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Abstract. Lanczos-hybrid regularization methods have been proposed as effective approaches for solving large-

scale ill-posed inverse problems. Lanczos methods restrict the solution to lie in a Krylov subspace, but they are

hindered by semi-convergence behavior, in that the quality of the solution first increases and then decreases. Hybrid

methods apply a standard regularization technique, such as Tikhonov regularization, to the projected problem at each

iteration. Thus, regularization in hybrid methods is achieved both by Krylov filtering and by appropriate choice of

a regularization parameter at each iteration. In this paper we describe a weighted generalized cross validation (W-

GCV) method for choosing the parameter. Using this method we demonstrate that the semi-convergence behavior of

the Lanczos method can be overcome, making the solution less sensitive to the number of iterations.
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1. Introduction. Linear systems that arise from large-scale inverse problems are typi-

cally written as

(1.1) b = Ax true + ε ,

where A ∈ R
m×n, b ∈ R

m, and x true ∈ R
n. The vector ε ∈ R

m represents unknown per-

turbations in the data (such as noise). We will assume that the perturbations are independent

and identically distributed with zero mean; this can often be achieved by scaling the original

problem. Given A and b, the aim is to compute an approximation of x true.

Inverse problems of the form (1.1) arise in many important applications, including image

reconstruction, image deblurring, geophysics, parameter identification and inverse scattering;

cf. [8, 18, 19, 32]. Typically these problems are ill-posed, meaning that noise in the data may

give rise to significant errors in computed approximations of x true. The ill-posed nature of

the problem is revealed by the singular values of A, which decay to and cluster at 0. Thus A is

severely ill-conditioned, and regularization is used to compute stable approximations of x true

[8, 15, 18, 32]. Regularization can take many forms; probably the most well known choice is

Tikhonov regularization [15], which is equivalent to solving the least squares problem

(1.2) min
x

∥∥∥∥

[
b
0

]
−
[

A
λL

]
x

∥∥∥∥
2

,

where L is a regularization operator, often chosen as the identity matrix or a discretization

of a differentiation operator. The regularization parameter λ is a scalar, usually satisfying

σn ≤ λ ≤ σ1, where σn is the smallest singular value of A and σ1 is the largest singular

value of A.
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No regularization method is effective without an appropriate choice of the regularization

parameter. Various techniques can be used, such as the discrepancy principle, the L-curve,

and generalized cross validation (GCV) [8, 18, 32]. There are advantages and disadvantages

to each of these approaches [23], especially for large-scale problems. For example, to use

the discrepancy principle, it is necessary to have information about the noise. In the case of

GCV, efficient implementation for Tikhonov regularization requires computing the singular

value decomposition (SVD) of the matrix A [13], which may be computationally impractical

for large-scale problems. Some savings can be attained by using a bidiagonalization of A [7],

or the iterative technique proposed by Golub and von Matt [14], but the cost can still be

prohibitive for very large matrices. In addition, the method proposed in [14] would need to

be implemented carefully to avoid failure when a trial choice of parameter in the iteration is

poor [5]. In the case of the L-curve, it may be necessary to solve (1.2) for several regular-

ization parameters. This limitation can be partially alleviated by exploiting redundancies and

additional information available in certain iterative methods [3, 10].

An alternative to Tikhonov regularization for large-scale problems is iterative regular-

ization. In this case, an iterative method such as LSQR [30] is applied to the least squares

problem,

(1.3) min
x

‖b − Ax‖2.

When applied to ill-posed problems, iterative methods such as LSQR exhibit an interest-

ing “semiconvergence” behavior. Specifically, the early iterations reconstruct information

about the solution, while later iterations reconstruct information about the noise. This be-

havior can be observed (if the exact solution is known) by plotting the relative errors, ‖xk −
x true‖2/‖x true‖2, where x true is the exact solution and xk is the solution at the kth iteration.

This is illustrated schematically in the left plot of Figure 1.1, where we plot the typical be-

havior of the relative error as the iteration proceeds. (Specific examples are detailed in later

sections.) If we terminate the iteration when the error is minimized, we obtain a regular-

ized solution. Unfortunately the exact solution x true is not known in practical problems, so

a plot of the relative errors cannot be used to find the optimal termination point. However,

parameter selection methods such as the discrepancy principle, GCV and L-curve (see, for

example, [18]) can be used to estimate this termination point. The difficulty is that these tech-

niques are not perfect, and, as illustrated in the left plot in Figure 1.1, an imprecise estimate

of the termination point can result in a solution whose relative error is significantly higher

than the optimal.

The semiconvergence behavior of LSQR can be stabilized by using a hybrid method

that combines an iterative Lanczos bidiagonalization algorithm with a direct regularization

scheme, such as Tikhonov [1, 2, 4, 16, 22, 23, 25, 29] or truncated SVD. The basic idea of this

approach is to project the large-scale problem onto Krylov subspaces of small (but increasing)

dimension. The projected problem can be solved cheaply using any direct regularization

method. The potential benefits of this approach are illustrated in the right plot of Figure 1.1.

