 100AVE 100MSE∗∗∗ BR RRMSE 100AVE 100MSE
1 410.21 23.61 1.16 20.71 103.49 8.38 1.25 2.61
2 203.14 12.65 1.18 5.94 54.28 6.48 1.24 1.56
3 134.16 9.34 1.18 3.24 37.05 6.08 1.23 1.37
∞ -4.56 5.61 1.18 1.17 2.50 5.70 1.23 1.21

δC
WPL

BR RRMSE 100AVE 100MSE
1 -2.35 6.15 1.40 1.40
2 -3.42 5.99 1.34 1.33
3 -2.56 5.94 1.33 1.31
∞ -4.59 5.91 1.32 1.30

Non-invariant

δC
UML PML

BR RRMSE 100AVE 100MSE BR RRMSE 100AVE 100MSE
1 323.62 17.63 1.01 11.54 79.95 7.24 1.19 1.95
2 133.04 9.22 1.15 3.16 39.47 6.13 1.21 1.40
3 91.08 7.61 1.17 2.15 29.88 6.01 1.22 1.34
∞ 1.53 5.58 1.18 1.16 8.08 5.70 1.22 1.21

δC
WPL

BR RRMSE 100AVE 100MSE
1 3.99 6.13 1.41 1.40
2 3.22 5.87 1.27 1.28
3 2.84 5.92 1.26 1.30
∞ 1.41 5.76 1.26 1.23

∗: UML denotes the unweighted maximum likelihood method; PML denotes the pseudo maximum
likelihood approach; WPL denotes our weighted pairwise likelihood method.
∗∗: BR and RRMSE represent bias ratio (%) and relative root mean square error, respectively.
∗ ∗ ∗: 100AVE and 100MSE represent 100 times of average variance estimates and mean square error,
respectively.

respectively, where u∗i is independent of ui and has the distribution SN(0, σ2
u, α).

Here we took the parameter settings β0 = 0.5, β1 = 1, σ2
e = 2, σ2

u = 4, and α = 2,

which are equivalent to the reparameterization settings θ1 = 1.927, β1 = 1, σ2
e =

2, θ2 = 1.963, and γ1 = 0.454. We considered four values of δC : δC = 1, 2, 3,∞,

where δC = ∞ corresponds to non-informative sampling within each level 2 unit,

δC = 1 corresponds to most informative sampling, and informativeness decreases

as δC increases.

Similar to the simulation study in Section 4, we used the design-model ap-

proach to simulate R = 2,500 samples for each specified δC and separately for
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invariant and non-invariant selections. In particular, we generated a population

for Case A with N = n = 200 and Mi = 100 for i = 1, . . . , N from the model

and then selected a sample of mi = 5 units from each level 2 unit using the Rao-

Sampford method with size measures zij . For Case B, we generated a population

with N = 2,000 and Mi = 100 for i = 1, . . . , N from the model and selected

n = 200 level 2 units by simple random sampling and mi = 5 level 1 units from

each level 2 unit in the same as in Case A.

We report the results for Case B on the estimator of θ1 in Table 3. The

results for other estimators are reported in Section 3.2 of the web-appendix. It

is clearly seen that the PML and UML methods generally produce consider-

ably biased results under informative sampling. On the other hand, the WPL

method performs well, leading to reasonably small bias ratios in absolute value

under informative sampling. Results for Case A, not reported here, show similar

patterns.

6. Discussion

Multi-level models provide a conceptually convenient tool to analyze data

arising from complex surveys. In making inferences about model parameters it is

important to properly incorporate selection probabilities into inferential proce-

dures. In this paper, we present a general method using the composite likelihood

formulation to handle two-level models with survey information accounted for.

The proposed estimator is design-model consistent. We applied the proposed

method to linear mixed models and logistic mixed models to assess the perfor-

mance under a variety of circumstances. Our empirical studies demonstrate that

biased results would arise if sampling features are ignored, but the proposed

weighted composite likelihood method effectively captures the design features.

Our method provides good results even when the sample sizes within sampled

clusters are small, unlike the PML method.

Our work bridges survey sampling and composite likelihood inference. On

the one hand, the composite likelihood method supplies us an effective tool to

tackle unsolved problems in survey sampling. With general multi-level models,

theoretical results remain largely unexplored, and consistent estimators are typ-

ically unavailable. However, by employing the composite likelihood method, in

particular, the pairwise likelihood formulation, we are able to work out estimators

of the model parameters that are design-model consistent. As well, this survey

sampling problem provides a rather unique setting to showcase the merits of the

pairwise likelihood formulation, in contrast to the likelihood method. In various

existing applications, the composite likelihood method is mostly used as a tool

to ease either modeling complexities or computation burdens when the likelihood

is not easily obtained or unavailable. Our development uncovers an interesting
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scenario where the weighted likelihood method breaks down but the weighted
composite likelihood method is essential for inference from survey data.