Notice that, in contrast to the behavior of the relative errors for LSQR, the hybrid approach

can effectively stabilize the iteration so that an imprecise (over) estimate of the stopping

iteration does not have a deleterious effect on the computed solution.

A disadvantage of the hybrid approach is that at each iteration we must choose a new

regularization parameter for the projected problem. Although this is not computationally

expensive, in order for the approach to be viable for practical problems, we must choose

good parameters. Optimal choices for the parameter at each iteration result in convergence

behavior similar to that illustrated in the right plot of Figure 1.1. However, our computational

experience indicates that such optimal behavior cannot be expected when using parameter
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FIG. 1.1. These plots represent relative errors, ‖xk − x true‖2/‖x true‖2, where x true is the true solution,

and xk is the solution at the kth iteration. The left plot illustrates semiconvergence behavior of the iterative method

LSQR for an ill-posed problem; a regularized solution is computed by terminating the iteration when the relative

error is small, but the error can be very large if this termination point is over-estimated. The right plot illustrates

how this semiconvergence behavior can be stabilized with an iterative LSQR-Tikhonov hybrid method.

selection methods such as the discrepancy principle, GCV and the L-curve; see also [23].

In this paper we consider a Lanczos-hybrid method, using Tikhonov regularization, with

the regularization parameter for the projected problem chosen by GCV. We show that GCV

has a strong tendency to over-estimate the regularization parameter, but that a weighted-GCV

(W-GCV) method can be very effective.

An outline for the rest of the paper is as follows. In section 2 we review Tikhonov

regularization, the GCV method, and SVD based implementations. In section 3 we describe

the Lanczos-hybrid method, with Tikhonov regularization for the projected problem. We

illustrate the deficiencies of using GCV with that method in section 4. We show that although

it is efficient, it generally provides a parameter estimate that is too large. This can seriously

degrade the overall convergence behavior. In section 5, we describe the W-GCV method and

show how it is related to the standard GCV. Numerical experiments are provided in section 6

that illustrate the effectiveness of the W-GCV method on the test problems (introduced in

section 4.1), and some concluding remarks are given in section 7.

2. Tikhonov regularization and GCV. To establish notation used in the paper, we

briefly review Tikhonov regularization and GCV. In particular, we show that by using the

SVD of the matrix A, we can recast the Tikhonov problem as a filtering method. In addition,

the SVD allows us to put the GCV function into a computationally convenient form. Although

this SVD approach is impractical for large-scale problems, it is both an extremely useful tool

for problems of small dimension and an important component of the Lanczos-hybrid method.

Tikhonov regularization requires solving the minimization problem given in (1.2). For

ease of notation, we take L to be the identity matrix. Let A = UΣVT denote the SVD of A,

where the columns ui of U and vi of V contain, respectively, the left and right singular vectors

of A, and Σ = diag(σ1, σ2, . . . , σn) is a diagonal matrix containing the singular values of A,

with σ1 ≥ σ2 ≥ ... ≥ σn ≥ 0. Replacing A by its SVD and performing a little algebraic

manipulation, we obtain the Tikhonov regularized solution

xλ =

n∑

i=1

φi
uT

i b
σi

vi,(2.1)
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where φi =
σ2

i

σ2
i + λ2

∈ [0, 1] are the Tikhonov filter factors; cf. [18]. Note that choosing

λ = 0 corresponds to φi = 1 for all i, which in turn gives the solution to (1.3). The regular-

ization parameter, λ, plays a crucial role in the quality of the solution. For example, if λ is too

large, the filter factors damp (or, equivalently, filter out) too many of the components in the

SVD expansion (2.1), and the corresponding solution is over-smoothed. On the other hand,

if λ is too small, the filter factors damp too few components, and the corresponding solution

is under-smoothed.

As mentioned in the introduction, a variety of parameter choice methods can be used

to determine λ. We choose to use GCV, which is a predictive statistics-based method that

does not require a priori estimates of the error norm. The basic idea of GCV is that a good

choice of λ should predict missing values of the data. That is, if an arbitrary element of the

observed data is left out, then the corresponding regularized solution should be able to predict

the missing observation fairly well [18]. We leave out each data value bj in turn and seek the

value of λ that minimizes the prediction errors, measured by the GCV function

G
A, b

(λ) =
n‖(I − AA†

λ)b‖2
2(

trace(I − AA†
λ)
)2 ,(2.2)

where A†
λ = (AT A + λ2I)−1AT represents the pseudo-inverse of

[
A
λI

]
, and gives the

regularized solution, xλ = A†
λb. Replacing A with its SVD, (2.2) can be rewritten as

G
A, b

(λ) =

n

(
n∑

i=1

(
λ2uT

i b
σ2

i + λ2

)2

+

m∑

i=n+1

(uT
i b)2

)

(
(m − n) +

n∑

i=1

λ2

σ2
i + λ2

)2 ,(2.3)

which is a computationally convenient form to evaluate, thus making GCV easily used with

standard minimization algorithms.

3. Lanczos-hybrid methods. Using GCV to determine the Tikhonov regularization pa-

rameter can be quite effective, but the minimization function (2.3) requires that the SVD of

the matrix A be computed, and this is not feasible when A is too big. This leads us to Lanczos-

hybrid methods, which make computing the SVD of the operator feasible by projecting the

problem onto a subspace of small dimension. As described in section 1 and illustrated in

Figure 1.1, hybrid methods can be an effective way to stabilize the semiconvergent behavior

that is characteristic of iterative methods like LSQR when applied to ill-posed problems. Us-

ing an iterative method like Lanczos bidiagonalization (LBD) in combination with a direct

method like Tikhonov regularization on the projected problem, we can hope to efficiently

solve large-scale, ill-posed inverse problems. In this section, we provide some background

on the Lanczos-hybrid methods.

Given a matrix A and vector b, LBD is an iterative scheme that computes the decompo-

sition

W T AY = B ,

where W and Y are orthonormal matrices, and B is a lower bidiagonal matrix. The kth it-

eration of LBD computes the kth columns of Y and B, and the (k + 1)st column of W.
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Specifically, at iteration k, for k = 1, . . . , n, we have an m × (k + 1) matrix Wk, an n × k
matrix Yk, an n × 1 vector yk+1, and a (k + 1) × k bidiagonal matrix Bk such that

AT Wk = YkBT
k + αk+1yk+1eT

k+1,(3.1)

AYk = WkBk,(3.2)

where ek+1 denotes the last column of the identity matrix of dimension (k+1) and αk+1 will

be the (k+1)st diagonal entry of Bk+1. Matrices Wk and Yk have orthonormal columns, and

the first column of Wk is b/‖b‖.

Given these relations, we approximate the least squares problem

min
x

||b − Ax||2

by the projected LS problem

min
x∈R(Yk)

||b − Ax||2 = min
f

||WT
k b − Bkf||2

= min
f

||βe1 − Bkf||2 ,(3.3)

where β = ‖b‖, and choose our approximate solution as xk = Ykf. Thus each iteration of

the LBD method requires solving a least squares problem involving a bidiagonal matrix Bk.

Implementations of LBD iterative methods such as LSQR do not explicitly form the matrices

Wk, Yk, and Bk when solving well-conditioned problems. Instead, efficient updating of the

solution is used, and only a few vectors are stored [30]. For ill-conditioned problems, though,

the matrices are often stored so that regularization can be applied.

An important property of LBD is that the singular values of Bk for small values of k tend

to approximate the largest and smallest singular values of A [12]. Since the original problem

is ill-posed, Bk may become very ill-conditioned. Therefore, regularization must be used to

compute

fλ = βB†
k,λe1 ,

as described in section 2. Notice that since the dimension of Bk is very small compared

to A, we can afford to use SVD-based filtering methods to solve for fλ and SVD-based pa-

rameter choice methods to find λ at each iteration. O’Leary and Simmons [29] proposed

using Tikhonov regularization to solve the projected problem, and Björck [1] suggested using

truncated SVD (TSVD) with GCV to choose the regularization parameters. A variety of ex-

isting methods can be implemented. For a comparative study; see Kilmer and O’Leary [23].

Björck [1] also suggested using GCV as a way to determine an appropriate stopping iteration.

In the next section we illustrate how well this method works for Tikhonov regularization,

using the GCV function,

G
Bk, βe1

(λ) =
k‖(I − BkB†

k,λ)βe1‖2
2

(
trace(I − BkB†

k,λ)
)2 ,

to choose regularization parameters for (3.3) at each iteration. Note that if we define the SVD

of the (k + 1) × k matrix Bk as

(3.4) Bk = Pk

[
∆k

0
T

]
QT

k ,
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then G
Bk, βe1

(λ) can be written as

G
Bk, βe1

(λ) =

kβ2

(
k∑

i=1

(
λ2

δ2
i + λ2

[
PT

k e1

]
i

)2

+
([

PT
k e1

]
k+1

)2
)

(
1 +

k∑

i=1

λ2

δ2
i + λ2

)2 ,(3.5)

where
[
PT

k e1

]
j

denotes the jth component of the vector PT
k e1, and δi is the ith largest singular

value of Bk (i.e., the ith diagonal element of ∆k).

4. Experimental results using Lanczos-hybrid methods and GCV. To illustrate the

behavior of the GCV and W-GCV methods in Lanczos-hybrid methods, we use six problems.

All computations are done in MATLAB. Data and code used in this paper can be obtained

from http://www.mathcs.emory.edu/˜nagy/WGCV.

4.1. Test problems. The first problem comes from the iterative image deblurring pack-

age, ‘RestoreTools’ [26]. Image deblurring has the form b = Ax true + ε, where the vector

x true represents the true image scene, A is a matrix representing a blurring operation, and b
is a vector representing the observed, blurred and noisy image. Given A and b, the aim is to

reconstruct an approximation of x true. The RestoreTools package has several data sets and

tools (such as matrix construction and multiplication routines) that can be used with iterative

methods. The data set we use consists of a true image of a satellite and a so-called point

spread function (PSF) that defines the blurring operation. The matrix A is constructed from

the PSF, using a matrix construction routine in RestoreTools. We then form the noise-free

blurred image as b true = Ax true. The MATLAB instructions are:

>> load satellite

>> A = psfMatrix(PSF);

>> b_true = A*x_true;

The images have 256 × 256 pixels, so the vectors b true and x true have length 2562 =
65, 536. The function psfMatrix uses an efficient data structure scheme to represent the

65, 536 × 65, 536 matrix A, and the multiplication operator, *, is overloaded to allow for

efficient computation of matrix-vector multiplications; see [26] for more details.