It would be interesting to establish the asymptotic normality of our weighted
pairwise likelihood estimator. In principle, this can be established by adapting
the theorem of Chen and Rao (2007) in conjunction with the result of Bickel and
Freedman (1984) for stratified sampling. This is our future work, in addition to
various extensions, including weighted pairwise likelihood ratio tests.

Supplementary Materials

The online supplementary materials include a detailed proof of Theorem 1
and additional simulation results. For completeness, regularity conditions listed
in Appendix A are also presented.
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Appendix A: Regularity Conditions

If ψijk(θ; yij , yik) = Bjksijk, then Uw(θ) =
∑

i∈swi
∑

j<k,j,k∈s(i)wjk|i
ψijk(θ; yij , yik), θ ∈ Θ ⊂ Rp, where p is the dimension of θ. Let θ0 be the value
such that EξEd{Uw(θ0)} = 0, and hijk(yij , yik) = supθ∈Θ||ψijk(θ; yij , yik)|| for
the triples (i, j, k), where || · || is the L1 norm. We assume the following regularity
conditions. Some of these conditions are somewhat parallel to those in Carrillo,
Chen, and Wu (2010) and Shao (2003, Lemma 5.3) for one-level models, but
additional conditions and more complex derivations are required here due to the
accommodation of the two-level models with survey weights.

(1) Θ is a compact subset of the Euclidean space Rp.

(2) sup(i,j,k)Eξ{h2ijk(Yij , Yik)} < ∞ and sup1≤i≤NEξ{||Yi||} < ∞, where Yi =
(Yi1, . . . , YiMi)

T.

(3) For any given c > 0 and a given sequence {yi} satisfying ||yi|| ≤ c, the
sequence of functions in θ, {ψijk(θ; yij , yik)}, is equicontinuous on Θ.

(4) Let ∆T (θ) = EξEd{T−1Uw(θ)}, where T =
∑N

i=1Mi(Mi − 1)/2. For any
ϵ > 0, there exists δϵ > 0 such that inf ||θ−θ0||>ϵ||∆T (θ)|| > δϵ.

(5) There exists a θ̂w ∈ Θ such that Uw(θ̂w) = 0.

(6) For variable Vijk, write

V =
1

T

N∑
i=1

∑
1≤j<k≤Mi

Vijk.
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If the Vijk satisfy
∑N

i=1

∑
1≤j<k≤Mi

V 2
ijk/T = Oξ(1), then

1

T

∑
i∈s

wi

∑
j<k,j,k∈s(i)

wjk|iVijk − V

converges to 0 in design probability as n → ∞.

(7) When the number of clusters in a sample approaches infinity, the number of
clusters in the corresponding population tends to infinity as well.

(8)
N supi≤NMi(Mi − 1)∑

i≤N Mi(Mi − 1)
< ∞ as N → ∞.

Appendix B: Sketched Proof of Theorem 1

Lemma B.1. Under the regularity conditions in Appendix A, we have

supθ∈Θ

∣∣∣∣∣∣ 1
T
Uw(θ)−∆T (θ)

∣∣∣∣∣∣ p→ 0 as n → ∞,

where “p” denotes convergence in probability with respect to joint model ξ and
sampling design d.

Proof. The detailed derivations are displayed in the web-appendix Section 2.

Proof of Theorem 1. Note that∣∣∣ 1
T
Uw(θ)

∣∣∣ = ∣∣∣∆T (θ) +
1

T
Uw(θ)−∆T (θ)

∣∣∣
≥ |∆T (θ)| −

∣∣∣ 1
T
Uw(θ)−∆T (θ)

∣∣∣.
By Lemma B.1, for any ϵ > 0, we have

inf ||θ−θ0||>ϵ

∣∣∣ 1
T
Uw(θ)

∣∣∣ ≥ inf ||θ−θ0||>ϵ

{
|∆T (θ)| −

∣∣∣ 1
T
Uw(θ)−∆T (θ)

∣∣∣}
≥ inf ||θ−θ0||>ϵ|∆T (θ)| − sup||θ−θ0||>ϵ

∣∣∣ 1
T
Uw(θ)−∆T (θ)

∣∣∣
≥ inf ||θ−θ0||>ϵ|∆T (θ)| − supθ∈Θ

∣∣∣ 1
T
Uw(θ)−∆T (θ)

∣∣∣
≥ inf ||θ−θ0||>ϵ|∆T (θ)|+ op(1).

It follows from Assumption 4 that, for any ϵ > 0, there exists δϵ > 0 such that

Pξd

{
inf ||θ−θ0||>ϵ

∣∣∣ 1
T
Uw(θ)

∣∣∣ > δϵ

}
→ 1

as n → ∞, where the probability Pξd is evaluated under the model ξ and sampling

design d. Noting thatUw(θ̂w) = 0 by Assumption 5, the limit above implies that,
for any ϵ > 0, Pξd(||θ̂ − θw|| ≤ ϵ) → 1 as n → ∞. This completes the proof that

θ̂w
p→ θ.
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