The other five test problems are taken from the ‘Regularization Tools’ package [17].

In each case we generate an n × n matrix A, true solution vector x true, and (noise-free)

observation vector b true, setting n = 256.

• Phillips is Phillips’ “famous” test problem. A, b, and x true are obtained by discretiz-

ing the first kind Fredholm integral equation b(s) =
∫ 6

−6
a(s, t)x(t)dt, where

a(s, t) =

{
1 + cos(π(s−t)

3 ) , |s − t| < 3,
0 , |s − t| ≥ 3,

x(t) =

{
1 + cos(πt

3 ) , |t| < 3,
0 , |t| ≥ 3,

b(s) = (6 − |s|)
(

1 +
1

2
cos(

πs

3
)

)
+

9

2π
sin(

π|s|
3

).

In MATLAB, the problem can be constructed with the simple statement:

>> [A, b_true, x_true] = phillips(n);

where n is the dimension of the problem.

http://www.mathcs.emory.edu/~nagy/WGCV
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• Shaw is a one-dimensional image restoration problem. A and x true are obtained by

discretizing, on the interval −π
2 ≤ s, t ≤ π

2 , the functions

a(s, t) = (cos(s) + cos(t))

(
sin(u)

u

)2

, u = π(sin(s) + sin(t)),

x(t) = 2 exp(−6(t − 0.8)2) + exp(−2(t + 0.5)2) ,

and b true = Ax true. The data can be constructed with the simple MATLAB state-

ment:

>> [A, b_true, x_true] = shaw(n);

where n is the dimension of the problem.

• Deriv2 constructs A, b and x true by discretizing a first kind Fredholm integral equa-

tion, b(s) =
∫ 1

0
a(s, t)x(t)dt, 0 ≤ s ≤ 1, where the kernel a(s, t) is given by the

Green’s function for the second derivative:

a(s, t) =

{
s(t − 1) , s < t,
t(s − 1) , s ≥ t.

There are several choices for x and b; in this paper, we use x(t) = t and b(s) =
(s3 − s)/6. The data can be constructed with the simple MATLAB statement:

>> [A, b_true, x_true] = deriv2(n);

where n is the dimension of the problem.

• Baart constructs A, b and x true by discretizing the first kind Fredholm integral equa-

tion b(s) =
∫ π

0
a(s, t)x(t)dt, 0 ≤ s ≤ π

2 , where

a(s, t) = exp(s cos t),

x(t) = sin t,

b(s) =
2 sinh s

s
.

The data can be constructed with the simple MATLAB statement:

>> [A, b_true, x_true] = baart(n);

where n is the dimension of the problem.

• Heat is an inverse heat equation using the Volterra integral equation of the first kind

on [0, 1] with kernel a(s, t) = k(s − t), where

k(t) =
t−3/2

2
√

π
exp

(
− 1

4t

)
.

The vector x true does not have a simple functional representation, but rather is con-

structed directly as a discrete vector; see [17] for details. The right-hand side b is

produced as b true = Ax true. The data can be constructed with the simple MATLAB

statement:

>> [A, b_true, x_true] = heat(n);

where n is the dimension of the problem.

In order to simulate noisy data, as modeled by equation (1.1), for each test problem, we

generate a noise vector ε whose entries are chosen from a normal distribution with mean 0

and variance 1, and scaled so that

‖ε‖2

‖Ax true‖2
= 0.1 (i.e., noise level = 10%) .
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4.2. What goes wrong in using GCV-Lanczos?. We solved these test problems with

the Lanczos-based hybrid method, using GCV to choose the Tikhonov regularization pa-

rameter λk at each iteration. The results are shown in Figure 4.1. In all of our examples,

LSQR, which is essentially LBD with no regularization, exhibits semiconvergent behavior,

as we expect. If we use ‘optimal’ regularization parameters at each iteration (determined us-

ing knowledge of x true to make the relative error in the solution as small as possible), then

Lanczos-hybrid methods would be excellent at stabilizing the regularized solution, as shown

with the dashed lines. However, in realistic situations, we do not know the optimal solution,

so this is impossible. On the Phillips, Shaw and Deriv2 problems, the performance of stan-

dard GCV, though slightly worse than optimal, is acceptable. For the other three problems,

the convergence behavior for GCV is significantly worse than optimal.

A major concern is the possibility that rounding errors in the computation of the ma-

trices Wk, Yk and Bk are causing the poor behavior. Björck, Grimme and Van Dooren [2]

showed that in some cases reorthogonalization may be necessary for better performance,

and Larsen [25] considered partial reorthogonalization. However, in our tests GCV still had

difficulty even after reorthogonalization. Another option is to use a different regularization

method such as TSVD or exponential filtering, but we found little to no improvement in the

solution. In addition, we delayed regularization until after k > kmin to wait until Bk more

fully captures the ill-conditioning of A, but that attempt proved futile as well.

We now know that there are good choices of the regularization parameter, so the poor be-

havior is caused by the suboptimal parameter chosen by GCV. In the next section we propose

replacing it by a weighted-GCV method which shows much better behavior.

5. Weighted-GCV. In this section we describe a modification of the GCV function,

which we call weighted-GCV (W-GCV), that will improve our ability to choose regulariza-

tion parameters for the projected problem. We first describe the approach for Tikhonov regu-

larization for a general linear system of equations, and then show in section 5.3 how to apply

it to the projected problem.

5.1. W-GCV for Tikhonov regularization. The standard GCV method is a popular

parameter choice method used in a variety of applications; however, as we have just seen,

the method may not perform well for certain classes of problems. Other studies in statisti-

cal nonparametric modeling and function approximation noted that in practical applications,

GCV occasionally chose Tikhonov parameters too small, thereby under-smoothing the so-

lution [6, 9, 24, 28, 31]. To circumvent this problem, these papers use a concept that we

call weighted-GCV. In contrast, we observed over-smoothing difficulties when using GCV

in Lanczos-hybrid methods, which motivated us to use a different range of weights in the

W-GCV method.

Instead of the Tikhonov GCV function defined in (2.2), we consider the weighted-GCV

function

G
A, b

(ω, λ) =
n||(I − AA†

λ)b||2
(

trace(I − ωAA†
λ)
)2 .

Notice the function’s dependency on a new parameter ω in the denominator trace term.

Choosing ω = 1 gives the standard GCV function (2.2). If we choose ω > 1, we obtain

smoother solutions, while ω < 1 results in less smooth solutions. The obvious question here

is how to choose a good value for ω. To our knowledge, in all work using W-GCV, only ex-

perimental approaches are used to choose ω. For smoothing spline applications, Kim and Gu

empirically found that standard GCV consistently produced regularization parameters that
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FIG. 4.1. These plots show the relative error, ‖xk − x true‖2/‖x true‖2, at each iteration of LSQR and the

Lanczos-hybrid method. Upper left: Satellite. Upper right: Regtools-Phillips. Middle left: Regtools-Shaw. Middle

right: Regtools-Deriv2. Bottom left: Regtools-Baart. Bottom right: Regtools-Heat. The standard GCV method

chooses regularization parameters that are too large at each iteration, which causes poor convergence behavior.

were too small, while choosing ω in the range of 1.2-1.4 worked well [24]. In our problems,

though, the GCV regularization parameter is chosen too large, and thus we seek a parame-

ter ω in the range 0 < ω ≤ 1. In addition, rather than using a user-defined parameter choice

for ω as in previous papers, we propose a more automated approach that is also versatile and

can be used on a variety of problems.

5.2. Interpretations of the W-GCV method. In this section, we consider the W-GCV

method and look at various theoretical aspects of the method. By looking at different in-

terpretations of the W-GCV method, we hope to shed some light on the role of the new

parameter ω.
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As mentioned in section 2, the standard GCV method is a “leave-one-out” prediction

method. In fact, in leaving out the jth observation, the derivation seeks to minimize the

prediction error (bj − [Ax]j)
2, when x is the minimizer of

m∑

i=1,i 6=j

(bi − [Ax]i)
2 + λ2||x||22.

If we define the m × m matrix

Ej = diag(1, 1, ...1, 0, 1, ...1),

where 0 is the jth entry, then the above minimization is equivalent to

min
x

||Ej(b − Ax)||22 + λ2||x||22.

We can derive the W-GCV method in a similar manner, but we instead use a weighted

“leave-one-out” philosophy. More specifically, consider the case 0 < ω < 1. Then define the

matrix

Fj = diag(1, 1, ...1,
√

1 − ω, 1, ...1),

where
√

1 − ω is the jth diagonal entry of Fj . By using the W-GCV method, we seek a

solution to the minimization problem,

min
x

||Fj(b − Ax)||22 + λ2||x||22.

In this problem, the jth observation is still present but has been down-weighted by the factor√
1 − ω; thus it is completely left out when ω = 1. A derivation of the W-GCV method

follows immediately from the derivation of the GCV method found in [11].

By introducing a new parameter in the trace term of the GCV function, we not only intro-

duce a new weighted prediction approach, but also change the interpretation of the function

we are minimizing. We consider the special case of Tikhonov regularization and look at how

the GCV function is altered algebraically and graphically with the new parameter. Using the

SVD expansion of A, it can be shown that the trace term in the standard GCV function is

given by

trace(I − AA†
λ) =

n∑

i=1

λ2

σ2
i + λ2

+ (m − n).

In contrast, the trace term for the W-GCV function is given by:

trace(I − ωAA†
λ) =

n∑

i=1

(1 − ω)σ2
i + λ2

σ2
i + λ2

+ (m − n)

=

n∑

i=1

(1 − ω)φi +

n∑

i=1

λ2

σ2
i + λ2

+ (m − n).

Thus, if ω < 1 then we are adding a multiple of the sum of the filter factors to the original

trace term, and if ω > 1 we are subtracting a multiple. The graph of the GCV function also

undergoes changes as ω is changed from 1. The denominator becomes zero for some value

of ω > 1, so the W-GCV function has a pole. Fortunately, in our case, 0 < ω ≤ 1. Note

that larger values of ω result in larger computed regularization parameters, and smaller values

of ω result in smaller values of λ.
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5.3. W-GCV for the bidiagonal system. In the previous subsection we discussed W-

GCV in the context of Tikhonov regularization on the original (full) system of equations

involving A and b. This allowed us to provide a general description, but our aim is to apply W-

GCV to choosing regularization parameters for the projected problem, (3.3). In this specific

case, the W-GCV function has the form

G
Bk, βe1

(ω, λ) =
k‖(I − BkB†

k,λ)βe1‖2
2

(
trace(I − ωBkB†

k,λ)
)2

=

kβ2

(
k∑

i=1

(
λ2

δ2
i + λ2

[
PT

k e1

]
i

)2

+
([

PT
k e1

]
k+1

)2
)

(
1 +

k∑

i=1

(1 − ω)δ2
i + λ2

δ2
i + λ2

)2 ,

where, using the notation introduced in (3.5), Pk is an orthogonal matrix containing the left

singular vectors of Bk, δi is the ith largest singular value of Bk, and W T
k b = βe1 with

β = ‖b‖. Note that this reduces to the expression in (3.5) when ω = 1.

5.4. Choosing ω. For many ill-posed problems, a good value of ω is crucial for the

success of Lanczos-hybrid methods. In this section we consider how different values of ω
may affect convergence behavior and present an adaptive approach for finding a good value

for ω.

Consider the test problem Heat, whose convergence graph with Tikhonov regularization

and the standard GCV method is given in the bottom right corner of Figure 4.1. To illustrate

the effects of using the W-GCV function with Lanczos-hybrid methods, we present results

using the same fixed value of ω at all steps of the iteration. The results are shown in Figure 5.1.

For this particular example, it is evident that ω = 0.2 is a good value for the new param-

eter. However, finding a good ω in this way is not possible since the true solution is generally

not available. Hence, we introduce an automated, adaptive approach that in our experience

produces adequate results.

Recall from section 3 that at each iteration of the Lanczos-hybrid method, we solve the

projected LS problem (3.3) using Tikhonov regularization. Since the early iterations of LBD

do not capture the ill-conditioning of the problem, we expect that little or no regularization

is needed to solve the projected LS problem. Let λk,opt denote the optimal regularization

parameter at the kth iteration. Then, we can assume that for small k, λk,opt should satisfy

0 ≤ λk,opt ≤ σmin (Bk) ,

where σmin denotes the smallest singular value of the matrix. If at iteration k, we assume

that we know λk,opt, then we can find ω by minimizing the GCV function with respect to ω.

That is, solving

∂

∂λ

(
G

Bk, βe1
(ω, λ)

)∣∣∣∣
λ=λk,opt

= 0.

Since we do not know λk,opt, we instead find ω̂k corresponding to λk,opt = σmin (Bk).
In later iterations, this approach fails because σmin (Bk) becomes nearly zero due to ill-

conditioning. For these iterations, a better approach is to adaptively take

ωk = mean {ω̂1, ω̂2, . . . , ω̂k} .
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FIG. 5.1. This figure shows plots of the relative errors, ‖xk − x true‖2/‖x true‖2, for LSQR and the Lanczos-

hybrid method for the Heat example from Regtools. The various plots show how the convergence behavior changes

when regularization parameters are chosen using the W-GCV method with different values of ω. Note that ω = 1 is

equivalent to using standard GCV, and ω = 0 is equivalent to using no regularization.

By averaging the previously computed ω values, we are essentially using the earlier well-

conditioned components of our problem to help stabilize the harmful effects of the smaller

singular values. There are two disadvantages to this approach. First, it over-smooths the

solutions at early iterations, since it uses a rather large value of λ for a well-conditioned

problem. Since these solutions are discarded, this is not a significant difficulty. Second, it

undersmooths values for large k, so semiconvergence will eventually reappear. However, in

practice we will also be using a method like GCV to choose a stopping iteration, so k will not

be allowed to grow too large; this is discussed in the following subsection.
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5.5. Stopping criteria for LBD. The next practical issue to consider is an approach

to determine an appropriate point at which to stop the iteration. Björck [1] suggested using

GCV for this purpose, when TSVD is used to solve the projected problem. However, Björck,

Grimme and Van Dooren [2] showed that modifications of the algorithm were needed to make

the approach effective for practical problems. Specifically, they proposed a fairly complicated

scheme based on implicitly restarting the iterations.

In this section we describe a similar approach for Tikhonov regularization, but we do not

need implicit restarts. We begin by defining the computed solution at each iteration of the

Lanczos hybrid method as

(5.1) xk = Ykfλk
= Yk(BT

k Bk + λ2
kI)−1BT

k WT
k b ≡ A†

kb .

Using the basic idea of GCV, we would like to determine a stopping iteration, k, that mini-

mizes

Ĝ(k) =
n‖(I − AA†

k)b‖2
2(

trace(I − AA†
k)
)2 .(5.2)

Using (5.1) and (3.2), the numerator of equation (5.2) can be written as

n‖(I − AA†
k)b‖2

2 = n‖(I − Bk(BT
k Bk + λ2

kI)−1BT
k )βe1‖2

2 .

If we now replace Bk with its SVD (3.4), we obtain

n‖(I − AA†
k)b‖2

2 = nβ2

∥∥∥∥∥∥∥∥∥∥∥





λ2

k

δ2

1
+λ2

k

. . .
λ2

k

δ2

k
+λ2

k

1




PT

k e1

∥∥∥∥∥∥∥∥∥∥∥

2

2

= nβ2

(
k∑

i=1

(
λ2

k

δ2
i + λ2

k

[
PT

k e1

]
i

)2

+
([

PT
k e1

]
k+1

)2
)

.(5.3)

Similarly, the denominator of equation (5.2) can be written as

(5.4)
(

trace
(

I − AA†
k

))2

=

(
(m − k) +

k∑

i=1

λ2
k

δ2
i + λ2

k

)2

.

Thus, combining (5.3) and (5.4), equation (5.2) can be written as

(5.5) Ĝ(k) =

nβ2

(
k∑

i=1

(
λ2

k

δ2
i + λ2

k

[
PT

k e1

]
i

)2

+
([

PT
k e1

]
k+1

)2
)

(
(m − k) +

k∑

i=1

λ2
k

δ2
i + λ2

k

)2 .

This is the form of Ĝ(k) that we use to determine a stopping iteration in our implementations.

The numerator is n/k times the numerator in (3.5) for G
A, b

(λk), and the denominator differs

only in its first term.
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In the ideal situation where the convergence behavior of the Lanczos-hybrid method is

perfectly stabilized, we expect λk to converge to a fixed value corresponding to an appropri-

ate regularization parameter for the original problem (1.2). In this case the values of Ĝ(k)
converge to a fixed value. Therefore, we choose to terminate the iterations when these values

change very little,

∣∣∣∣∣
Ĝ(k + 1) − Ĝ(k)

Ĝ(1)

∣∣∣∣∣ < tol ,

for some prescribed tolerance.

However, as remarked in the previous subsection, it may be impossible to completely

stabilize the iterations for realistic problems, resulting in slight semiconvergent behavior of

the iterations. In this case, the GCV values Ĝ(k) will begin to increase. Thus, we implement

a second stopping criteria to stop at iteration k0 satisfying

k0 = argmin
k

Ĝ(k) .

In the next section we present some numerical experiments with an implementation of the

Lanczos-hybrid method that uses this approach.

6. Numerical results. We now illustrate the effectiveness of using the W-GCV method

in Lanczos-hybrid methods with Tikhonov regularization.

6.1. Results on various test problems. We implement the adaptive method presented

in section 5.4 for choosing ω and provide numerical results for each of the test problems. The

resulting convergence curves are displayed in Figure 6.1.

In all of the test problems, choosing ω adaptively provides nearly optimal convergence

behavior. The results for the Phillips and Shaw problems are excellent with the adaptive

W-GCV approach. The Satellite, Baart and Heat examples exhibit a slowed convergence

compared to Tikhonov with the optimal regularization parameter but achieve much better

results than with the standard GCV. This slowed convergence is due to the fact that at the

early iterations the projected problem is well conditioned and W-GCV produces a solution

that is too smooth. At later iterations, when more small singular value information is captured

in the bidiagonalization process, better ω, and hence λ, parameters are found, and the W-

GCV parameter choice is close to optimal. In addition, W-GCV avoids the early stagnation

behavior that GCV exhibits.

It should be noted that when LBD takes many iterations, preconditioning could be used

to accelerate convergence. It is interesting to note that the Deriv2 example converges, but

eventually exhibits small signs of semiconvergent behavior. Nevertheless, the results are still

better than the standard GCV, and, moreover, if combined with the stopping criteria described

in the previous section, the results are quite good. To illustrate, in Table 6.1 we report the

iteration at which our code detected a minimum of Ĝ(k).

TABLE 6.1

Results of using bG(k) to determine a stopping iteration. The numbers reported in this table are the iteration

index at which our Lanczos-hybrid code detected a minimum of bG(k).

Problem Satellite Phillips Shaw Deriv2 Baart Heat

Stopping Iteration 197 18 23 20 9 21

Comparing the results in Table 6.1 with the convergence history plots shown in Fig-

ure 6.1, we see that our approach to choosing a stopping iteration is very effective. Although
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FIG. 6.1. These plots show the relative error, ‖xk − x true‖2/‖x true‖2, at each iteration of LSQR and the

Lanczos-hybrid method. Upper left: Satellite. Upper right: Regtools-Phillips. Middle left: Regtools-Shaw. Middle

right: Regtools-Deriv2. Bottom left: Regtools-Baart. Bottom right: Regtools-Heat. The standard GCV method

chooses regularization parameters that are too large at each iteration, which cause poor convergence behavior.

However, the W-GCV method, with our adaptive approach to choose ω produces near optimal convergence behavior.

the scheme does not perform as well on the Baart example, the results are still quite good con-

sidering the difficulty of this problem. (Observe that with no regularization, semiconvergence

happens very quickly, and we should therefore expect difficulties in stabilizing the iterations.)

These results show that our W-GCV method performs better than standard GCV, and that we

are able to determine an appropriate stopping iteration on a wide class of problems.

We also remark that the Satellite example is a much larger problem than the other ex-

amples, and so more iterations are needed. However, the Lanczos-hybrid method can easily

incorporate standard preconditioning techniques to accelerate convergence. For the Satellite
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image deblurring example, we used a Kronecker product based preconditioner [20, 21, 27]

implemented in RestoreTools [26]. In this case, the Lanczos-hybrid method, with W-GCV,

detects a minimum of Ĝ(k) in only 54 iterations. The corresponding solution has relative er-

ror 0.4001, which is actually slightly lower than the relative error 0.4061 achieved at iteration

197 when using no preconditioning.

6.2. Effect of noise on ω. We now consider how the choice of ω depends on the amount

of noise in the data. In particular, we report on numerical results for the test problems de-

scribed in section 4.1 with three different noise levels:

‖ε‖2

‖Ax true‖2
= 0.1, 0.01, and 0.001.

Thus these problems have 10%, 1% and 0.1% noise levels respectively. Some of the results

reported in previous sections for 10% noise are repeated here for comparison purposes.

Recall that because standard GCV computes regularization parameters that are too large,

we should choose 0 < ω ≤ 1 in W-GCV. Generally we observe that the over-smoothing

caused by standard GCV is more pronounced for larger noise levels. Therefore large noise

levels typically need smaller values of ω, while small noise levels need larger values of ω.

Our next experiments were designed to see how far the “optimal” value of ω differs from the

GCV value ω = 1. The results are shown in Table 6.2, which displays ω values that allow

W-GCV to compute near-optimal regularization parameters at each iteration of the Lanczos-

hybrid method. For example, in Figure 5.1 we see that for 10% noise, ω = 0.2 produces near

optimal convergence behavior for the Heat problem, and thus this value appears in the first

row, last column of table.

TABLE 6.2

Values of ω (found experimentally) that produce optimal convergence behavior of the Lanczos-hybrid method

for different noise levels. Figure 6.2 shows how these values perform on the Baart and Heat examples.

Satellite Phillips Shaw Deriv2 Baart Heat

Noise Level ωopt ωopt ωopt ωopt ωopt ωopt

10 % 0.40 0.20 0.05 0.10 0.01 0.20

1% 0.50 0.40 0.05 0.20 0.05 0.40

0.1% 0.80 0.50 0.10 0.60 0.10 0.80

The results reported in Table 6.2 were found experimentally. We see clearly from this

table that optimal values of ω depend on the noise level (increasing with decreasing noise

level), as well as with the problem. However, more work is needed to better understand these

relationships.

Figure 6.2 shows how our adaptive approach to choosing ω compares to the optimal

values on two of the test problems (Baart and Heat) and for the various noise levels. These

two test problems are representative of the convergence behavior we observe with the other

test problems. We see that if a good choice of ω can be found, W-GCV is very effective

(much more so than GCV) at choosing regularization parameters, and thus at stabilizing the

convergence behavior, especially for high noise levels. Moreover, although we do not yet have

a scheme that chooses the optimal value of ω, these results show that our adaptive approach

produces good results on a wide class of problems, and for various noise levels.

7. Concluding remarks. In this paper, we have considered using a weighted-GCV

method in Lanczos-hybrid methods for solving large scale ill-posed problems. The W-GCV
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FIG. 6.2. These plots show the relative error, ‖xk − x true‖2/‖x true‖2, at each iteration of LSQR and the

Lanczos-hybrid method. The plots on the left correspond to the Baart example, for three different noise levels. The

plots on the right correspond to the Heat example. Optimal choices of ω (found experimentally) produce optimal

convergence behavior, and our adaptive approach to choose ω produces near optimal convergence behavior. It can

be observed that standard GCV is ineffective for moderate to high levels of noise.

method requires choosing yet another parameter, so we proposed and implemented an adap-

tive, automatic approach for choosing this parameter. We demonstrated through a variety of

test problems that our approach was effective in stabilizing semiconvergence behavior.

The MATLAB implementations used to generate the results presented in this paper can

be obtained from http://www.mathcs.emory.edu/˜nagy/WGCV.

Several open questions remain. With the ability to obtain near optimal solutions, Lanczos-

hybrid methods should have a significant impact on many applications. Recently, Kilmer,

Hansen and Español [22] suggested a projection-based algorithm that can be implemented

for more general regularization operators. We can treat this iterative method as a hybrid

http://www.mathcs.emory.edu/~nagy/WGCV
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method and apply W-GCV. In addition, we would like to see how well W-GCV works in

combination with truncated SVD and Lanczos-hybrid methods. Finally, work remains to be

done on alternative ways to determine the new parameter in the W-GCV method.
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[1] Å. BJÖRCK, A bidiagonalization algorithm for solving large and sparse ill-posed systems of linear equations,

BIT, 28 (1988), pp. 659–670.
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